Cell Biochemistry and Biophysics

, Volume 65, Issue 3, pp 373–380 | Cite as

Ovariectomy Reinstates the Infarct Size-Limiting Effect of Postconditioning in Female Rabbits

  • Eftychia Demerouti
  • Ioanna Andreadou
  • Ioanna-Katerina Aggeli
  • Dimitrios Farmakis
  • Anastasia Zoga
  • Catherine Gaitanaki
  • Isidoros Beis
  • Maria Anastasiou-Nana
  • Dimitrios Th. Kremastinos
  • Efstathios K. Iliodromitis
Original Paper

Abstract

Gender seems to interfere with the cardioprotective effect of ischemic preconditioning (PreC) and postconditioning (PostC); PreC-conferred protection is weaker or lost in female animals after ovariectomy (Ov), while the role of PostC is still in dispute. We sought to investigate the effect of PostC in female rabbits, its interaction with Ov, and the potential implicated intracellular pathways. Intact or Ov adult female rabbits (n = 46) were subjected to 30 min ischemia and reperfusion with PostC (PostC or OvPostC), which consisted of six cycles of 30-s ischemia/30-s reperfusion at the end of ischemia, or without PostC (Fem or OvFem). Infarct size (I) and area at risk (R) were determined by TTC staining and fluorescent particles, respectively, after 3-h reperfusion in 30 out of 46 animals. Plasma levels of estradiol and nitrite/nitrate (NOx) were evaluated. ERKs, p38-MAPK, and Akt assessment was performed in excised hearts 1-min after starting the final reperfusion period in the remaining 16 animals. Infarct size was significantly reduced only in OvPostC group (I/R ratio, 25.3 ± 2.7, vs 48.1 ± 2.0, 43.6 ± 4.2 and 55.1 ± 5.6 % in Fem, OvFem, and PostC groups, p < 0.05). In ovariectomized rabbits, plasma estradiol and NOx levels were lower than in the normal ones. Akt phosphorylation in ischemic regions was significantly higher in OvPostC group, whereas ERK1/2 and p38-MAPK activation was observed in all ovariectomized animals irrespective of PostC. PostC is not effective in female rabbits, but the protection is reinstated after Ov potentially via the RISK pathway.

