Cell Biochemistry and Biophysics

, Volume 61, Issue 3, pp 619–628 | Cite as

Q2N and S65D Substitutions of Ubiquitin Unravel Functional Significance of the Invariant Residues Gln2 and Ser65

  • Pradeep Mishra
  • C. Ratna Prabha
  • Ch. Mohan Rao
  • Srinivas Volety
Original Paper

Abstract

Ubiquitin is a small, globular protein, structure of which has been perfected and conserved through evolution to manage diverse functions in the macromolecular metabolism of eukaryotic cells. Several non-homologous proteins interact with ubiquitin through entirely different motifs. Though the roles of lysines in the multifaceted functions of ubiquitin are well documented, very little is known about the contribution of other residues. In the present study, the importance of two invariant residues, Gln2 and Ser65, have been examined by substituting them with Asn and Asp, respectively, generating single residue variants of ubiquitin UbQ2N and UbS65D. Gln2 and Ser65 form part of parallel G1 β-bulge adjacent to Lys63, a residue involved in DNA repair, cell-cycle regulated protein synthesis and imparting resistance to protein synthesis inhibitors. The secondary structure of variants is similar to that of UbF45W, a structural homologue of wild-type ubiquitin (UbWt). However, there are certain functional differences observed in terms of resistance to cycloheximide, while there are no major differences pertaining to growth under normal conditions, adherence to N-end rule and survival under heat stress. Further, expression of UbQ2N impedes protein degradation by ubiquitin fusion degradation (UFD) pathway. Such differential responses with respect to functions of ubiquitin produced by mutations may be due to interference in the interactions of ubiquitin with selected partner proteins, hint at biomedical implications.

Keywords

Ubiquitin Ubiquitin structure Ubiquitin function G1 β bulge of ubiquitin Mutations of ubiquitin Structure–function relations in ubiquitin 

Notes

Acknowledgments

C.R.P. thanks the University Grants Commission, India, for the research grant. The said author is grateful to Prof. Mark Searle and Prof. Daniel Finley for providing plasmids and strains necessary for the study. The author acknowledges the help received from her students Brinda Panchamia and Mrinal Sharma in the preparation of the manuscript.

