Advertisement

Cell Biochemistry and Biophysics

, Volume 61, Issue 3, pp 715–723 | Cite as

Cross-Talk Between One-Carbon Metabolism and Xenobiotic Metabolism: Implications on Oxidative DNA Damage and Susceptibility to Breast Cancer

  • Shaik Mohammad Naushad
  • Cheruku Apoorva Reddy
  • Yedluri Rupasree
  • Addepalli Pavani
  • Raghunadha Rao Digumarti
  • Suryanarayana Raju Gottumukkala
  • Periannan Kuppusamy
  • Vijay Kumar KutalaEmail author
Translational Biomedical Research

Abstract

The aim of this case–control study is to explore the role of aberrations in xenobiotic metabolism in inducing oxidative DNA damage and altering the susceptibility to breast cancer. Cytochrome P4501A1 (CYP1A1) m1 (OR: 1.41, 95% CI 1.08–1.84), CYP1A1 m4 (OR: 5.13, 95% CI 2.68–9.81), Catecholamine-O-methyl transferase (COMT) H108L (OR: 1.49, 95% CI 1.16–1.92), and glutathione S-transferase (GST) T1 null (OR: 1.68, 95% CI 1.09–2.59) variants showed association with breast cancer risk. Reduced folate carrier 1 (RFC1) 80A/CYP1A1 m1/CYP1A1 m4 and RFC1 80A/thymidylate synthase (TYMS) 5′-UTR 2R/methionine synthase (MTR) 2756G/COMT 108L genetic combinations were found to inflate breast cancer risk under the conditions of low dietary folate (345 ± 110 vs. 379 ± 139 μg/day) and low plasma folate (6.81 ± 1.25 vs. 7.09 ± 1.26 ng/ml) by increasing plasma 8-oxo-2′-deoxyguanosine (8-oxodG). This increase in 8-oxodG is attributed to low methionine (49.38 ± 23.74 vs. 53.90 ± 23.85 μmol/l); low glutathione (378 ± 242 vs. 501 ± 126 μmol/l) and GSTT1 null variant; and hypermethylation of CpG island of extracellular-superoxide dismutase (EC-SOD) (92.78 ± 11.49 vs. 80.45 ± 9.86%), which impair O-methylation of catechol estrogens to methoxy estrogens, conjugation of glutathione to semiquinones/quinones and free radical scavenging respectively. Our results suggest cross-talk between one-carbon metabolism and xenobiotic metabolism influencing oxidative DNA damage and susceptibility to breast cancer.

Keywords

Breast cancer Extracellular-superoxide dismutase Methylation One-carbon metabolism 8-oxo-2′-deoxyguanosine Xenobiotic metabolism 

Notes

Acknowledgments

This study was supported by the grant funded by Indian Council of Medical Research (ICMR), New Delhi (Ref No. 5/13/32/2007). Dr. V.K. Kutala is recipient of Ramanujan Fellowship awarded by Department of Science & Technology (DST), Government of India. We thank Dr. Annie Q Hasan, Head, Department of Molecular Medicine, Kamineni Hospitals, Hyderabad for critical revision of the manuscript in terms of genetic aspects.

