Cell Biochemistry and Biophysics

, Volume 67, Issue 2, pp 461–476 | Cite as

Oxidative Stress and Dermal Toxicity of Iron Oxide Nanoparticles In Vitro

  • Ashley R. Murray
  • Elena Kisin
  • Alfred Inman
  • Shih-Houng Young
  • Mamoun Muhammed
  • Terrance Burks
  • Abdusalam Uheida
  • Alexey Tkach
  • Micah Waltz
  • Vincent Castranova
  • Bengt Fadeel
  • Valerian E. Kagan
  • Jim E. Riviere
  • Nancy Monteiro-Riviere
  • Anna A. ShvedovaEmail author
Original Paper


A number of commercially available metal/metal oxide nanoparticles (NPs) such as superparamagnetic iron oxide (SPION) are utilized by the medical field for a wide variety of applications. These NPs may able to induce dermal toxicity via their physical nature and reactive surface properties. We hypothesize that SPION may be toxic to skin via the ability of particles to be internalized and thereby initiate oxidative stress, inducing redox-sensitive transcription factors affecting/leading to inflammation. Due to the skin’s susceptibility to UV radiation, it is also of importance to address the combined effect of UVB and NPs co-exposure. To test this hypothesis, the effects of dextran-coated SPION of different sizes (15–50 nm) and manufacturers (MicroMod, Rostock-Warnemunde, Germany and KTH-Royal Institute of Technology, Stockholm, Sweden) were evaluated in two cell lines: normal human epidermal keratinocytes (HEK) and murine epidermal cells (JB6 P+). HEK cells exposed to 20 nm (KTH and MicroMod) had a decrease in viability, while the 15 and 50 nm particles were not cytotoxic. HEK cells were also capable of internalizing the KTH particles (15 and 20 nm) but not the MicroMod SPION (20 and 50 nm). IL-8 and IL-6 were also elevated in HEK cells following exposure to SPION. Exposure of JB6 P+ cells to all SPIONs evaluated resulted in activation of AP-1. Exposure to SPION alone was not sufficient to induce NF-κB activation; however, co-exposure with UVB resulted in significant NF-κB induction in cells exposed to 15 and 20 nm KTH SPION and 50 nm MicroMod particles. Pre-exposure of JB6 P+ cells to UVB followed by NPs induced a significant depletion of glutathione, release of cytokines, and cell damage as assessed by release of lactate dehydrogenase. Altogether, these data indicate that co-exposure to UVB and SPIONs was associated with induction of oxidative stress and release of inflammatory mediators. These results verify the need to thoroughly evaluate the adverse effects of UVB when evaluating dermal toxicity of engineered NPs on skin.


Nanoparticles Skin exposure Ultraviolet radiation Iron oxide 



This work was supported by NIOSH OH008282, NORA 927Z1LU and the 7th Framework Program of the European Commission (EC-FP-7-NANOMMUNE-214281).


The findings and conclusions in this report are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.


