Cell Biochemistry and Biophysics

, Volume 67, Issue 2, pp 317–329 | Cite as

Eicosanoid Signaling and Vascular Dysfunction: Methylmercury-Induced Phospholipase D Activation in Vascular Endothelial Cells

  • Shariq I. Sherwani
  • Sheila Pabon
  • Rishi B. Patel
  • Muzzammil M. Sayyid
  • Thomas Hagele
  • Sainath R. Kotha
  • Ulysses J. Magalang
  • Krishna R. Maddipati
  • Narasimham L. Parinandi
Original Paper


Mercury, especially methylmercury (MeHg), is implicated in the etiology of cardiovascular diseases. Earlier, we have reported that MeHg induces phospholipase D (PLD) activation through oxidative stress and thiol-redox alteration. Hence, we investigated the mechanism of the MeHg-induced PLD activation through the upstream regulation by phospholipase A2 (PLA2) and lipid oxygenases such as cyclooxygenase (COX) and lipoxygenase (LOX) in the bovine pulmonary artery endothelial cells (BPAECs). Our results showed that MeHg significantly activated both PLA2 (release of [3H]arachidonic acid, AA) and PLD (formation of [32P]phosphatidylbutanol) in BPAECs in dose- (0–10 μM) and time-dependent (0–60 min) fashion. The cPLA2-specific inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3), significantly attenuated the MeHg-induced [3H]AA release in ECs. MeHg-induced PLD activation was also inhibited by AACOCF3 and the COX- and LOX-specific inhibitors. MeHg also induced the formation of COX- and LOX-catalyzed eicosanoids in ECs. MeHg-induced cytotoxicity (based on lactate dehydrogenase release) was protected by PLA2-, COX-, and LOX-specific inhibitors and 1-butanol, the PLD-generated PA quencher. For the first time, our studies showed that MeHg activated PLD in vascular ECs through the upstream action of cPLA2 and the COX- and LOX-generated eicosanoids. These results offered insights into the mechanism(s) of the MeHg-mediated vascular endothelial cell lipid signaling as an underlying cause of mercury-induced cardiovascular diseases.


Cyclooxygenase Lipoxygenase Phospholipase D Eicosanoid signaling Phospholipase A2 Vascular endothelial cells PLD 