Keywords

Postconditioning Ovariectomy Myocardial infarction Intracellular signaling 

References

  1. 1.
    Zhao, Z. Q., Corvera, J. S., Halkos, M. E., Kerendi, F., Wang, N. P., Guyton, R. A., et al. (2003). Inhibition of myocardial injury by ischemic postconditioning during reperfusion: Comparison with ischemic preconditioning (PreC). American Journal of Physiology-Heart and Circulatory Physiology, 285, H579–H588.PubMedGoogle Scholar
  2. 2.
    Hausenloy, D. J., & Yellon, D. M. (2004). New directions for protecting the heart against ischaemia-reperfusion injury: Targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovascular Research, 61, 448–460.PubMedCrossRefGoogle Scholar
  3. 3.
    Hausenloy, D. J., & Yellon, D. M. (2003). The mitochondrial permeability transition pore: Its fundamental role in mediating cell death during ischaemia and reperfusion. Journal of Molecular and Cellular Cardiology, 35, 339–341.PubMedCrossRefGoogle Scholar
  4. 4.
    Staat, P., Rioufol, G., Piot, C., Cottin, Y., Cung, T. T., L’Huillier, I., et al. (2005). Postconditioning the human heart. Circulation, 112, 2143–2148.PubMedCrossRefGoogle Scholar
  5. 5.
    Thibault, H., Piot, C., Staat, P., Bontemps, L., Sportouch, C., Rioufol, G., et al. (2008). Long-term benefit of postconditioning. Circulation, 117, 1037–1044.PubMedCrossRefGoogle Scholar
  6. 6.
    Hansen, R. R., Thibault, H., & Abdulla, J. (2010). Postconditioning during primary percutaneous coronary intervention: A review and meta-analysis. International Journal of Cardiology, 144, 22–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Iliodromitis, E. K., Zoga, A., Vrettou, A., Andreadou, I., Paraskevaidis, I. A., Kaklamanis, L., et al. (2006). The effectiveness of postconditioning and preconditioning on infarct size in hypercholesterolemic and normal anesthetized rabbits. Atherosclerosis, 188, 356–362.PubMedCrossRefGoogle Scholar
  8. 8.
    Bouhidel, O., Pons, S., Souktani, R., Zini, R., Berdeaux, A., & Ghaleh, B. (2008). Myocardial ischemic postconditioning against ischemia-reperfusion in impaired in ob/ob mice. American Journal of Physiology-Heart and Circulatory Physiology, 295, H1580–H1586.PubMedCrossRefGoogle Scholar
  9. 9.
    Boengler, K., Schulz, R., & Heusch, G. (2009). Loss of cardioprotection with ageing. Cardiovascular Research, 83, 247–261.PubMedCrossRefGoogle Scholar
  10. 10.
    Barret-Connor, E. (1997). Sex differences in coronary heart disease. Why are women so superior? The 1995 Ancel Keys Lecture. Circulation, 95, 252–264.CrossRefGoogle Scholar
  11. 11.
    Culic, V., Miric, D., & Jukic, I. (2003). Acute myocardial infarction: Differing preinfarction and clinical features according to infarct size and gender. International Journal of Cardiology, 90, 189–196.PubMedCrossRefGoogle Scholar
  12. 12.
    Antonicelli, R., Olivieri, F., Morichi, V., Urbani, E., & Mais, V. (2008). Prevention of cardiovascular events in early menopause: A possible role for hormone replacement therapy. International Journal of Cardiology, 130, 140–146.PubMedCrossRefGoogle Scholar
  13. 13.
    Shinmura, K., Nagai, M., Tamaki, K., & Bolli, R. (2008). Loss of ischemic preconditioning in ovariectomized rat hearts: Possible involvement of impaired protein kinase C ε phosphorylation. Cardiovascular Research, 79, 387–394.PubMedCrossRefGoogle Scholar
  14. 14.
    Sbarouni, E., Iliodromitis, E., Zoga, A., Vlachou, G., Andreadou, I., & Kremastinos, D. T. (2006). The effect of the phytoestrogen genistein on myocardial protection, preconditioning and oxidative stress. Cardiovascular Drugs and Therapy, 20, 253–258.PubMedCrossRefGoogle Scholar
  15. 15.
    Penna, C., Tullio, F., Merlino, A., Moro, F., Raimondo, S., Rastaldo, R., et al. (2009). Postconditioning cardioprotection against infarct size and post-ischemic systolic dysfunction is influenced by gender. Basic Research in Cardiology, 104, 390–402.PubMedCrossRefGoogle Scholar
  16. 16.
    Crisostomo, P., Wang, M., Wairiuko, G. M., Terrell, A. M., & Meldrum, D. R. (2006). Postconditioning in females depends on injury severity. Journal of Surgical Research, 134, 342–347.PubMedCrossRefGoogle Scholar
  17. 17.
    Dow, J., & Kloner, R. A. (2007). Postconditioning does not reduce myocardial infarct size in an in vivo regional ischemia rodent model. The Journal of Cardiovascular Pharmacology and Therapeutics, 12, 153–163.CrossRefGoogle Scholar
  18. 18.
    Lee, D. S., Steinbaugh, G. E., Quarrie, R., Yang, F., Talukder, M. A., Zweier, J. L., et al. (2010). Ischemic postconditioning does not provide cardioprotection from long-term ischemic injury in isolated male or female rat hearts. Journal of Surgical Research, 164, 178–181.CrossRefGoogle Scholar
  19. 19.