References

  1. 1.
    Pagano, M. (1997). Cell cycle regulation by ubiquitin pathway. FASEB Journal, 11, 1066–1075.Google Scholar
  2. 2.
    Levinger, L., & Varshavsky, A. (1982). Selective arrangement of ubiquitinated and D1 protein- containing nucleosomes within the drosophila genome. Cell, 28, 375–385.PubMedCrossRefGoogle Scholar
  3. 3.
    Jentsch, S., McGrath, J. P., & Varshavsky, A. (1987). The yeast DNA repair gene RAD6 encodes a ubiquitin-conjugating enzyme. Nature, 329, 131–134.PubMedCrossRefGoogle Scholar
  4. 4.
    Hochstrasser, M., & Varshavsky, A. (1990). In vivo degradation of a transcriptional regulator: The yeast Matα2 repressor. Cell, 61, 697–708.PubMedCrossRefGoogle Scholar
  5. 5.
    Varshavsky, A. (1997). The ubiquitin system. Trends in Biochemical Sciences, 22, 383–387.Google Scholar
  6. 6.
    Weissmann, A. M. (1997). Regulating protein degradation by ubiquitination. Immunology Today, 18, 189–196.CrossRefGoogle Scholar
  7. 7.
    Galan, J. M., Moreau, V., Andre, B., Volland, C., & Haguenauer-Tsapis, R. (1996). Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin protein ligase is required for endocytosis of the yeast uracil permease. Journal of Biological Chemistry, 271, 10946–10952.PubMedCrossRefGoogle Scholar
  8. 8.
    Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRefGoogle Scholar
  9. 9.
    Pickart, C., & Fushman, D. (2004). Polyubiquitin chains: Polymeric protein signals. Current Opinion in Chemical Biology, 8, 610–616.PubMedCrossRefGoogle Scholar
  10. 10.
    Schwartz, A. L., & Ciechanover, A. (2009). Targeting proteins for destruction by the ubiquitin system: Implications for human pathobiology. Annual Review of Pharmacology and Toxicology, 49, 73–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Reinstein, E., & Ciechanover, A. (2006). Protein degradation and human diseases: The ubiquitin connection. Annals of Internal Medicine, 145, 676–684.PubMedGoogle Scholar
  12. 12.
    Gavilanes, J. G., de Buitrago, G. G., Castells, R. P., & Rodrigues, R. (1982). Isolation, characterization, and amino acid sequence of a ubiquitin like protein from insect eggs. Journal of Biological Chemistry, 257, 10267–10270.PubMedGoogle Scholar
  13. 13.
    Watson, D. C., Leavy, W. B., & Dixon, G. H. (1978). Free ubiquitin is a non-histone protein of trout testis chromatin. Nature, 276, 196–198.PubMedCrossRefGoogle Scholar
  14. 14.
    Schlesinger, D. H., Goldstein, G., & Nail, H. D. (1975). Complete amino acid sequence of ubiquitin, an adenylate cyclase stimulating polypeptide probably universal in living cells. Biochemistry, 14, 2214–2218.PubMedCrossRefGoogle Scholar
  15. 15.
    Schlesinger, D. H., & Goldstein, G. (1975). Molecular conservation of 74 amino acid sequence of ubiquitin between cattle and man. Nature, 255, 423–424.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilkinson, K. D., Cox, M. J., O’Cornnor, B. B., & Shapira, R. (1986). Structure and activities of a variant ubiquitin sequence from bakers’ yeast. 1986. Biochemistry, 25, 4999–5004.PubMedCrossRefGoogle Scholar
  17. 17.
    Vierstra, R. D., Langan, S. M., & Schaller, G. E. (1986). Complete amino acid sequence of ubiquitin from the higher plant Avena sativa. Biochemistry, 25, 3105–3108.CrossRefGoogle Scholar
  18. 18.
    Jentsch, S., & Pyrowolakis, G. (2000). Ubiquitin and its kin: How close are the family ties? Trends in Cell Biology, 10, 335–342.PubMedCrossRefGoogle Scholar
  19. 19.
    Vijay-kumar, S., Bugg, C. E., & Cook, W. J. (1987). Structure of ubiquitin refined at 1.8 Å resolutions. Journal of Molecular Biology, 194, 513–544.Google Scholar
  20. 20.
    Briggs, M. S., & Roder, H. (1992). Early hydrogen-bonding events in the folding reaction of ubiquitin. Proceedings of the National Academy of Sciences of the United States of America, 89, 2017–2021.PubMedCrossRefGoogle Scholar
  21. 21.
    Loladze, V. V., Ermolenko, D. N., & Makhatadze, G. I. (2001). Heat capacity changes upon burial of polar and nonpolar groups in proteins. Protein Science, 10, 1343–1352.PubMedCrossRefGoogle Scholar
  22. 22.
    Loladze, V. V., & Makhatadze, G. I. (2002). Removal of surface charge–charge interactions from ubiquitin leaves the protein folded and very stable. Protein Science, 11, 174–177.PubMedCrossRefGoogle Scholar
  23. 23.
