Cell Biochemistry and Biophysics

, Volume 61, Issue 2, pp 337–348 | Cite as

Inhibitory Effect of Delphinidin on Monocyte–Endothelial Cell Adhesion Induced by Oxidized Low-Density Lipoprotein via ROS/p38MAPK/NF-κB Pathway

  • Chun-ye Chen
  • Long Yi
  • Xin Jin
  • Ting Zhang
  • Yu-jie Fu
  • Jun-dong Zhu
  • Man-tian Mi
  • Qian-yong Zhang
  • Wen-hua Ling
  • Bin Yu
Original Paper


Monocyte adhesion to the vascular endothelium and their subsequent trans-endothelial migration are pivotal early events in atherogenesis. In this study, the effect of delphinidin, belonging to the group of anthocyanin, on adhesion of monocytes to endothelial cells induced by ox-LDL was investigated. The results showed that the pre-treatment with delphinidin (50, 100, or 200 μM) dose-dependently decreased the ox-LDL-induced up-regulation of the expression of ICAM-1 and P-selectin, and the enhanced adhesion and transmigration of monocytes. To determine the role of ROS/p38MAPK/NF-κB pathway, intracellular ROS level, p38MAPK protein expression, NF-κB transcription activity and protein expression, IκB-α degradation, NADPH oxidase subunit (Nox2 and p22phox) protein, and mRNA expression were measured. The results showed that delphinidin attenuated ox-LDL-induced generation of ROS, p38MAPK protein expression, NF-κB transcription activity and protein expression, IκB-α degradation, NADPH oxidase subunit (Nox2 and p22phox) protein and mRNA expression in endothelial cells in a dose-dependent manner. These results suggest that delphinidin attenuates ox-LDL induced expression of adhesion molecules (P-selectin and ICAM-1) and the adhesion of monocytes to endothelial cells by inhibiting ROS/p38MAPK/NF-κB pathway. These findings provide a basis for the design of potent antiatherosclerotic agents that will have therapeutic potential in the prevention of AS.


Delphinidin Monocyte Endothelial cell Adhesion Reactive oxygen species Nuclear factor-κB 



Oxidized low density lipoprotein


Nicotinamide adenine dinucleotide phosphate


Reactive oxygen species


Nuclear factor-κB


Monocyte chemoattractant protein-1


Lectin-like low density lipoprotein-1


Intercellular adhesion molecule-1


Vascular cell adhesion molecule-1


Soluble intercellular adhesion molecule-1





This work was supported by National Natural Science Foundation of China (grant number 81000133), “the 11th Five-year Plan” for National Key Technology Research and Development Program (2008BAI58B06), and the Innovation Project of Chongqing Key Laboratory of Nutrition and Food Safety (2006CA1003).