    Zheng, Z., Yang, M., Zhang, F., Yu, J., Wang, J., Ma, L., et al. (2011). Gender-related difference of sevoflurane postconditioning in isolated rat hearts: Focus on phosphatidylinositol-3-kinase/Akt signaling. Journal of Surgical Research, 170, e3–e9.PubMedCrossRefGoogle Scholar
  20. 20.
    Iliodromitis, E. K., Andreadou, I., Prokovas, E., Zoga, A., Farmakis, D., Fotopoulou, T., et al. (2010). Simvastatin in contrast to postconditioning reduces infarct size in hyperlipidemic rabbits: Possible role of oxidative/nitrosative stress. Basic Research in Cardiology, 105, 193–203.PubMedCrossRefGoogle Scholar
  21. 21.
    Aggeli, I. K., Gaitanaki, C., & Beis, I. (2006). Involvement of JNKs and p38-MAPK/MSK1 pathways in H2O2-induced upregulation of heme oxygenase-1 mRNA in H9c2 cells. Cellular Signalling, 18, 1801–1812.PubMedCrossRefGoogle Scholar
  22. 22.
    Bogoyevitch, M. A. (2000). Signalling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovascular Research, 45, 826–842.PubMedCrossRefGoogle Scholar
  23. 23.
    Argaud, L., Gateau- Roesch, O., Raisky, O., Loufouat, J., Robert, D., & Ovize, M. (2005). Postconditioning inhibits mitochondrial permeability transition. Circulation, 111, 194–197.PubMedCrossRefGoogle Scholar
  24. 24.
    Tsang, A., Hausenloy, D. J., Mocanu, M. M., & Yellon, D. M. (2004). Postconditioning: A form of “modified reperfusion” protects the myocardium by activating the phosphatidylinositol 3-kinase-Akt pathway. Circulation Research, 95, 230–232.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, X. M., Proctor, J. B., Cui, L., Krieg, T., Downey, J. M., & Cohen, M. V. (2004). Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signalling pathways. Journal of the American College of Cardiology, 44, 1103–1110.PubMedCrossRefGoogle Scholar
  26. 26.
    Roubille, F., Franck-Miclo, A., Covinches, A., Lafont, C., Cransac, F., Combes, S., et al. (2011). Delayed postconditioning in the mouse heart in vivo. Circulation, 124, 1330–1336.PubMedCrossRefGoogle Scholar
  27. 27.
    Iliodromitis, E., & Kremastinos, D. (2006). From preconditioning to postconditioning: Novel interventions in the armory of salvage of the ischemic heart. Hellenic Journal of Cardiology, 47, 321–323.PubMedGoogle Scholar
  28. 28.
    Kim, J. K., & Levin, E. R. (2006). Estrogen signaling in the cardiovascular system. Nuclear Receptor Signaling, 4, e013.PubMedGoogle Scholar
  29. 29.
    Hayashi, T., Fukuto, J. M., Ignarro, L. J., & Chaudhuri, G. (1992). Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: Implications for atherosclerosis. Proceeding of National Academy of Science USA, 89, 11259–11263.CrossRefGoogle Scholar
  30. 30.
    Hayashi, T., Fukuto, J. M., Ignarro, L. J., & Chaudhuri, G. (1995). Gender difference in atherosclerosis: Possible role of nitric oxide. Journal of Cardiovascular Pharmacology, 26, 792–802.PubMedCrossRefGoogle Scholar
  31. 31.
    Akiyama, K., Suzuki, H., Grant, P., & Bing, R. J. (1997). Oxidation products of nitric oxide NO2 and NO3 in plasma after experimental myocardial infarction. Journal of Molecular and Cellular Cardiology, 29, 1–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Andreadou, I., Iliodromitis, E. K., Mikros, E., Constantinou, M., Agalias, A., Magiatis, P., et al. (2006). The olive constituent oleuropein exhibits anti-ischemic, antioxidative and hypolipidemic effects in anesthetized rabbits. Journal of Nutrition, 136, 2213–2219.PubMedGoogle Scholar
  33. 33.
    Shuto, H., Tominaga, K., Yamanuchi, A., Ikeda, M., Kusaba, K., Mitsunaga, D., et al. (2011). The statins fluvastatin and pravastatin exert anti-flushing effects by improving vasomotor dysfunction through nitric oxide-mediated mechanism in ovariectomized animals. European Journal of Pharmacology, 651, 234–239.PubMedCrossRefGoogle Scholar
  34. 34.
    Akiyama, K., Kimura, A., Suzuki, H., Takeyama, Y., Gluckman, T. L., Tarhakopian, A., et al. (1998). Production of oxidative products of nitric oxide in infracted human heart. Journal of the American College of Cardiology, 32, 373–379.PubMedCrossRefGoogle Scholar
  35. 35.
    Andreadou, Ι., Farmakis, D., Prokovas, Ε., Sigala, F., Zoga, Α., Spyridaki, K., et al. (2012). Short-term statin administration in hypercholesterolemic rabbits resistant to postconditioning: Effects on infarct size, endothelial nitric oxide synthase and nitro-oxidative stress. Cardiovascular Research, 94, 501–509.PubMedCrossRefGoogle Scholar
  36. 36.
    Salloum, F. N., Takenoshita, Y., Ockaili, R. A., Daoud, V. P., Chou, E., Yoshida, K., et al. (2007). Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial KATP channels when administered at reperfusion following ischemia in rabbits. Journal of Molecular and Cellular Cardiology, 42, 453–458.PubMedCrossRefGoogle Scholar
  37. 37.