References

  1. 1.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.CrossRefGoogle Scholar
  2. 2.
    Scheuner, M. T., McNeel, T. S., & Freedman, A. N. (2010). Population prevalence of familial cancer and common hereditary cancer syndromes. The 2005 California Health Interview Survey. Genetics in Medicine, 12(11), 726–735.PubMedGoogle Scholar
  3. 3.
    Kabuto, M., Akiba, S., Stevens, R. G., Neriishi, K., & Land, C. E. (2000). A prospective study of estradiol and breast cancer in Japanese women. Cancer Epidemiology, Biomarkers and Prevention, 9(6), 575–579.PubMedGoogle Scholar
  4. 4.
    Weichselbaum, R. R., Hellman, S., Piro, A. J., Nove, J. J., & Little, J. B. (1978). Proliferation kinetics of a human breast cancer line in vitro following treatment with 17beta-estradiol and 1-beta-d-arabinofuranosylcytosine. Cancer Research, 38(8), 2339–2342.PubMedGoogle Scholar
  5. 5.
    Wang, Z., Wijewickrama, G. T., Peng, K. W., Dietz, B. M., Yuan, L., van Breemen, R. B., et al. (2009). Estrogen receptor alpha enhances the rate of oxidative DNA damage by targeting an equine estrogen catechol metabolite to the nucleus. Journal of Biological Chemistry, 284(13), 8633–8642.PubMedCrossRefGoogle Scholar
  6. 6.
    Hayes, C. L., Spink, D. C., Spink, B. C., Cao, J. Q., Walker, N. J., & Sutter, T. R. (1996). 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci USA, 93(18), 9776–9781.PubMedCrossRefGoogle Scholar
  7. 7.
    Spink, D. C., Spink, B. C., Cao, J. Q., DePasquale, J. A., Pentecost, B. T., Fasco, M. J., et al. (1998). Differential expression of CYP1A1 and CYP1B1 in human breast epithelial cells and breast tumor cells. Carcinogenesis, 19(2), 291–298.PubMedCrossRefGoogle Scholar
  8. 8.
    Männistö, P. T., & Kaakkola, S. (1999). Catechol-O-methyltransferase (COMT): Biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacological Reviews, 51(4), 593–628.PubMedGoogle Scholar
  9. 9.
    Takahashi, N., Schreiber, J., Fischer, V., & Mason, R. P. (1987). Formation of glutathione-conjugated semiquinones by the reaction of quinones with glutathione: An ESR study. Archives of Biochemistry and Biophysics, 252(1), 41–48.PubMedCrossRefGoogle Scholar
  10. 10.
    Kawajiri, K., Nakachi, K., Imai, K., Shinoda, N., & Watanabe, J. (1990). Identification of genetically high risk individuals to lung cancer by DNA polymorphisms of the cytochrome P4SOIAI gene. FEBS Letters, 263, 131–133.PubMedCrossRefGoogle Scholar
  11. 11.
    Hayashi, S., Watanabe, J., Nakachi, K., & Kawajiri, K. (1991). Genetic linkage of lung cancer-associated MspI polymorphism with amino acid replacement in the heme binding region of the human cytochrome P4501A1 gene. Journal of Biochemistry, 110, 407–411.PubMedGoogle Scholar
  12. 12.
    Cascorbi, I., Brockmoller, J., & Roots, I. (1996). A C4887A polymorphism in exon 7 of human CYPIAI: Population frequency, mutation linkages, and impact on lung cancer susceptibility. Cancer Research, 56, 4965–4969.PubMedGoogle Scholar
  13. 13.
    Landi, M. T., Bertazzi, P. A., Shields, P. G., Clark, G., Lucier, G. W., Garte, S. J., et al. (1994). Association between CYP1A1 genotype, mRNA expression and enzymatic activity in humans. Pharmacogenetics, 4(5), 242–246.PubMedCrossRefGoogle Scholar
  14. 14.
    Moysich, K. B., Shields, P. G., Freudenheim, J. L., Schisterman, E. F., Vena, J. E., Kostyniak, P., et al. (1999). Polychlorinated biphenyls, cytochrome P4501A1 polymorphism, and postmenopausal breast cancer risk. Cancer Epidemiology, Biomarkers and Prevention, 8(1), 41–44.PubMedGoogle Scholar
  15. 15.
    Bailey, L. R., Roodi, N., Verrier, C. S., Yee, C. J., Dupont, W. D., & Parl, F. F. (1998). Breast cancer and CYPIA1, GSTM1, and GSTT1 polymorphisms: Evidence of a lack of association in Caucasians and African Americans. Cancer Research, 58(1), 65.PubMedGoogle Scholar
  16. 16.
    Firozi, P. F., Bondy, M. L., Sahin, A. A., Chang, P., Lukmanji, F., Singletary, E. S., et al. (2002). Aromatic DNA adducts and polymorphisms of CYP1A1, NAT2, and GSTM1 in breast cancer. Carcinogenesis, 23(2), 301–306.PubMedCrossRefGoogle Scholar