  1. 1.
    Roco, M. C., Williams, S., & Alivisatos, P. (2000). Nanotechnology research directions: IWGN workshop report. Dordrecht: Kluwer.CrossRefGoogle Scholar
  2. 2.
    Muller, K., Skepper, J. N., Posfai, M., Trivedi, R., Howarth, S., Corot, C., et al. (2008). Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials, 28, 1629–1642.CrossRefGoogle Scholar
  3. 3.
    Weissleder, R., Bogdanov, A., Neuwelt, E. A., & Papisov, M. (1995). Long-circulating iron oxides for MR imaging. Advanced Drug Delivery Reviews, 16, 321–324.CrossRefGoogle Scholar
  4. 4.
    Reimer, P., & Weissleder, R. (1996). Development and experimental application of receptor-specific MR contrast media. Radiology, 36, 153–163.CrossRefGoogle Scholar
  5. 5.
    Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge, and surface nature on biodistribution. Journal of Microencapsulation, 13, 245–255.PubMedCrossRefGoogle Scholar
  6. 6.
    Jung, C. W., & Jacobs, P. (1995). Physical and chemical properties of superparamagnetic iron-oxide MR contrast agents-ferumoxides, ferumoxtran, ferumoxsil. Magnetic Resonance Imaging, 13, 661–674.PubMedCrossRefGoogle Scholar
  7. 7.
    Corot, C., Robert, P., Idee, J. M., & Port, M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Advanced Drug Delivery Reviews, 58, 1471–1504.PubMedCrossRefGoogle Scholar
  8. 8.
    Curtis, A. S. G., & Wilkinson, C. (2001). Nanotechniques and approaches in biotechnology. Trends in Biotechnology, 19, 97–101.PubMedCrossRefGoogle Scholar
  9. 9.
    Moghimi, S. M., Humter, A. C. H., & Murray, J. C. (2001). Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacological Reviews, 53, 283–318.PubMedGoogle Scholar
  10. 10.
    Chan, D. C. F., Kirpotin, D., & Bunn, P. A. (1993). Synthesis and evaluation of colloidal magnetic iron-oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 122, 374–378.CrossRefGoogle Scholar
  11. 11.
    Mornet, S., Vasseur, S., Grasset, F., & Duguet, E. (2004). Magnetic nanoparticle design for medical diagnosis and therapy. Journal of Materials Chemistry, 14, 2161–2175.CrossRefGoogle Scholar
  12. 12.
    Morawski, A. M., Lanza, G. A., & Wickline, S. A. (2005). Targeted contrast agents for magnetic resonance imaging and ultrasound. Current Opinion in Biotechnology, 16(1), 89–92.PubMedCrossRefGoogle Scholar
  13. 13.
    Ziv-Polat, O., Topaz, M., Brosh, T., & Margel, S. (2010). Enhancement of incisional wound healing by thrombin conjugated iron oxide nanoparticles. Biomaterials, 31, 741–747.PubMedCrossRefGoogle Scholar
  14. 14.
    Veiseh, O., Gunn, J. W., Kievit, F. M., Sun, C., Fang, C., Lee, J. S. H., et al. (2009). Inhibition of tumor-cell invasion with chlorotoxin-bound superparamagnetic nanoparticles. Small (Weinheim an der Bergstrasse, Germany), 5(2), 256–264.CrossRefGoogle Scholar
  15. 15.
    Moore, A., Marecos, E., Bogdanov, A., & Weissleder, R. (2000). Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology, 214, 568–574.PubMedGoogle Scholar
  16. 16.
    Huh, Y. M., Jun, Y. W., Song, H. T., Kim, S., Choi, J. S., Lee, J. H., et al. (2005). In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals. Journal of the American Chemical Society, 127(35), 12387–12391.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhao, M., Beauregard, D. A., Loizou, L., Davletov, B., & Brindle, K. M. (2001). Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nature Medicine, 7(11), 1241–1244.PubMedCrossRefGoogle Scholar
  18. 18.
    Weissleder, R., Moore, A., Mahmood, U., Bhorade, R., Benveniste, H., Chiocca, E. A., et al. (2000). In vivo magnetic resonance imaging of transgene expression. Nature Medicine, 6(3), 351–355.PubMedCrossRefGoogle Scholar
  19. 19.
    Jun, Y. W., Huh, Y. M., Choi, J. S., Lee, J. H., Song, H. T., Kim, S., et al. (2005). Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. Journal of the American Chemical Society, 127(16), 5732–5733.PubMedCrossRefGoogle Scholar
  20. 20.
    Bulte, J. W., Douglas, T., Witwer, B., Zhang, S. C., Strable, E., Lewis, B. K., et al. (2001). Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nature Biotechnology, 19(12), 1141–1147.PubMedCrossRefGoogle Scholar
  21. 21.