    Takeuchi, K., McGowan, F. X., Danh, H. C., Glynn, P., Simplaceanu, E., & delNido, P. J. (1995). Direct detrimental effects of l-arginine upon ischemia reperfusion injury to myocardium. Journal of Molecular and Cellular Cardiology, 27, 1405–1414.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang, M., Baker, L., Tsai, B. M., Meldrum, K. K., & Meldrum, D. R. (2005). Sex differences in the myocardial inflammatory response to ischemia reperfusion injury. The American Journal of Physiology-Endocrinology and Metabolism, 288, E321–E326.CrossRefGoogle Scholar
  39. 39.
    van Eickels, M., Groh′e, C., Cleutjens, J. P., Janssen, B. J., Wellens, H. J., & Doevendans, P. A. (2001). 17β-Estradiol attenuates the development of pressure-overload hypertrophy. Circulation, 104, 1419–1423.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang, M., Crisostomo, P., Wairiuko, G. M., & Meldrum, D. R. (2006). Estrogen receptor-α mediates acute myocardial protection in females. American Journal of Physiology-Heart and Circulatory Physiology, 290, H2204–H2209.PubMedCrossRefGoogle Scholar
  41. 41.
    Beer, S., Reincke, M., Kral, M., Callies, F., Strömer, H., Dienesch, C., et al. (2007). High-dose 17β-estradiol treatment prevents development of heart failure post-myocardial infarction in the rat. Basic Research in Cardiology, 102, 9–18.PubMedCrossRefGoogle Scholar
  42. 42.
    Hugel, S., Reincke, M., Stromer, H., Winning, J., Horn, M., Dienesch, C., et al. (1999). Evidence against a role of physiological concentrations of estrogen in post-myocardial infarction remodeling. Journal of the American College of Cardiology, 34, 1427–1434.PubMedCrossRefGoogle Scholar
  43. 43.
    van Eickels, M., Patten, R. D., Aronovitz, M. J., Alsheikh-Ali, A., Gostyla, K., Celestin, F., et al. (2003). 17-β-Estradiol increases cardiac remodeling and mortality in mice with myocardial infarction. Journal of the American College of Cardiology, 41, 2084–2092.PubMedCrossRefGoogle Scholar
  44. 44.
    Song, X., Li, G., Vaage, J., & Valen, G. (2003). Effects of sex, gonadectomy, and oestrogen substitution on ischaemic preconditioning and ischemia-reperfusion injury in mice. Acta Physiologica Scandinavica, 177, 459–466.PubMedCrossRefGoogle Scholar
  45. 45.
    Peng, W. J., Yu, J., Deng, S., Jiang, J. L., Deng, H. W., & Li, Y. J. (2004). Effect of estrogen replacement treatment on ischemic preconditioning in isolated rat hearts. Canadian Journal of Physiology and Pharmacology, 82, 339–344.PubMedCrossRefGoogle Scholar
  46. 46.
    Stampfer, M. J., Colditz, G. A., Willett, W. C., Manson, J. E., Rosner, B., Speizer, F. E., et al. (1991). Postmenopausal estrogen therapy and cardiovascular disease. Ten-year follow-up from the nurses health study. New England Journal of Medicine, 325, 756–762.PubMedCrossRefGoogle Scholar
  47. 47.
    Wenger, N. K., Speroff, L., & Packard, B. (1993). Cardiovascular health and disease in women. New England Journal of Medicine, 329, 247–256.PubMedCrossRefGoogle Scholar
  48. 48.
    Alexandersen, P., Tank′o, L. B., Bagger, Y. Z., Qin, G., & Christiansen, C. (2006). The long-term impact of 2–3 years of hormone replacement therapy on cardiovascular mortality and atherosclerosis in healthy women. Climacteric, 9, 108–118.PubMedCrossRefGoogle Scholar
  49. 49.
    Hulley, S., Grady, D., Bush, T., Furberg, C., Herrington, D., Riggs, B., et al. (1998). Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS). JAMA, 280, 605–613.PubMedCrossRefGoogle Scholar
  50. 50.
    Grady, D., Herrington, D., Bittner, V., Blumenthal, R., Davidson, M., Hlatky, M., et al. (2002). Cardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA, 288, 49–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Rossouw, J. E., Andersen, G. L., Prentice, R. L., LaCroix, A. Z., Kooperberg, C., Stefanick, M. L., et al. (2002). Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results from the Women’s Health Initiative randomized controlled trial. JAMA, 288, 321–333.PubMedCrossRefGoogle Scholar
  52. 52.
    Hendrix, S. L., Wassertheil-Smoller, S., Johnson, K. C., Howard, B. V., Kooperberg, C., Rossouw, J. E., et al. (2006). Effects of conjugated equine estrogen on stroke in the Women’s Health Initiative. Circulation, 113, 2425–2434.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Eftychia Demerouti
    • 1
  • Ioanna Andreadou
    • 2
  • Ioanna-Katerina Aggeli
    • 3
  • Dimitrios Farmakis
    • 4
  • Anastasia Zoga
    • 1
  • Catherine Gaitanaki
    • 3
  • Isidoros Beis
    • 3
  • Maria Anastasiou-Nana
    • 1
  • Dimitrios Th. Kremastinos
    • 1
  • Efstathios K. Iliodromitis
    • 1
  1. 1.Second Department of Cardiology, Medical SchoolUniversity of Athens, Attikon University HospitalAthensGreece
  2. 2.Department of Pharmaceutical Chemistry, School of PharmacyUniversity of AthensAthensGreece
  3. 3.Department of Animal and Human Physiology, School of BiologyUniversity of AthensAthensGreece
  4. 4.First Department of Internal MedicineUniversity of Athens Medical School, Laiko HospitalAthensGreece

Personalised recommendations