  1. 1.
    Clarkson, T. W., Magos, L., & Myers, G. J. (2003). The toxicology of mercury–current exposures and clinical manifestations. New England Journal of Medicine, 349(18), 1731–1737.PubMedCrossRefGoogle Scholar
  2. 2.
    Bolger, P. M., & Schwetz, B. A. (2002). Mercury and health. New England Journal of Medicine, 347(22), 1735–1736.PubMedCrossRefGoogle Scholar
  3. 3.
    Mutter, J., Naumann, J., Schneider, R., Walach, H., & Haley, B. (2005). Mercury and autism: Accelerating evidence? Neuroendocrinology Letters, 26(5), 439–446.PubMedGoogle Scholar
  4. 4.
    Mutter, J., Naumann, J., Sadaghiani, C., Walach, H., & Drasch, G. (2004). Amalgam studies: Disregarding basic principles of mercury toxicity. International Journal of Hygiene and Environmental Health, 207(4), 391–397.PubMedCrossRefGoogle Scholar
  5. 5.
    Ustinaviciene, R., Obelenis, V., & Ereminas, D. (2004). Occupational health problems in modern work environment. Medicina (Kaunas), 40(9), 897–904.Google Scholar
  6. 6.
    Renneberg, A. J., & Dudas, M. J. (2001). Transformations of elemental mercury to inorganic and organic forms in mercury and hydrocarbon co-contaminated soils. Chemosphere, 45(6–7), 1103–1109.PubMedCrossRefGoogle Scholar
  7. 7.
    Clarkson, T. W. (2002). The three modern faces of mercury. Environmental Health Perspectives, 110(Suppl 1), 11–23.PubMedCrossRefGoogle Scholar
  8. 8.
    Landmark, K., & Aursnes, I. (2004). Mercury, fish, fish oil and the risk of cardiovascular disease. Tidsskrift for den Norske Laegeforening, 124(2), 198–200.PubMedGoogle Scholar
  9. 9.
    Nash, R. A. (2005). Metals in medicine. Alternative Therapies in Health and Medicine, 11(4), 18–25.PubMedGoogle Scholar
  10. 10.
    Kostka, B. (1991). Toxicity of mercury compounds as a possible risk factor for cardiovascular diseases. British Journal of Industrial Medicine, 48(12), 845.PubMedGoogle Scholar
  11. 11.
    Yoshizawa, K., Rimm, E. B., Morris, J. S., Spate, V. L., Hsieh, C. C., Speigelman, D., et al. (2002). Mercury and the risk of coronary heart disease in men. New England Journal of Medicine, 347(22), 1755–1760.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, D. S., Lee, E. H., Yu, S. D., Cha, J. H., & Ahn, S. C. (2005). Heavy metal as risk factor of cardiovascular disease—an analysis of blood lead and urinary mercury. Journal of Preventive Medicine and Public Health, 38(4), 401–407.PubMedGoogle Scholar
  13. 13.
    Guallar, E., Sanz-Gallardo, M. I., van’t Veer, P., Bode, P., Aro, A., Gomez-Aracena, J., et al. (2002). Mercury, fish oils, and the risk of myocardial infarction. New England Journal of Medicine, 347(22), 1747–1754.PubMedCrossRefGoogle Scholar
  14. 14.
    Wolf, M. B., & Baynes, J. W. (2007). Cadmium and mercury cause an oxidative stress-induced endothelial dysfunction. BioMetals, 20(1), 73–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Hagele, T. J., Mazerik, J. N., Gregory, A., Kaufman, B., Magalang, U., Kuppusamy, M. L., et al. (2007). Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. The International Journal of Toxicology, 26(1), 57–69.CrossRefGoogle Scholar
  16. 16.
    Varadharaj, S., Steinhour, E., Hunter, M. G., Watkins, T., Baran, C. P., Magalang, U., et al. (2006). Vitamin C-induced activation of phospholipase D in lung microvascular endothelial cells: Regulation by MAP kinases. Cellular Signalling, 18(9), 1396–1407.PubMedCrossRefGoogle Scholar
  17. 17.
    Sliman, S. M., Eubank, T. D., Kotha, S. R., Kuppusamy, M. L., Sherwani, S. I., Butler, E. S., et al. (2009). Hyperglycemic oxoaldehyde, glyoxal, causes barrier dysfunction, cytoskeletal alterations, and inhibition of angiogenesis in vascular endothelial cells: Aminoguanidine protection. Molecular and Cellular Biochemistry, 333(1–2), 9–26.PubMedGoogle Scholar
  18. 18.
