Advertisement

Cell Biochemistry and Biophysics

, Volume 65, Issue 2, pp 85–96 | Cite as

Biophysical Evaluation of Radiofrequency Electromagnetic Field Effects on Male Reproductive Pattern

  • Kavindra Kumar Kesari
  • Sanjay Kumar
  • Jayprakash Nirala
  • Mohd. Haris Siddiqui
  • Jitendra Behari
Review Paper

Abstract

There are possible hazardous health effects of exposure to radiofrequency electromagnetic radiations emitted from mobile phone on the human reproductive pattern. It is more effective while keeping mobile phones in pocket or near testicular organs. Present review examines the possible concern on radio frequency radiation interaction and biological effects such as enzyme induction, and toxicological effects, including genotoxicity and carcinogenicity, testicular cancer, and reproductive outcomes. Testicular infertility or testicular cancer due to mobile phone or microwave radiations suggests an increased level of reactive oxygen species (ROS). Though generation of ROS in testis has been responsible for possible toxic effects on physiology of reproduction, the reviews of last few decades have well established that these radiations are very harmful and cause mutagenic changes in reproductive pattern and leads to infertility. The debate will be focused on bio-interaction mechanism between mobile phone and testicular cancer due to ROS formation. This causes the biological damage and leads to several changes like decreased sperm count, enzymatic and hormonal changes, DNA damage, and apoptosis formation. In the present review, physics of mobile phone including future research on various aspects has been discussed.

Keywords

ROS Mobile phone Microwave Infertility Testicular cancer Apoptosis 

Notes

Conflict of interest

There are no conflicts of interests.