  17. 17.
    Masson, L. F., Sharp, L., Cotton, S. C., & Little, J. (2005). Cytochrome P-450 1A1 gene polymorphisms and risk of breast cancer: A HuGE review. American Journal of Epidemiology, 161(10), 901–915.PubMedCrossRefGoogle Scholar
  18. 18.
    Doyle, A. E., & Yager, J. D. (2008). Catechol-O-methyltransferase: Effects of the val108met polymorphism on protein turnover in human cells. Biochimica et Biophysica Acta, 1780(1), 27–33.PubMedGoogle Scholar
  19. 19.
    Zahid, M., Saeed, M., Lu, F., Gaikwad, N., Rogan, E., & Cavalieri, E. (2007). Inhibition of catechol-O-methyltransferase increases estrogen-DNA adduct formation. Free Radical Biology and Medicine, 43(11), 1534–1540.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, Q., Wang, Y. P., Li, J. Y., Yuan, P., Yang, F., & Li, H. (2010). Polymorphic catechol-O-methyltransferase gene, soy isoflavone intake and breast cancer in postmenopausal women: A case–control study. Chinese Journal of Cancer, 29(7), 683–688.PubMedGoogle Scholar
  21. 21.
    Mao, C., Wang, X. W., Qiu, L. X., Liao, R. Y., Ding, H., & Chen, Q. (2010). Lack of association between catechol-O-methyltransferase Val108/158Met polymorphism and breast cancer risk: A meta-analysis of 25,627 cases and 34,222 controls. Breast Cancer Research and Treatment, 121(3), 719–725.PubMedCrossRefGoogle Scholar
  22. 22.
    Sergentanis, T. N., & Economopoulos, K. P. (2010). GSTT1 and GSTP1 polymorphisms and breast cancer risk: A meta-analysis. Breast Cancer Research and Treatment, 121(1), 195–202.PubMedCrossRefGoogle Scholar
  23. 23.
    Cribb, A. E., Joy Knight, M., Guernsey, J., Dryer, D., Hender, K., Shawwa, A., et al. (2011). CYP17, catechol-o-methyltransferase, and glutathione transferase M1 genetic polymorphisms, lifestyle factors, and breast cancer risk in women on Prince Edward Island. Breast Journal, 17(1), 24–31.PubMedCrossRefGoogle Scholar
  24. 24.
    Naushad, S. M., Pavani, A., Digumarti, R. R., Gottumukkala, S. R., & Kutala, V. K. (2010). Epistatic interactions between loci of one-carbon metabolism modulate susceptibility to breast cancer. Molecular Biology Reports [Epub ahead of print].Google Scholar
  25. 25.
    Mohammad, N. S., Yedluri, R., Addepalli, P., Gottumukkala, S. R., Digumarti, R. R., & Kutala, V. K. (2011). Aberrations in one-carbon metabolism induce oxidative DNA damage in sporadic breast cancer. Molecular and Cellular Biochemistry, 349(1–2), 159–167.PubMedCrossRefGoogle Scholar
  26. 26.
    Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82(1), 70–77.PubMedCrossRefGoogle Scholar
  27. 27.
    Radha Rama Devi, A., Naushad, S. M., & Prasad, K. C. (2006). Evaluation of total plasma homocysteine in Indian newborns using heel-prick samples. Indian Journal of Pediatrics, 73(6), 503–508.PubMedCrossRefGoogle Scholar
  28. 28.
    McCord, J. M., & Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). Journal of Biological Chemistry, 244(2), 6049–6055.PubMedGoogle Scholar
  29. 29.
    Shin, A., Kang, D., Choi, J. Y., Lee, K. M., Park, S. K., Noh, D. Y., et al. (2007). Cytochrome P450 1A1 (CYP1A1) polymorphisms and breast cancer risk in Korean women. Experimental and Molecular Medicine, 39(3), 361–366.PubMedGoogle Scholar
  30. 30.
    Syamala, V. S., Syamala, V., Sheeja, V. R., Kuttan, R., Balakrishnan, R., & Ankathil, R. (2010). Possible risk modification by polymorphisms of estrogen metabolizing genes in familial breast cancer susceptibility in an Indian population. Cancer Investigation, 28(3), 304–311.PubMedCrossRefGoogle Scholar
  31. 31.
    Basham, V. M., Pharoah, P. D., Healey, C. S., Luben, R. N., Day, N. E., Easton, D. F., et al. (2001). Polymorphisms in CYP1A1 and smoking: No association with breast cancer risk. Carcinogenesis, 22(11), 1797–1800.PubMedCrossRefGoogle Scholar
  32. 32.
    Singh, V., Rastogi, N., Sinha, A., Kumar, A., Mathur, N., & Singh, M. P. (2007). A study on the association of cytochrome-P450 1A1 polymorphism and breast cancer risk in north Indian women. Breast Cancer Research and Treatment, 101(1), 73–81.PubMedCrossRefGoogle Scholar