    Burch, T. J., & Hass, A. L. (1994). Site-directed mutagenesis of ubiquitin differential roles for arginine in the interaction with ubiquitin-activating enzyme. Biochemistry, 33, 7300–7308.PubMedCrossRefGoogle Scholar
  24. 24.
    Mishra, P., Volety, S., Rao, C. M., & Prabha, C. R. (2009). Glutamate64 to glycine substitution in G1 β-bulge of ubiquitin impairs function and stabilizes structure of the protein. Journal of Biochemistry, 146, 563–569.PubMedCrossRefGoogle Scholar
  25. 25.
    Khorasnizadadeh, S., Peters, L. D., Butt, T. R., & Roder, H. (1993). Folding and stability of a tryptophan containing mutant of ubiquitin. Biochemistry, 32, 7054–7063.CrossRefGoogle Scholar
  26. 26.
    Cox, J. P. L., Evans, P. A., Packman, L. C., Williams, D. H., & Wolfson, D. N. (1993). Dissecting the structure of a partially folded protein. Circular dichroism and nuclear magnetic resonance studies of peptides from ubiquitin. Journal of Molecular Biology, 234, 483–492.PubMedCrossRefGoogle Scholar
  27. 27.
    Platt, G. W., Simpson, S. A., Layfield, R., & Searle, M. S. (2003). Stability and folding kinetics of a ubiquitin mutant with a strong propensity for non-native β-hairpin conformation in the unfolded state. Biochemistry, 42, 13762–13771.PubMedCrossRefGoogle Scholar
  28. 28.
    Spence, J., Sadis, S., Haas, A. L., & Finley, D. (1995). Ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Molecular and Cellular Biology, 15, 1265–1273.PubMedGoogle Scholar
  29. 29.
    Arnason, T., & Ellison, M. J. (1994). Stress resistance in Saccharomyces cerevisiae is strongly correlated with assembly of a novel type of multiubiquitin chain. Molecular and Cellular Biology, 14, 7876–7883.PubMedGoogle Scholar
  30. 30.
    Chan, A. W. E., Hutchinson, E. G., Harris, D., & Thornton, J. M. (1993). Identification, classification, and analysis of β-bulges in proteins. Protein Science, 2, 1574–1590.PubMedCrossRefGoogle Scholar
  31. 31.
    Spence, J., Gali, R., Dittmar, G., Sherman, F., Karin, M., & Finley, D. (2000). Cell cycle–regulated modification of the ribosome by a variant multiubiquitin chain. Cell, 102, 67–76.PubMedCrossRefGoogle Scholar
  32. 32.
    Finley, D., Ozkaynak, E., & Varshavsky, A. (1987). The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell, 48, 1035–1046.PubMedCrossRefGoogle Scholar
  33. 33.
    Bachmair, A., Finley, D., & Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science, 223, 179–186.CrossRefGoogle Scholar
  34. 34.
    Finley, D., Sadis, S., Monia, B. P., Boucher, P., Ecker, D. J., Cooke, S. T., et al. (1994). Inhibition of proteolysis and cell cycle progression in a multiubiquitination-deficient yeast mutant. Molecular and Cellular Biology, 14, 5501–5509.PubMedGoogle Scholar
  35. 35.
    Ecker, D. J., Butt, T. R., Marsh, J., Sternberg, E. J., Margolis, N., Monia, B. P., et al. (1987). Gene synthesis, expression, structures and functional activities of site-specific mutants of ubiquitin. Journal of Biological Chemistry, 262, 14213–14221.PubMedGoogle Scholar
  36. 36.
    Chen, P., Johnson, P., Sommer, T., Jentsch, S., & Hochstrasser, M. (1993). Multiple ubiquitin- conjugating enzymes participate in the in vivo degradation of the yeast MATα2 repressor. Cell, 74, 357–369.PubMedCrossRefGoogle Scholar
  37. 37.
    Wilkinson, K. D., Urban, M. K., & Haas, A. L. (1980). Ubiquitin is the ATP-dependent proteolysis factor I of rabbit reticulocytes. Journal of Biological Chemistry, 255, 7529–7532.PubMedGoogle Scholar
  38. 38.
    Hershko, A., Ciechanover, A., & Rose, I. A. (1979). Resolution of the ATP-dependent proteolytic system from reticulocytes: A component that interacts with ATP. Proceedings of the National Academy of Sciences of the United States of America, 76, 3107–3110.PubMedCrossRefGoogle Scholar
  39. 39.
    Ciechanover, A., Hod, Y., & Hershko, A. (1978). A heat-stable polypeptide component of an ATP-dependent proteolytic system from reticulocytes. Biochemical and Biophysical Research Communications, 81, 1100–1105.CrossRefGoogle Scholar
  40. 40.
    Haas, A. L., & Wilkinson, K. D. (1985). The large scale purification of ubiquitin from human erythrocytes. Preparative Biochemistry, 15, 49–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson, E. S., Bartel, B., Seufert, W., & Varshavsky, A. (1992). Ubiquitin as a degradation signal. The EMBO Journal, 11, 497–505.PubMedGoogle Scholar