References

  1. 1.
    Markov, M. S. (2000). Dosimetry of magnetic fields in the radio frequency range. In B. J. Klauenberg & D. Miklavcic (Eds.), Radio frequency radiation dosimetry (pp. 239–245). New York: Kluwer Academic Press.Google Scholar
  2. 2.
    Kesari, K. K., & Behari, J. (2010). Effect of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicological and Environmental Chemistry, 92, 1135–1147.CrossRefGoogle Scholar
  3. 3.
    Kesari, K. K., Kumar, S., & Behari, J. (2010). Mobile phone usage and male infertility in Wistar rats. Indian Journal of Experimental Biology, 48(10), 987–992.PubMedGoogle Scholar
  4. 4.
    Kesari, K. K., Kumar, S., & Behari, J. (2011). Effects of radiofrequency electromagnetic waves exposure from cellular phone on reproductive pattern in male Wistar rats. Applied Biochemistry and Biotechnology, 164, 546–559.PubMedCrossRefGoogle Scholar
  5. 5.
    Desai, N. R., Kesari, K. K., & Agarwal, A. (2009). Pathophysiology of cell phone radiation: Oxidative stress and carcinogenesis with focus on male reproductive system. Reproductive Biology and Endocrinology, 7, 114.PubMedCrossRefGoogle Scholar
  6. 6.
    Moller, P., Wallin, H., & Knudsen, L. E. (1996). Oxidative stress associated with exercise, psychological stress and life-style factors. Chemical Biological Interaction, 102, 17–36.CrossRefGoogle Scholar
  7. 7.
    Kumar, S., Kesari, K. K., & Behari, J. (2011). Influence of microwave exposure on fertility of male rats. Fertility Sterility, 95(4), 1500–1502.CrossRefGoogle Scholar
  8. 8.
    Kesari, K. K., & Behari, J. (2009). Fifty-gigahertz microwave exposure effect of radiations on rat brain. Applied Biochemistry Biotechnology, 158, 126–139.CrossRefGoogle Scholar
  9. 9.
    Kesari, K. K., Behari, J., & Kumar, S. (2010). Mutagenic response of 2.45 GHz radiation exposure on rat brain. International Journal of Radiation Biology, 86(4), 334–343.PubMedCrossRefGoogle Scholar
  10. 10.
    Kesari, K. K., Kumar, S., & Behari, J. (2011). 900-MHz microwave radiation promotes oxidation in rat brain. Electromagnetic Biology and Medicine, 30(4), 219–234.PubMedCrossRefGoogle Scholar
  11. 11.
    Kesari, K. K., & Behari, J. (2010). Microwave exposure affecting reproductive system in male rats. Applied Biochemistry and Biotechnology, 162, 416–428.PubMedCrossRefGoogle Scholar
  12. 12.
    Fejes, I., Závaczki, Z., Szöllosi, J., et al. (2005). Is there a relationship between cell phone use and semen quality? Archive of Andrology, 51(5), 385–393.CrossRefGoogle Scholar
  13. 13.
    Aitken, R. J., Bennetts, L. E., & Sawyer, D. (2005). Impact of radiofrequency electromagnetic radiation on DNA integrity in the male germline. International Journal of Andrology, 28(3), 171–179.PubMedCrossRefGoogle Scholar
  14. 14.
    Erogul, O., Oztas, F., Yildirim, I., et al. (2006). Effects of electromagnetic radiation from a cellular phone on human sperm motility: an in vitro study. Archive of Medical Research, 37(7), 840–843.CrossRefGoogle Scholar
  15. 15.
    Yan, J. G., Agresti, M., Bruce, T., et al. (2007). Effects of cellular phone emissions on sperm motility in rats. Fertility Sterility, 88(4), 957–964.CrossRefGoogle Scholar
  16. 16.
    Agarwal, A., Desai, N. R., Makker, K., et al. (2009). Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: An in vitro pilot study. Fertility Sterility, 92(4), 1318–1325.CrossRefGoogle Scholar
  17. 17.
    Agarwal, A., Deepinder, F., Sharma, R. K., et al. (2008). Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study. Fertility Sterility, 89(1), 124–128.CrossRefGoogle Scholar
  18. 18.
    Falzone, N., Huyser, C., Fourie, F., et al. (2008). In vitro effect of pulsed 900 MHz GSM radiation on mitochondrial membrane potential and motility of human spermatozoa. Bioelectromagnetics, 29(4), 268–276.PubMedCrossRefGoogle Scholar
  19. 19.
    Deepinder, F., Makker, K., & Agarwal, A. (2007). Cell phones and male infertility: Dissecting the relationship. Reproductive Biomedicine Online, 15(3), 266–270.PubMedCrossRefGoogle Scholar
  20. 20.
    Wdowiak, A., Wdowiak, L., & Wiktor, H. (2007). Evaluation of the effect of using mobile phones on male fertility. Annals of Agricultural and Environmental Medicine, 14(1), 169–172.PubMedGoogle Scholar
  21. 21.
    Mailankot, M., Kunnath, A. P., Jayalekshmi, H., et al. (2009). Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phones induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo), 64(6), 561–565.CrossRefGoogle Scholar
  22. 22.
    Pacini, S., Ruggiero, M., Sardi, I., et al. (2002). Exposure to global system for mobile communication (GSM) cellular phone radiofrequency alters gene expression, proliferation, and morphology of human skin fibroblasts. Oncology Research, 13, 19–24.PubMedGoogle Scholar
  23. 23.
    Mashevich, M., Folkman, D., Kesar, A., et al. (2003). Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics, 24, 82–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Sykes, P. J., McCallum, B. D., Bangay, M. J., et al. (2001). Effect of exposure to 900 MHz radiofrequency radiation on intrachromosomal recombination in pKZ1 mice. Radiation Research, 156, 495–502.PubMedCrossRefGoogle Scholar