    Brindley, D. N., & Waggoner, D. W. (1996). Phosphatidate phosphohydrolase and signal transduction. Chemistry and Physics of Lipids, 80(1–2), 45–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Steinhour, E., Sherwani, S. I., Mazerik, J. N., Ciapala, V., O’Connor Butler, E., Cruff, J. P., et al. (2008). Redox-active antioxidant modulation of lipid signaling in vascular endothelial cells: Vitamin C induces activation of phospholipase D through phospholipase A2, lipoxygenase, and cyclooxygenase. Molecular and Cellular Biochemistry, 315(1–2), 97–112.PubMedCrossRefGoogle Scholar
  20. 20.
    Chakraborti, S. (2003). Phospholipase A(2) isoforms: A perspective. Cellular Signalling, 15(7), 637–665.PubMedCrossRefGoogle Scholar
  21. 21.
    Balsinde, J., Winstead, M. V., & Dennis, E. A. (2000). Phospholipase A2 regulation of acachidonic acid mobilization. FEBS Letters, 531, 2–6.CrossRefGoogle Scholar
  22. 22.
    Dennis, E. A., Rhee, S. G., Billah, M. M., & Hannun, Y. A. (1991). Role of phospholipase in generating lipid second messengers in signal transduction. FASEB Journal, 5(7), 2068–2077.PubMedGoogle Scholar
  23. 23.
    Exton, J. H. (1997). New developments in phospholipase D. Journal of Biological Chemistry, 272(25), 15579–15582.PubMedCrossRefGoogle Scholar
  24. 24.
    Natarajan, V. (1995). Oxidants and signal transduction in vascular endothelium. Journal of Laboratory and Clinical Medicine, 125(1), 26–37.PubMedGoogle Scholar
  25. 25.
    Singer, W. D., Brown, H. A., Jiang, X., & Sternweis, P. C. (1996). Regulation of phospholipase D by protein kinase C is synergistic with ADP-ribosylation factor and independent of protein kinase activity. Journal of Biological Chemistry, 271(8), 4504–4510.PubMedCrossRefGoogle Scholar
  26. 26.
    Mazerik, J. N., Hagele, T., Sherwani, S., Ciapala, V., Butler, S., Kuppusamy, M. L., et al. (2007). Phospholipase A2 activation regulates cytotoxicity of methylmercury in vascular endothelial cells. The International Journal of Toxicology, 26(6), 553–569.CrossRefGoogle Scholar
  27. 27.
    Mazerik, J. N., Mikkilineni, H., Kuppusamy, V. A., Steinhour, E., Peltz, A., Marsh, C. B., et al. (2007). Mercury activates phospholipase a(2) and induces formation of arachidonic acid metabolites in vascular endothelial cells. Toxicology Mechanisms and Methods, 17(9), 541–557.PubMedCrossRefGoogle Scholar
  28. 28.
    Peltz, A., Sherwani, S. I., Kotha, S. R., Mazerik, J. N., O’Connor Butler, E. S., Kuppusamy, M. L., et al. (2009). Calcium and calmodulin regulate mercury-induced phospholipase D activation in vascular endothelial cells. The International Journal of Toxicology, 28(3), 190–206.CrossRefGoogle Scholar
  29. 29.
    Murphy, R. C., Barkley, R. M., Zemski Berry, K., Hankin, J., Harrison, K., Johnson, C., et al. (2005). Electrospray ionization and tandem mass spectrometry of eicosanoids. Analytical Biochemistry, 346(1), 1–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Lambert, I. H., Pedersen, S. F., & Poulsen, K. A. (2006). Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta physiologica (Oxford), 187(1–2), 75–85.CrossRefGoogle Scholar
  31. 31.
    Nigam, S., & Schewe, T. (2000). Phospholipase A(2)s and lipid peroxidation. Biochimica et Biophysica Acta, 1488(1–2), 167–181.PubMedCrossRefGoogle Scholar
  32. 32.
    Martinez, J., & Moreno, J. J. (2001). Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species. Archives of Biochemistry and Biophysics, 392(2), 257–262.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu, J., Yu, S., Sun, A. Y., & Sun, G. Y. (2003). Oxidant-mediated AA release from astrocytes involves cPLA(2) and iPLA(2). Free Radical Biology and Medicine, 34(12), 1531–1543.PubMedCrossRefGoogle Scholar
  34. 34.
    Shanker, G., & Aschner, M. (2001). Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: Evidence for methylmercury-targeted disruption of astrocyte transport. Journal of Neuroscience Research, 66(5), 998–1002.PubMedCrossRefGoogle Scholar
  35. 35.
    Shanker, G., Syversen, T., Aschner, J. L., & Aschner, M. (2005). Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes. Brain research. Molecular brain research, 137(1–2), 11–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Verity, M. A., Sarafian, T., Pacifici, E. H., & Sevanian, A. (1994). Phospholipase A2 stimulation by methyl mercury in neuron culture. Journal of Neurochemistry, 62(2), 414–705.Google Scholar