  42. 42.
    Varshavsky, A. (1996). The N-end rule: Functions, mysteries, uses. Proceedings of the National Academy of Sciences of the United States of America, 93, 12142–12149.PubMedCrossRefGoogle Scholar
  43. 43.
    Johnson, E. S., Ma, P. C., Ota, I. M., & Varshavsky, A. (1995). A proteolytic pathway that recognizes ubiquitin as a degradation signal. The Journal of Biological Chemistry, 270, 17442–17456.PubMedCrossRefGoogle Scholar
  44. 44.
    Hanna, J., Leggett, D. S., & Finley, D. (2003). Ubiquitin depletion as a key mediator of toxicity by translational inhibitors. Molecular and Cellular Biology, 23, 9251–9261.PubMedCrossRefGoogle Scholar
  45. 45.
    Kuwajima, K. (1989). The molten globule state as a clue for understanding the folding and cooperativity of globularprotein structure. Proteins, 6, 87–103.PubMedCrossRefGoogle Scholar
  46. 46.
    Buck, M., Radford, S. E., & Dobson, C. M. (1993). A partially folded state of hen egg-white lysozyme in trifluoroethanol: structural characterization and implications for protein folding. Biochemistry, 32, 669–678.PubMedCrossRefGoogle Scholar
  47. 47.
    Ratnaprabha, C., & Sasidhar, Y. U. (1998). Conformational features of disulfide intact and reduced forms of hen egg white lysozyme in aqueous solution in the presence of trifluoroethanol (TFE): implications for protein folding intermediates. Journal of the Chemical Society Faraday Transactions, 94, 3631–3637.CrossRefGoogle Scholar
  48. 48.
    Hershko, A., & Ciechanover, A. (1992). The ubiquitin system for protein degradation. Annual Review of Biochemistry, 61, 761–807.PubMedCrossRefGoogle Scholar
  49. 49.
    Pickart, C. M. (1997). Targeting of substrates to the 26S proteasome. FASEB Journal, 11, 1055–1066.PubMedGoogle Scholar
  50. 50.
    Ciechanover, A. (1998). The ubiquitin–proteasome pathway: on protein death and cell life. The EMBO Journal, 17, 7151–7160.PubMedCrossRefGoogle Scholar
  51. 51.
    Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., et al. (2003). A proteomics approach to understanding protein ubiquitination. Nature Biotechnology, 21, 921–926.PubMedCrossRefGoogle Scholar
  52. 52.
    Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-e, A., et al. (2009). Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO Journal, 28, 359–371.PubMedCrossRefGoogle Scholar
  53. 53.
    Baboshina, O. V., & Haas, A. L. (1996). Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5*. Journal of Biological Chemistry, 271, 2823–2831.PubMedCrossRefGoogle Scholar
  54. 54.
    Koegl, M., Hoppe, T., Schlenker, S., Ulrich, H. D., Mayer, T. U., & Jentsch, S. (1999). A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell, 96, 635–644.PubMedCrossRefGoogle Scholar
  55. 55.
    Jin, L., Williamson, A., Banerjee, S., Philipp, I., & Rape, M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell, 133, 653–665.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang, L., Mao, X., Ju, D., & Xie, Y. (2004). Rpn4 is a physiological substrate of the Ubr2 ubiquitin ligase. Journal of Biological Chemistry, 279, 55218–55223.PubMedCrossRefGoogle Scholar
  57. 57.
    Mulder, L. C. F., & Muesing, M. A. (2000). Degradation of HIV-1 integrase by the N-end rule pathway. Journal of Biological Chemistry, 275, 29749–29753.PubMedCrossRefGoogle Scholar
  58. 58.
    Aviel, S., Winberg, G., Massucci, M., & Ciechanover, A. (2000). Degradation of the Epstein-Barr virus latent membrane protein 1 (LMP1) by the ubiquitin-proteasome pathway. Targeting via ubiquitination of the N-terminal residue. Journal of Biological Chemistry, 275, 23491–23499.PubMedCrossRefGoogle Scholar
  59. 59.
    Breitschopf, K., Bengal, E., Ziv, T., Admon, A., & Ciechanover, A. (1998). A novel site for ubiquitination: The N-terminal residue, and not internal lysines of MyoD, is essential for conjugation and degradation of the protein. EMBO Journal, 17, 5964–5973.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Pradeep Mishra
    • 1
  • C. Ratna Prabha
    • 1
  • Ch. Mohan Rao
    • 2
  • Srinivas Volety
    • 2
  1. 1.Department of Biochemistry, Faculty of ScienceThe Maharaja Sayajirao University of BarodaVadodaraIndia
  2. 2.Centre for Cellular and Molecular BiologyHyderabadIndia

Personalised recommendations