  25. 25.
    Kunjilwar, K. K., & Behari, J. (1993). Effect of amplitude-modulated radio frequency radiation on cholinergic system of developing rats. Brain Research, 601, 321–324.PubMedCrossRefGoogle Scholar
  26. 26.
    Burch, J. B., Reif, J. S., Noonan, C. W., et al. (2002). Melatonin metabolite excretion among cellular telephone users. International Journal of Radiation Biology, 78, 1029–1036.PubMedCrossRefGoogle Scholar
  27. 27.
    Kumar, S., Kesari, K. K., & Behari, J. (2010). Evaluation of genotoxic effects in male Wistar rats following microwave exposure. Indian Journal of Experimental Biology, 48, 586–592.PubMedGoogle Scholar
  28. 28.
    Hu, P. Y., Chu, X. L., Li, J. Y., et al. (1985). Effect of microwave contraception on human serum testosterone and luteinizing hormone. Shengzhi Yu Biyun, 5, 32–34.PubMedGoogle Scholar
  29. 29.
    Steinberger, E. (1971). Hormonal control of mammalian spermatogenesis. Physiological Review, 51(1), 1–22.Google Scholar
  30. 30.
    Dasdag, S., Ketani, M. A., Akdag, Z., et al. (1999). Whole-body microwave exposure emitted by cellular phones and testicular function of rats. Urological Research, 27, 219–223.PubMedCrossRefGoogle Scholar
  31. 31.
    Ozguner, M., Koyu, A., Cesur, G., et al. (2005). Biological and morphological effects on the reproductive organs of rats after exposure to electromagnetic field. Soudi Medical Journal, 26(3), 405–410.Google Scholar
  32. 32.
    Carl, A. B., Ashwood, E. R., & Bruns, D. E. (2006). Tietz text book of clinical chemistry and molecular diagnostics (pp. 191–218). St. Louis, MO: Elsevier/Sanders.Google Scholar
  33. 33.
    Hackney, A. C., Moore, A. W., & Brownlee, K. K. (2005). Testosterone and endurance “exercise hypogonadal male condition”. Acta Physiological Hungarica, 92, 121–137.CrossRefGoogle Scholar
  34. 34.
    Meo, S. A., Al-Drees, A. M., & Husain, S. (2010). Effect of mobile phone on serum testosterone in Wistar Albino rats. Saudi Medical Journal, 31(8), 869–873.PubMedGoogle Scholar
  35. 35.
    Sarookhani, M. R., Rezaei, M. A., Safari, A., et al. (2011). The influence of 950 MHz magnetic field (mobile phone radiation) on sex organ and adrenal functions of male rabbits. African Journal of Biochemistry Research, 5(2), 65–68.Google Scholar
  36. 36.
    Kumar, S., Kesari, K. K., & Behari, J. (2011). Synergistic effect of 2.45 GHz and pulsed magnetic field on reproductive pattern of male Wistar rats. Clinics, 66(7), 1237–1245.PubMedCrossRefGoogle Scholar
  37. 37.
    Mailankot, M., Kunnath, A. P., Jayalekshmi, H., et al. (2009). Radio frequency electromagnetic radiation (RF-EMR) from GSM (0.9/1.8 GHz) mobile phone induces oxidative stress and reduces sperm motility in rats. Clinics (Sao Paulo), 64, 561–565.CrossRefGoogle Scholar
  38. 38.
    Desai, N., Sharma, R., Makker, K., et al. (2009). Physiologic and pathologic levels of reactive oxygen species in neat semen of infertile men. Fertility and Sterility, 92(5), 1626–1631.PubMedCrossRefGoogle Scholar
  39. 39.
    D’Autreaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: Mechanisms that generate specificity in ROS homeostasis. Nature Reviews Molecular Cell Biology, 8, 813–824.PubMedCrossRefGoogle Scholar
  40. 40.
    Bandyopadhyay, U., Das, D., & Banerjee, R. K. (1999). Reactive oxygen species: Oxidative damage and pathogenesis. Current Science, 77(5), 658–666.Google Scholar
  41. 41.
    De Iuliis, G. N., Newey, R. J., King, B. V., et al. (2009). Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS ONE, 4(7), e6446.PubMedCrossRefGoogle Scholar
  42. 42.
    Agarwal, A., Singh, A., Hamada, A., et al. (2011). Cell phones and male infertility: A review of recent innovations in technology and consequences. International Brazilian Journal of Urology, 37(4), 432–454.PubMedCrossRefGoogle Scholar
  43. 43.
    Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine (2nd ed.). Oxford: Clarendon Press. ISBN 0-19850-044-0.Google Scholar
  44. 44.
    Vassalle, C., Petrozzi, L., Botto, N., et al. (2004). Oxidative stress and its association with coronary artery disease and different atherogenic risk factors. Journal of International Medicine, 256(4), 308–315.CrossRefGoogle Scholar
  45. 45.
    Araujo, F. B., Barbosa, D. S., Hsin, C. Y., et al. (1995). Evaluation of oxidative stress in patients with Hyperlipidemia. Atherosclerosis, 117(1), 61–71.PubMedCrossRefGoogle Scholar
  46. 46.
    Reilly, M. P., Pratico, D., Delanty, N., et al. (1998). Increased formation of distinct F2 isoprostanes in Hypercholesterolemia. Circulation, 98(25), 2822–2828.PubMedCrossRefGoogle Scholar
  47. 47.
    Stojiljkovic, M. P., Lopes, H. F., Zhang, D., et al. (2002). Increasing plasma fatty acids elevates F2-isoprostanes in humans: Implications for the cardiovascular risk factor cluster. Journal of Hypertension, 20(6), 1215–1221.PubMedCrossRefGoogle Scholar
  48. 48.
    Mecocci, P., MacGarvey, U., Kaufman, A. E., et al. (1994). Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Annals Neurology, 36(5), 747–751.CrossRefGoogle Scholar
  49. 49.