  1. 1.
    Ross, R. (1999). Atherosclerosis—an inflammatory disease. New England Journal of Medicine, 340, 115–126.CrossRefPubMedGoogle Scholar
  2. 2.
    Price, D. T., & Loscalzo, J. (1999). Cellular adhesion molecules and atherogenesis. American Journal of Medicine, 107, 85–97.CrossRefPubMedGoogle Scholar
  3. 3.
    Joris, I., Zand, T., Nunnari, J. J., Krolikowski, F. J., & Majno, G. (1983). Studies on the pathogenesis of atherosclerosis: I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. American Journal of Pathology, 113, 341–358.PubMedGoogle Scholar
  4. 4.
    Blankenberg, S., Barbaux, S., & Tiret, L. (2003). Adhesion molecules and atherosclerosis. Atherosclerosis, 170, 191–203.CrossRefPubMedGoogle Scholar
  5. 5.
    Davì, G., Romano, M., Mezzetti, A., Procopio, A., Iacobelli, S., Antidormi, T., et al. (1998). Increased levels of soluble P-selectin in hypercholesterolemic patients. Circulation, 97, 953–957.PubMedGoogle Scholar
  6. 6.
    Parissis, J. T., Venetsanou, K. F., Mentzikof, D. G., Kalantzi, M. V., Georgopoulou, M. V., & Chrisopoulos, N. (2001). Plasma levels of soluble cellular adhesion molecules in patients with arterial hypertension. The European Journal of Internal Medicine, 12, 350–356.CrossRefGoogle Scholar
  7. 7.
    Cernuda-Morollón, E., & Ridley, A. J. (2006). Rho GTPases and leukocyte adhesion receptor expression and function in endothelial cells. Circulation Research, 98, 757–767.CrossRefPubMedGoogle Scholar
  8. 8.
    Witztum, J. L., & Steinberg, D. (1991). Role of oxidized low-density lipoprotein in atherogenesis. Journal of Clinical Investigation, 88, 1785–1792.CrossRefPubMedGoogle Scholar
  9. 9.
    Kita, T., Kume, N., Ishii, K., Horiuchi, H., Arai, H., & Yokode, M. (1999). Oxidized LDL and expression of monocyte adhesion molecules. Diabetes Research and Clinical Practice, 45, 1126–1223.CrossRefGoogle Scholar
  10. 10.
    Hirata, K., Miki, N., Kuroda, Y., Sakoda, T., Kawashima, S., & Yokoyama, M. (1995). Low concentration of oxidized low-density lipoprotein and lysophosphatidylcholine upregulate constitutive nitric oxide synthase mRNA expression in bovine aortic endothelial cells. Circulation Research, 76, 958–962.PubMedGoogle Scholar
  11. 11.
    Francone, O. L., Tu, M., Royer, L. J., Zhu, J., Stevens, K., Oleynek, J. J., et al. (2009). The hydrophobic tunnel present in LOX-1 is essential for oxidized LDL recognition and binding. Journal of Lipid Research, 50, 546–555.CrossRefPubMedGoogle Scholar
  12. 12.
    Cominacini, L., Pasini, A. F., Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., et al. (2000). Oxidized low-density lipoprotein binding to LOX-1 in endothelial cells induces the activation of NF-κB through an increased production of intracellular reactive oxygen species. Journal of Biological Chemistry, 275, 12633–12638.CrossRefPubMedGoogle Scholar
  13. 13.
    Honjo, M., Nakamura, K., Yamashiro, K., Kiryu, J., Tanihara, H., McEvoy, L. M., et al. (2003). Lectin-like oxidised LDL receptor-1 is a cell-adhesion molecule involved in endotoxin-induced inflammation. Proceedings of the National Academy of Sciences of the United States of America, 100, 1274–1279.CrossRefPubMedGoogle Scholar
  14. 14.
    Dje N’Guessan, P., Riediger, F., Vardarova, K., Scharf, S., Eitel, J., Opitz, B., et al. (2009). Statins control oxidized LDL-mediated histone modifications and gene expression in cultured human endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 29, 380–386.CrossRefPubMedGoogle Scholar
  15. 15.
    Lazzè, M. C., Pizzala, R., Perucca, P., Cazzalini, O., Savio, M., Forti, L., et al. (2006). Anthocyanidins decrease endothelin-1 production and increase endothelial nitric oxide synthase in human endothelial cells. Molecular Nutrition & Food Research, 50, 44–51.CrossRefGoogle Scholar
  16. 16.
    Yi, L., Chen, C. Y., Jin, X., Mi, M. T., Yu, B., Chang, H., et al. (2010). Structural requirements of anthocyanins in relation to inhibition of endothelial injury induced by oxidized low-density lipoprotein and correlation with radical scavenging activity. FEBS Letters, 584, 583–590.CrossRefPubMedGoogle Scholar
  17. 17.
    Chen, C. Y., Yi, L., Jin, X., Mi, M. T., Zhang, T., Ling, W. H., et al. (2010). Delphinidin attenuates stress injury induced by oxidized low-density lipoprotein in human umbilical vein endothelial cells. Chemico-Biological Interactions, 183, 105–112.CrossRefPubMedGoogle Scholar
  18. 18.
    Ushio-Fukai, M. (2006). Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovascular Research, 71, 226–235.CrossRefPubMedGoogle Scholar