    Van Beers, B. E., Pringot, J., & Gallez, B. (1995). Iron oxides as contrast agents for MRI of the liver. Journal de Radiologie, 76(11), 991–995.PubMedGoogle Scholar
  22. 22.
    Weissleder, R., Stark, D. D., Engelstad, B. L., Bacon, B. R., Compton, C. C., White, D. L., et al. (1989). Superparamagnetic iron oxide: Pharmacokinetics and toxicity. American Journal of Radiology, 152(1), 167–173.Google Scholar
  23. 23.
    Weissleder, R., Elizondo, G., Wittenberg, J., Rabito, C. A., Bengele, H. H., & Josephson, L. (1990). Ultrasmall superparamagnetic iron oxide: Characterization of a new class of contrast agents for MR imaging. Radiology, 175, 489–493.PubMedGoogle Scholar
  24. 24.
    Wilhelm, C., Billotey, C., Roger, J., Pons, J. N., Bacri, J. C., & Gazeau, F. (2003). Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials, 24, 1001–1011.PubMedCrossRefGoogle Scholar
  25. 25.
    Metz, S., Bonaterra, G., Rudelius, M., Settles, M., Rummeny, E. J., & Daldrup-Link, H. E. (2004). Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. European Radiology, 14, 1851–1858.PubMedCrossRefGoogle Scholar
  26. 26.
    Berry, C. C., Wells, S., Charles, S., Aitchison, G., & Curtis, A. S. G. (2004). Cell response to dextran-derivatised iron oxide nanoparticles post internalisation. Biomaterials, 25, 5405–5413.PubMedCrossRefGoogle Scholar
  27. 27.
    Berry, C. C., Wells, S., Charles, S., & Curtis, A. S. G. (2003). Dextran and albumin derivatised iron oxide nanoparticles: Influence on fibroblasts in vitro. Biomaterials, 24, 4551–4557.PubMedCrossRefGoogle Scholar
  28. 28.
    Martin, A. L., Bernas, L. M., Rutt, B. K., Foster, P. J., & Gillies, E. R. (2008). Enhanced cell uptake of superparamagnetic iron oxide nanoparticles functionalized with dendritic guanidines. Bioconjugate Chemistry, 19, 2375–2384.PubMedCrossRefGoogle Scholar
  29. 29.
    Miyachi, Y., & Imamura, S. (1990). Photo-oxidative skin damage and antioxidants. Photodermatology Photoimmunology & Photomedicine, 7, 49–50.Google Scholar
  30. 30.
    Jurkiewicz, B. A., & Buettner, G. R. (1994). Ultraviolet light-induced free radical formation in skin: An electron paramagnetic resonance study. Photochemistry and Photobiology, 59, 1–4.PubMedCrossRefGoogle Scholar
  31. 31.
    Trouba, K. J., Hamadeh, H. K., Amin, R. P., & Germolec, D. R. (2002). Oxidative stress and its role in skin disease. Antioxidants & Redox Signaling, 4(4), 665–673.CrossRefGoogle Scholar
  32. 32.
    Alder, V., Yin, Z., Tew, K. D., & Ronai, Z. (1999). Role of redox potential and reactive oxygen species in stress signaling. Oncogene, 18, 6104–6111.CrossRefGoogle Scholar
  33. 33.
    Jordan, A., Wust, P., Scholz, R., Tesche, B., Fahling, H., Mitrovics, T., et al. (1996). Cellular uptake of magnetic fluid particles and their effects on human carcinoma cells exposed to AC magnetic fields in vitro. International Journal of Hyperthermia, 12(6), 705–722.PubMedCrossRefGoogle Scholar
  34. 34.
    Dhar, A., Young, M. R., & Colburn, N. H. (2002). The role of AP-1, NF-kB and ROS/NOS in skin carcinogenesis: The JB6 model is predictive. Molecular and Cellular Biochemistry, 234(235), 185–193.PubMedCrossRefGoogle Scholar
  35. 35.
    Colburn, N. H., Former, B. F., Nelson, K. A., & Yuspa, S. H. (1979). Tumour promoter induces anchorage independent irreversibility. Nature, 281, 589–591.PubMedCrossRefGoogle Scholar
  36. 36.
    Colburn, N. H., & Lockyer, J. (1982). Phobol diester and epidermal growth factor receptors in 12-O-tetradecanoylphorbol-13-acetate-resistant and -sensitive mouse epidermal cells. Cancer Research, 42, 3093–3097.PubMedGoogle Scholar
  37. 37.
    Keane, R. W., Srinivasan, A., Foster, L. M., Testa, M. P., Ord, T., Nonner, D., et al. (1997). Activation of CPP32 during apoptosis of neurons and astrocytes. Journal of Neuroscience Research, 48, 168–180.PubMedCrossRefGoogle Scholar
  38. 38.
    Monteiro-Riviere, N. A., Inman, A. O., & Zhang, L. W. (2009). Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in human cell line. Toxicology and Applied Pharmacology, 234, 222–235.PubMedCrossRefGoogle Scholar
  39. 39.
    Shvedova, A. A., Kommineni, C., Jeffries, B. A., Castranova, V., Tyurina, Y. Y., Tyurin, V. A., et al. (2000). Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. Journal of Investigative Dermatology, 114, 354–364.PubMedCrossRefGoogle Scholar