    Milton, N. G. (2004). Role of hydrogen peroxide in the aetiology of Alzheimer’s disease: Implications for treatment. Drugs and Aging, 21(2), 81–100.PubMedCrossRefGoogle Scholar
  50. 50.
    Nishioka, N., & Arnold, S. E. (2004). Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. American Journal of Geriatric Psychiatry, 12(2), 167–175.PubMedGoogle Scholar
  51. 51.
    Paredi, P., Kharitonov, S. A., Hanazawa, T., et al. (2001). Local vasodilator response to mobile phones. Laryngoscope, 111(1), 159–162.PubMedCrossRefGoogle Scholar
  52. 52.
    Yariktas, M., Doner, F., Ozguner, F., et al. (2005). Nitric oxide level in the nasal and sinus mucosa after exposure to electromagnetic field. Otolaryngology: Head and Neck Surgery, 132, 713–716.CrossRefGoogle Scholar
  53. 53.
    Blokhina, O., Virolainen, E., & Fagerstedt, K. V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botony (London), 91, 179–194.CrossRefGoogle Scholar
  54. 54.
    McNamee, J. P., McLean, J. R. N., Ferrarotto, C. L., et al. (2000). Comet assay: Rapid processing of multiple samples. Mutation Research, 466, 63–69.PubMedCrossRefGoogle Scholar
  55. 55.
    Singh, N. P., McCoy, M. T., Tice, R. R., et al. (2003). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175(1), 184–191.CrossRefGoogle Scholar
  56. 56.
    Lai, H., & Singh, N. P. (1995). Acute low-intensity microwave exposure increases DNA single-strand breaks in rat brain cells. Bioelectromagnetics, 16, 207–210.PubMedCrossRefGoogle Scholar
  57. 57.
    Sakuma, N., Komatsubara, Y., Takeda, H., et al. (2006). DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations. Bioelectromagnetics, 27, 51–57.PubMedCrossRefGoogle Scholar
  58. 58.
    Agarwal, A., Deepinder, F., & Sharma, R. K. (2007). Effect of cell phone usage on semen analysis in men attending infertility clinic: An observational study. Fertility and Sterility,. doi: 10.1016/j.fertnstert.2007.01.166.Google Scholar
  59. 59.
    Lai, H., & Singh, N. P. (1997). Acute exposure to a 60-Hz magnetic field increases DNA strand breaks in rat brain cells. Bioelectromagnetics, 18, 156–165.PubMedCrossRefGoogle Scholar
  60. 60.
    Behari, J., & Kesari, K. K. (2006). Effects of microwave radiations on reproductive system of male rats. Embryo Talk, 1, 81–85.Google Scholar
  61. 61.
    Vijayalaxmi, & Obe, G. (2004). Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiation Research, 162, 481–496.PubMedCrossRefGoogle Scholar
  62. 62.
    Ivancsits, S., Diem, E., Pilger, A., et al. (2002). Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutation Research, 519, 1–13.PubMedCrossRefGoogle Scholar
  63. 63.
    Ivancsits, S., Diem, E., Jahn, O., et al. (2003). Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. International Archives of Occupational and Environmental Health, 76, 431–436.PubMedCrossRefGoogle Scholar
  64. 64.
    Ivancsits, S., Diem, E., Jahn, O., et al. (2003). Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mechanism of Ageing and Development, 124, 847–850.CrossRefGoogle Scholar
  65. 65.
    Guchelaar, H. J., Vermes, A., Vermes, I., et al. (1997). Apoptosis: Molecular mechanisms and implications for cancer chemotherapy. Pharmacology World Sciences, 19, 119–125.CrossRefGoogle Scholar
  66. 66.
    Sherr, C. J. (1996). Cancer cell cycles. Science, 274, 1672–1677.PubMedCrossRefGoogle Scholar
  67. 67.
    Aitken, R. J., Bennetts, L. E., Sawyer, D., et al. (2005). Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. International Journal of Andrology, 28, 171–179.PubMedCrossRefGoogle Scholar
  68. 68.
    Koshland, D., & Strunnikov, A. (1996). Mitotic chromosome condensation. Annals Review Cell Biology, 12, 305–333.CrossRefGoogle Scholar
  69. 69.
    Manjhi, J., Mathur, R., & Behari, J. (2009). Effect of low level capacitive-coupled pulsed electric field stimulation on mineral profile of weight-bearing bones in ovariectomized rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 92(1), 189–195.Google Scholar
  70. 70.
    Prakash, D., & Behari, J. (2009). Synergistic role of hydroxyapatite nanoparticles and pulsed electromagnetic field therapy to prevent bone loss in rats following exposure to simulated microgravity. International Journal of Nanomedicine, 4, 1–12.CrossRefGoogle Scholar
  71. 71.
    Holmberg, B. (1995). Magnetic fields and cancer: Animal and cellular evidence—An overview. Environmental Health Perspectives, 103(2), 63–67.PubMedCrossRefGoogle Scholar
  72. 72.
    Loscher, W., & Mevissen, M. (1994). Animal studies on the role of 50/60-Hertz magnetic fields in carcinogenesis. Life Science, 54, 1531–1543.CrossRefGoogle Scholar
  73. 73.
    Ahlbom, A., Day, N., Feychting, M., et al. (2000). A pooled analysis of magnetic fields and childhood leukaemia. Brazilian Journal of Cancer, 83, 692–698.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kavindra Kumar Kesari
    • 1
  • Sanjay Kumar
    • 1
  • Jayprakash Nirala
    • 1
  • Mohd. Haris Siddiqui
    • 2
  • Jitendra Behari
    • 1
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.Department of BiotechnologyIntegral UniversityLucknowIndia

Personalised recommendations