  19. 19.
    Sternberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. Journal of Biological Chemistry, 272, 20963–20966.CrossRefGoogle Scholar
  20. 20.
    Jiang, J. L., Zhu, H. Q., Chen, Z., Xu, H. Y., & Li, Y. J. (2005). Angiotensinconverting enzyme inhibitors prevent LDL-induced endothelial dysfunction by reduction of asymmetric dimethylarginine level. International Journal of Cardiology, 101, 153–155.CrossRefPubMedGoogle Scholar
  21. 21.
    Hou, G., Xue, L., Lu, Z., Fan, T., Tian, F., & Xue, Y. (2007). An activated mTOR/p70S6 K signaling pathway in esophageal squamous cell carcinoma cell lines and inhibition of the pathway by rapamycin and siRNA against mTOR. Cancer Letters, 253, 236–248.CrossRefPubMedGoogle Scholar
  22. 22.
    Korge, P., Ping, P., & Weiss, J. N. (2008). Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation: modulation by nitric oxide. Circulation Research, 103, 873–880.CrossRefPubMedGoogle Scholar
  23. 23.
    Dou, J. L., Tan, C. Y., Du, Y. G., Bai, X. F., Wang, K. Y., & Ma, X. J. (2007). Effects of chitooligosaccharides on rabbit neutrophils in vitro. Carbohydrate Polymers, 69, 209–213.CrossRefGoogle Scholar
  24. 24.
    Mendis, E., Kim, M. M., Rajapakse, N., & Kim, S. K. (2007). An in vitro cellular analysis of the radical scavenging efficacy of chitooligosaccharides. Life Science, 80, 2118–2127.CrossRefGoogle Scholar
  25. 25.
    Jiang, J. L., Wang, S., Li, N. S., Zhang, X. H., Deng, H. W., & Li, Y. J. (2007). The inhibitory effect of simvastatin on the ADMA-induced inflammatory reaction is mediated by MAPK pathways in endothelial cells. Biochemistry and Cell Biology, 85, 66–77.CrossRefPubMedGoogle Scholar
  26. 26.
    Zhang, G. G., Bai, Y. P., Chen, M. F., Shi, R. Z., Jiang, D. J., Fu, Q. M., et al. (2008). Asymmetric dimethylarginine induces TNF-alpha production via ROS/NF-kappaB dependent pathway in human monocytic cells and the inhibitory effect of reinioside C. Vascular Pharmacology, 48, 115–121.CrossRefPubMedGoogle Scholar
  27. 27.
    Mehta, J. L., Chen, J., Hermonat, P. L., Romeo, F., & Novelli, G. (2006). Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovascular Research, 69, 36–45.CrossRefPubMedGoogle Scholar
  28. 28.
    Cybulsky, M. A., & Gimbrone, M. A. (1991). Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science, 251, 788–791.CrossRefPubMedGoogle Scholar
  29. 29.
    Takei, A., Huang, Y., & Lopes-Virella, M. F. (2001). Expression of adhesion molecules by human endothelial cells exposed to oxidized low density lipoprotein. Influences of degree of oxidation and location of oxidized LDL. Atherosclerosis, 154, 79–86.CrossRefPubMedGoogle Scholar
  30. 30.
    Huo, Y., Weber, C., Forlow, S. B., Sperandio, M., Thatte, J., Mack, M., et al. (2001). The chemokine KC, but not monocyte chemoattractant protein-1, triggers monocyte arrest on early atherosclerotic endothelium. Journal of Clinical Investigation, 108, 1307–1314.PubMedGoogle Scholar
  31. 31.
    Luscinskas, F. W., Kansas, G. S., Ding, H., Pizcueta, P., Schleiffenbaum, B. E., Tedder, T. F., et al. (1994). Monocyte rolling, arrest and spreading on IL-4–activated vascular endothelium under flow is mediated via sequential action of l-selectin, beta 1-integrins, and beta 2-integrins. Journal of Cell Biology, 125, 1417–1427.CrossRefPubMedGoogle Scholar
  32. 32.
    Andrea, K., & Hubbard, R. R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radical Biology and Medicine, 28, 1379–1386.CrossRefGoogle Scholar
  33. 33.
    Subramaniam, M., Saffaripour, S., Watson, S. R., Mayadas, T. N., Hynes, R. O., & Wagner, D. D. (1995). Reduced recruitment of inflammatory cells in a contact hypersensitivity response in P-selectin-deficient mice. Journal of Experimental Medicine, 181, 2277–2282.CrossRefPubMedGoogle Scholar
  34. 34.
    Collins, R. G., Velji, R., Guevara, N. V., Hicks, M. J., Chan, L., & Beaudet, A. L. (2000). P-selectin or intercellular adhesion molecule (ICAM)-1 deficiency substantially protects against atherosclerosis in apolipoprotein E-deficient mice. Journal of Experimental Medicine, 191, 189–194.CrossRefPubMedGoogle Scholar
  35. 35.
    Dong, Z. M., Brown, A. A., & Wagner, D. D. (2000). Prominent role of P-selectin in the development of advanced atherosclerosis in apoE-deficient mice. Circulation, 101, 2290–2295.PubMedGoogle Scholar
  36. 36.