  40. 40.
    Driscoll, K. E., Carter, J. M., Hassenbein, D. G., & Howard, B. (1997). Cytokines and particle-induced inflammatory cell recruitment. Environmental Health Perspectives, 105(Suppl 5), 1159–1164.PubMedCrossRefGoogle Scholar
  41. 41.
    Mossman, B. T., & Churg, A. (1998). Mechanisms in the pathogenesis of asbestosis and silicosis. American Journal of Respiratory and Critical Care Medicine, 157, 1666–1680.PubMedCrossRefGoogle Scholar
  42. 42.
    Schins, R. P., & Borm, P. J. (1999). Mechanisms and mediators in coal dust induced toxicity: A review. Annals of Occupational Hygiene, 43, 7–33.PubMedGoogle Scholar
  43. 43.
    Siglienti, I., Bendszus, M., Kleinschnitz, C., & Stoll, G. (2006). Cytokine profile of iron-laden macrophages: Implications for cellular magnetic resonance imaging. Journal of Neuroimmunology, 173, 166–173.PubMedCrossRefGoogle Scholar
  44. 44.
    Gupta, A. K., & Curtis, A. S. G. (2004). Surface modified superparamagnetic nanoparticles for drug delivery: Interaction studies with human fibroblasts in culture. Journal of Materials Science, 15, 493–496.PubMedGoogle Scholar
  45. 45.
    Moore, A., Weissleder, R., & Bogdanov, A. (1997). Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. Journal of Magnetic Resonance Imaging, 7, 1140–1145.PubMedCrossRefGoogle Scholar
  46. 46.
    Schulze, E., Ferrucci, J. T., Poss, K., Lapointe, L., Bogdanova, A., & Weissleder, R. (1995). Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Investigative Radiology, 30, 604–610.PubMedCrossRefGoogle Scholar
  47. 47.
    Fuchs, J., & Kern, H. (1998). Modulation of UV-light-induced skin inflammation by D-alpha-tocopherol and L-ascorbic acid: A clinical study using solar simulated radiation. Free Radical Biology & Medicine, 25, 1006–1012.CrossRefGoogle Scholar
  48. 48.
    Kligman, L. H., & Kligman, A. M. (1986). The nature of photoaging: Its prevention and repair. Photodermatology, 3, 215–227.PubMedGoogle Scholar
  49. 49.
    Longstreth, J., de Gruijl, F. R., Kripke, M. L., Abseck, S., Arnold, F., Slaper, H. I., et al. (1998). Health risks. Journal of Photochemistry and Photobiology B: Biology, 46, 20–39.CrossRefGoogle Scholar
  50. 50.
    Black, H. S. (1987). Potential involvement of free radical reactions in ultraviolet light- mediated cutaneous damage. Photochemistry and Photobiology, 46, 213–221.PubMedCrossRefGoogle Scholar
  51. 51.
    Darr, D., & Fridovich, I. (1994). Free radicals in cutaneous biology. Journal of Investigative Dermatology, 102, 671–675.PubMedCrossRefGoogle Scholar
  52. 52.
    Kvam, E., & Dhale, J. (2003). Pigmented melanocytes are protected against ultraviolet-A-induced membrane damage. Journal of Investigative Dermatology, 121, 564–569.PubMedCrossRefGoogle Scholar
  53. 53.
    Carbonare, M. D., & Pathak, M. A. (1992). Skin photosensitizing agents and the role of reactive oxygen species in photoaging. Journal of Photochemistry and Photobiology B: Biology, 14, 105–124.CrossRefGoogle Scholar
  54. 54.
    Babincova, M., Leszczynska, D., Sourivong, P., & Babinec, P. (2000). Selective treatment of neoplastic cells using ferritin-mediated electromagnetic hyperthermia. Medical Hypotheses, 54(3), 177–179.PubMedCrossRefGoogle Scholar
  55. 55.
    Schafer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology & Medicine, 30, 1191–1212.CrossRefGoogle Scholar
  56. 56.
    Sies, H. (1999). Glutathione and its role in cellular function. Free Radical Biology & Medicine, 27, 916–921.CrossRefGoogle Scholar
  57. 57.
    Kohen, R., & Nyska, A. (2003). Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicologic Pathology, 30(6), 620–650.CrossRefGoogle Scholar
  58. 58.
    Haddad, J. J. (2000). Glutathione depletion is associated with augmenting a proinflammatory signal: Evidence for an antioxidant/pro-oxidant mechanism regulating cytokines in the alveolar epithelium. Cytokines, Cellular & Molecular Therapy, 6, 177–187.Google Scholar
  59. 59.
    Haddad, J. J. (2002). Science review: Redox and oxygen-sensitive transcription factors in the regulation of oxidant-mediated lung injury: Role for nuclear factor-kappa B. Critical Care, 6(6), 481–490.PubMedCrossRefGoogle Scholar
  60. 60.