  37. 37.
    Reiss, A. B., & Edelman, S. D. (2006). Recent insights into the role of prostanoids in atherosclerotic vascular disease. Current Vascular Pharmacology, 4(4), 395–408.PubMedCrossRefGoogle Scholar
  38. 38.
    Bogatcheva, N. V., Sergeeva, M. G., Dudek, S. M., & Verin, A. D. (2005). Arachidonic acid cascade in endothelial pathobiology. Microvascular Research, 69(3), 107–127.PubMedCrossRefGoogle Scholar
  39. 39.
    Sugiyama, T., Sakai, T., Nozawa, Y., & Oka, N. (1994). Prostaglandin F2 alpha-stimulated phospholipase D activation in osteoblast-like MC3T3-E1 cells: Involvement in sustained 1,2-diacylglycerol production. Biochemical Journal, 298(Pt 2), 479–484.PubMedGoogle Scholar
  40. 40.
    Kozawa, O., Suzuki, A., Kotoyori, J., Tokuda, H., Watanabe, Y., Ito, Y., et al. (1994). Prostaglandin F2 alpha activates phospholipase D independently from activation of protein kinase C in osteoblast-like cells. Journal of Cellular Biochemistry, 55(3), 373–379.PubMedCrossRefGoogle Scholar
  41. 41.
    Imamura, Y., Kozawa, O., Suzuki, A., Watanabe, Y., Saito, H., & Oiso, Y. (1995). Mechanism of phospholipase D activation induced by prostaglandin D2 in osteoblast-like cells: Function of Ca2+/calmodulin. Cellular Signalling, 7(1), 45–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Natarajan, V., Taher, M. M., Roehm, B., Parinandi, N. L., Schmid, H. H., Kiss, Z., et al. (1993). Activation of endothelial cell phospholipase D by hydrogen peroxide and fatty acid hydroperoxide. The Journal of Biological Chemistry, 268(2), 930–937.PubMedGoogle Scholar
  43. 43.
    Yamamoto, H., Endo, T., Kiya, T., Goto, T., Sagae, S., Ito, E., et al. (1995). Activation of phospholipase D by prostaglandin F2 alpha in rat luteal cells and effects of inhibitors of arachidonic acid metabolism. Prostaglandins, 50(4), 201–211.PubMedCrossRefGoogle Scholar
  44. 44.
    Hurt-Camejo, E., Camejo, G., Peilot, H., Oorni, K., & Kovanen, P. (2001). Phospholipase A(2) in vascular disease. Circulation Research, 89(4), 298–304.PubMedCrossRefGoogle Scholar
  45. 45.
    Phillis, J. W., & O’Regan, M. H. (2003). The role of phospholipases, cyclooxygenases, and lipoxygenases in cerebral ischemic/traumatic injuries. Critical Reviews in Neurobiology, 15(1), 61–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Avis, I. M., Jett, M., Boyle, T., Vos, M. D., Moody, T., Treston, A. M., et al. (1996). Growth control of lung cancer by interruption of 5-lipoxygenase-mediated growth factor signaling. Journal of Clinical Investigation, 97(3), 806–813.PubMedCrossRefGoogle Scholar
  47. 47.
    Steele, V. E., Holmes, C. A., Hawk, E. T., Kopelovich, L., Lubet, R. A., Crowell, J. A., et al. (1999). Lipoxygenase inhibitors as potential cancer chemopreventives. Cancer Epidemiology, Biomarkers and Prevention, 8(5), 467–483.PubMedGoogle Scholar
  48. 48.
    Tang, D. G., Chen, Y. Q., & Honn, K. V. (1996). Arachidonate lipoxygenases as essential regulators of cell survival and apoptosis. Proceedings of the National Academy of Sciences, United States of America, 93(11), 5241–5246.CrossRefGoogle Scholar
  49. 49.
    Whitman, S., Gezginci, M., Timmermann, B. N., & Holman, T. R. (2002). Structure-activity relationship studies of nordihydroguaiaretic acid inhibitors toward soybean, 12-human, and 15-human lipoxygenase. Journal of Medicinal Chemistry, 45(12), 2659–2661.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shariq I. Sherwani
    • 1
  • Sheila Pabon
    • 1
  • Rishi B. Patel
    • 1
  • Muzzammil M. Sayyid
    • 1
  • Thomas Hagele
    • 1
  • Sainath R. Kotha
    • 1
  • Ulysses J. Magalang
    • 1
  • Krishna R. Maddipati
    • 2
  • Narasimham L. Parinandi
    • 1
  1. 1.Lipidomics, Lipid Signaling, and Vasculotoxicity Laboratory, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University College of MedicineColumbusUSA
  2. 2.Department of PathologyWayne State University School of MedicineDetroitUSA

Personalised recommendations