    Grumbach, I. M., Chen, W., Mertens, S. A., & Harrison, D. G. (2005). A negative feedback mechanism involving nitric oxide and nuclear factor kappa-B modulates endothelial nitric oxide synthase transcription. Journal of Molecular and Cellular Cardiology, 39, 595–603.CrossRefPubMedGoogle Scholar
  37. 37.
    Mitchell, D. A., Morton, S. U., Fernhoff, N. B., & Marletta, M. A. (2007). Thioredoxin is required for S-nitrosation of procaspase-3 and the inhibition of apoptosis in Jurkat cells. Proceedings of the National Academy of Sciences of the United States of America, 104, 11609–11614.CrossRefPubMedGoogle Scholar
  38. 38.
    Ckless, K., van der Vliet, A., & Janssen-Heininger, Y. (2007). Oxidative-nitrosative stress and post-translational protein modifications: implications to lung structure-function relations. Arginase modulates NF-kappaB activity via a nitric oxide-dependent mechanism. American Journal of Respiratory Cell and Molecular Biology, 36, 645–653.CrossRefPubMedGoogle Scholar
  39. 39.
    Takano, M., Meneshian, A., Sheikh, E., Yamakawa, Y., Wilkins, K. B., Hopkins, E. A., et al. (2002). Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation. American Journal of Physiology-Heart and Circulatory Physiology, 5, 2054–2061.Google Scholar
  40. 40.
    Lum, H., & Roebuck, K. A. (2001). Oxidant stress and endothelial dysfunction. American Journal of Physiology-Cell Physiology, 280, 719–741.Google Scholar
  41. 41.
    de Winther, M. P., Kanters, E., & Kraal, G. (2005). Nuclear factor κB signaling in atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 904–914.CrossRefPubMedGoogle Scholar
  42. 42.
    Burleigh, M. E., Babaev, V. R., Yancey, P. G., Major, A. S., McCaleb, J. L., Oates, J. A., et al. (2005). Cyclooxygenase-2 promotes early atherosclerotic lesion formation in ApoE-deficient and C57BL/6 mice. Journal of Molecular and Cellular Cardiology, 39, 443–452.CrossRefPubMedGoogle Scholar
  43. 43.
    Gu, L., Okada, Y., Clinton, S. K., Gerard, C., Sukhova, G. K., Libby, P., et al. (1998). Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Molecular Cell, 2, 275–281.CrossRefPubMedGoogle Scholar
  44. 44.
    Niemann-Jonsson, A., Dimayuga, P., & Jovinge, S. (2000). Accumulation of LDL in rat arteries is associated with activation of tumor necrosis factor-alpha expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 2205–2211.CrossRefPubMedGoogle Scholar
  45. 45.
    Janssen-Heininger, Y. M. W., Poynter, M. E., & Baeuerle, P. A. (2000). Recent advances towards understanding redox mechanisms in the activation of nuclear factor κB. Free Radical Biology and Medicine, 28, 1317–1327.CrossRefPubMedGoogle Scholar
  46. 46.
    Bar-Shai, M., Carmeli, E., Ljubuncic, P., & Reznick, A. Z. (2008). Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation. Free Radical Biology and Medicine, 44, 202–214.CrossRefPubMedGoogle Scholar
  47. 47.
    Elks, C. M., Mariappan, N., Haque, M., Guggilam, A., Majid, D. S., & Francis, J. (2009). Chronic NF-κB blockade reduces cytosolic and mitochondrial oxidative stress and attenuates renal injury and hypertension in SHR. American Journal of Physiology-Renal Physiology, 296, 298–305.CrossRefGoogle Scholar
  48. 48.
    Mazza, G. J. (2007). Anthocyanins and heart health. Annals of the 1st Super Sanita, 43, 369–374.Google Scholar
  49. 49.
    Xu, J. W., Ikeda, K., & Yamori, Y. (2004). Upregulation of endothelial nitricoxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment. Hypertension, 44, 217–222.CrossRefPubMedGoogle Scholar
  50. 50.
    Mertens-Talcott, S. U., Rios, J., Jilma-Stohlawetz, P., Pacheco-Palencia, L. A., Meibohm, B., Talcott, S. T., et al. (2008). Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers. Journal of Agriculture and Food Chemistry, 56, 7796–7802.CrossRefGoogle Scholar
  51. 51.
    Song, J., Li, Y., Ge, J., Duan, Y., Sze, S. C., Tong, Y., et al. (2010). Protective effect of bilberry (Vaccinium myrtillus L.) extracts on cultured human corneal limbal epithelial cells (HCLEC). Phytotherapy Research, 24, 520–524.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Chun-ye Chen
    • 1
  • Long Yi
    • 1
  • Xin Jin
    • 1
  • Ting Zhang
    • 1
  • Yu-jie Fu
    • 1
  • Jun-dong Zhu
    • 1
  • Man-tian Mi
    • 1
  • Qian-yong Zhang
    • 1
  • Wen-hua Ling
    • 2
  • Bin Yu
    • 1
  1. 1.Research Center of Nutrition and Food Safety, Chongqing Key Laboratory of Nutrition and Food SafetyThe Third Military Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of Medical Nutriology, School of Public Health Sun Yat-Sen UniversityGuangzhouPeople’s Republic of China

Personalised recommendations