    Haddad, J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox(y)-sensitive transcription factors. Cellular Signalling, 14(11), 879–897.PubMedCrossRefGoogle Scholar
  61. 61.
    Hudson, V. M. (2001). Rethinking cystic fibrosis pathology: The critical role of abnormal reduced glutathione (GSH) transport caused by CFTR mutation. Free Radical Biology & Medicine, 30, 1440–1461.CrossRefGoogle Scholar
  62. 62.
    Petroff, M. G., Petroff, B. K., & Pate, J. L. (2001). Mechanisms of cytokine-induced death of cultured bovine luteal cells. Reproduction, 121, 753–760.PubMedCrossRefGoogle Scholar
  63. 63.
    Gosset, P., Wallaert, B., Tonnel, A. B., & Fourneau, C. (1999). Thiol regulation of the production of TNF-α, IL-6, and IL-8 by human alveolar macrophages. European Respiratory Journal, 14, 98–105.PubMedCrossRefGoogle Scholar
  64. 64.
    Lopez-Torres, M., Thiele, J. J., Shindo, Y., Han, D., & Packer, L. (1998). Topical application of a-tocopherol modulates the antioxidant network and diminishes ultraviolet-induced oxidative damage in murine skin. British Journal of Dermatology, 138, 207–215.PubMedCrossRefGoogle Scholar
  65. 65.
    Halliwell, B., & Cross, C. E. (1994). Oxygen-derived species: Their relation to human disease and environmental stress. Environmental Health Perspectives, 102, 5–12.PubMedGoogle Scholar
  66. 66.
    Nackbar, F., & Korting, H. C. (1995). The role of vitamin E in normal and damaged skin. Journal of Molecular Medicine, 73, 7–17.Google Scholar
  67. 67.
    Meyer, M., Pahl, H. L., & Bauerle, P. A. (1994). Regulation of the transcription factor NF-kB and AP-1 by redox changes. Chemico-Biological Interacttions, 91, 91–100.CrossRefGoogle Scholar
  68. 68.
    Abate, C., & Curran, T. (1990). Encounters with Fos and Jun on the road to AP-1. Seminars in Cancer Biology, 1, 19–26.PubMedGoogle Scholar
  69. 69.
    Toledano, M. B., & Leonard, W. J. (1991). Modulation of transcription factor NF-kappa B binding activity by oxidation-reduction in vitro. Proceedings of the National Academy of Sciences of the United States of America, 88, 4328–4332.PubMedCrossRefGoogle Scholar
  70. 70.
    Boyle, W. J., Smeal, T., Defize, L. H., Angel, P., Woodgett, J. R., Karin, M., et al. (1991). Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell, 64(3), 73–84.CrossRefGoogle Scholar
  71. 71.
    Papavassiliou, A. G., Bohmann, K., & Bohmann, D. (1992). Determining the effect of inducible protein phosphorylation on the DNA-binding activity of transcription factors. Analytical Biochemistry, 203(2), 302–309.PubMedCrossRefGoogle Scholar
  72. 72.
    Cerruti, P. A. (1989). Response modification in carcinogenesis. Environmental Health Perspectives, 81, 39–43.CrossRefGoogle Scholar
  73. 73.
    Schreck, R., Reiber, P., & Baeuerle, P. A. (1991). Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa-B transcription factor and HIV-1. EMBO Journal, 10(8), 2247–2258.PubMedGoogle Scholar
  74. 74.
    Schreck, R., & Baeuerle, P. A. (1991). A role for oxygen radicals as second messengers. Trends in Cell Biology, 1(2–3), 39–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Barker, J., Mitra, R., Griffiths, C., Dixit, V., & Nickoloff, B. (1991). Keratinocytes as initiators of inflammation. Lancet, 337, 211–214.PubMedCrossRefGoogle Scholar
  76. 76.
    Corsini, E., & Galli, C. (1998). Cytokines and contact dermatitis. Toxicology Letters, 102–103, 277–282.PubMedCrossRefGoogle Scholar
  77. 77.
    Grone, A. (2002). Keratinocytes and cytokines. Veterinary Immunology and Immunopathology, 88, 1–12.PubMedCrossRefGoogle Scholar
  78. 78.
    Nickolof, B. (1991). The cytokine network in psoriasis. Archives of Dermatological Research, 127, 871–884.CrossRefGoogle Scholar
  79. 79.
    Chabot-Fletcher, M., Breton, J., Lee, J., Young, P., & Griswold, D. (1994). Interleukin-8 production is regulated by protein kinase C in human keratinocytes. Journal of Investigative Dermatology, 103, 509–515.PubMedCrossRefGoogle Scholar
  80. 80.
    Hsaio, J. K., Chu, H. H., Wang, Y. H., Lai, C. W., Chou, P. T., Hsieh, S. T., et al. (2008). Macrophage physiological function after superparamagnetic iron oxide labeling. NMR in Biomedicine, 21, 820–829.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2012