  33. 33.
    Okobia, M., Bunker, C., Zmuda, J., Kammerer, C., Vogel, V., Uche, E., et al. (2005). Cytochrome P4501A1 genetic polymorphisms and breast cancer risk in Nigerian women. Breast Cancer Research and Treatment, 94(3), 285–293.PubMedCrossRefGoogle Scholar
  34. 34.
    Hamaguchi, M., Nishio, M., Toyama, T., Sugiura, H., Kondo, N., Fujii, Y., et al. (2008). Possible difference in frequencies of genetic polymorphisms of estrogen receptor alpha, estrogen metabolism and P53 genes between estrogen receptor-positive and -negative breast cancers. Japanese Journal of Clinical Oncology, 38(11), 734–742.PubMedCrossRefGoogle Scholar
  35. 35.
    Gaudet, M. M., Chanock, S., Lissowska, J., Berndt, S. I., Peplonska, B., Brinton, L. A., et al. (2006). Comprehensive assessment of genetic variation of catechol-O-methyltransferase and breast cancer risk. Cancer Research, 66(19), 9781–9785.PubMedCrossRefGoogle Scholar
  36. 36.
    Embrechts, J., Lemière, F., Van Dongen, W., Esmans, E. L., Buytaert, P., Van Marck, E., et al. (2003). Detection of estrogen DNA-adducts in human breast tumor tissue and healthy tissue by combined nano LC-nano ES tandem mass spectrometry. J Am Soc Mass Spectrom, 14(5), 482–491.PubMedCrossRefGoogle Scholar
  37. 37.
    Govindaiah, V., Naushad, S. M., Prabhakara, K., Krishna, P. C., & Radha Rama Devi, A. (2009). Association of parental hyperhomocysteinemia and C677T methylene tetrahydrofolate reductase (MTHFR) polymorphism with recurrent pregnancy loss. Clinical Biochemistry, 42(4–5), 380–386.PubMedCrossRefGoogle Scholar
  38. 38.
    Oikawa, S., Murakami, K., & Kawanishi, S. (2003). Oxidative damage to cellular and isolated DNA by homocysteine: Implications for carcinogenesis. Oncogene, 22(23), 3530–3538.PubMedCrossRefGoogle Scholar
  39. 39.
    Hitchler, M. J., Wikainapakul, K., Yu, L., Powers, K., Attatippaholkun, W., & Domann, F. E. (2006). Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics, 1(4), 163–171.PubMedCrossRefGoogle Scholar
  40. 40.
    Wolthers, K. R., & Scrutton, N. S. (2009). Cobalamin uptake and reactivation occurs through specific protein interactions in the methionine synthase-methionine synthase reductase complex. FEBS Journal, 276(7), 1942–1951.PubMedCrossRefGoogle Scholar
  41. 41.
    Majumdar, S., Mukherjee, S., Maiti, A., Karmakar, S., Das, A. S., Mukherjee, M., et al. (2009). Folic acid or combination of folic acid and vitamin B(12) prevents short-term arsenic trioxide-induced systemic and mitochondrial dysfunction and DNA damage. Environment Toxicology, 24(4), 377–387.CrossRefGoogle Scholar
  42. 42.
    Bagnyukova, T. V., Powell, C. L., Pavliv, O., Tryndyak, V. P., & Pogribny, I. P. (2008). Induction of oxidative stress and DNA damage in rat brain by a folate/methyl-deficient diet. Brain Research, 1237, 44–51.PubMedCrossRefGoogle Scholar
  43. 43.
    Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Research, 61(12), 4756–4760.PubMedGoogle Scholar
  44. 44.
    Ohba, M., Shibanuma, M., Kuroki, T., & Nose, K. (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. Journal of Cell Biology, 126(4), 1079–1088.PubMedCrossRefGoogle Scholar
  45. 45.
    Szatrowski, T. P., & Nathan, C. F. (1991). Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Research, 51(3), 794–798.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shaik Mohammad Naushad
    • 1
  • Cheruku Apoorva Reddy
    • 1
  • Yedluri Rupasree
    • 1
  • Addepalli Pavani
    • 1
  • Raghunadha Rao Digumarti
    • 2
  • Suryanarayana Raju Gottumukkala
    • 3
  • Periannan Kuppusamy
    • 4
  • Vijay Kumar Kutala
    • 1
    Email author
  1. 1.Department of Clinical Pharmacology and TherapeuticsNizam’s Institute of Medical SciencesPanjagutta, HyderabadIndia
  2. 2.Department of Medical OncologyNizam’s Institute of Medical SciencesPanjagutta, HyderabadIndia
  3. 3.Department of Surgical OncologyNizam’s Institute of Medical SciencesPanjagutta, HyderabadIndia
  4. 4.Department of Internal MedicineOhio State UniversityColumbusUSA

Personalised recommendations