Authors and Affiliations

  • Ashley R. Murray
    • 1
    • 2
  • Elena Kisin
    • 1
  • Alfred Inman
    • 3
  • Shih-Houng Young
    • 1
  • Mamoun Muhammed
    • 4
  • Terrance Burks
    • 4
  • Abdusalam Uheida
    • 4
  • Alexey Tkach
    • 1
  • Micah Waltz
    • 2
  • Vincent Castranova
    • 1
  • Bengt Fadeel
    • 5
  • Valerian E. Kagan
    • 6
  • Jim E. Riviere
    • 3
  • Nancy Monteiro-Riviere
    • 3
  • Anna A. Shvedova
    • 1
    • 2
    Email author
  1. 1.Pathology and Physiology Research Branch, Health Effects Laboratory DivisionNational Institute for Occupational Safety and Health (NIOSH)MorgantownUSA
  2. 2.Department of Physiology and PharmacologyWest Virginia UniversityMorgantownUSA
  3. 3.Center for Chemical Toxicology Research and PharmacokineticsNorth Carolina State UniversityRaleighUSA
  4. 4.Functional Materials DivisionRoyal Institute of Technology (KTH)StockholmSweden
  5. 5.Division of Molecular Toxicology, Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
  6. 6.Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant HealthUniversity of PittsburghPittsburghUSA

Personalised recommendations