Skip to main content

Advertisement

Log in

Investigation of siRNA-Loaded Polyethylenimine-Coated Human Serum Albumin Nanoparticle Complexes for the Treatment of Breast Cancer

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Small interfering RNA (siRNA) molecules have great potential for developing into a future therapy for breast cancer. To overcome the issues related to rapid degradation and low transfection of naked siRNA, polyethylenimine (PEI)-coated human serum albumin (HSA) nanoparticles have been characterized and studied here for efficient siRNA delivery to the MCF-7 breast cancer cell line. The optimized nanoparticles were ~90 nm in size, carrying a surface charge of +26 mV and a polydispersity index (PDI) less than 0.25. The shape and morphology of the particles was studied using electron microscopy. A cytotoxicity assessment of the nanoparticles showed no correlation of cytotoxicity with HSA concentration, while using high molecular weight PEI (MW of 70 against 25 kDa) showed higher cytotoxicity. The optimal transfection achieved of fluorescin-tagged siRNA loaded into PEI-coated HSA nanoparticles was 61.66 ± 6.8%, prepared with 6.25 μg of PEI (25 kDa) added per mg of HSA and 20 mg/ml HSA, indicating that this nonviral vector may serve as a promising gene delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics, 2008. CA: A Cancer Journal for Clinicians, 58(2), 71–96.

    Article  Google Scholar 

  2. Jemal, A., Siegel, R., Xu, J., & Ward, E. (2010). Cancer Statistics, 2010. CA: A Cancer Journal for Clinicians, 60(5), 277–300.

    Article  Google Scholar 

  3. Howard, K. A., Rahbek, U. L., Liu, X., Damgaard, C. K., Glud, S. Z., Andersen, M. O., et al. (2006). RNA interference in vitro and in vivo using a chitosan/siRNA nanoparticle system. Molecular Therapy, 14(4), 476–484.

    Article  CAS  PubMed  Google Scholar 

  4. Liu, X., Howard, K. A., Dong, M., Andersen, M. Ø., Rahbek, U. L., Johnsen, M. G., et al. (2007). The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing. Biomaterials, 28(6), 1280–1288.

    Article  CAS  PubMed  Google Scholar 

  5. Schiffelers, R. M., Ansari, A., Xu, J., Zhou, Q., Tang, Q., Storm, G., et al. (2004). Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Research, 32(19), e149.

    Article  PubMed  Google Scholar 

  6. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., & Aigner, A. (2004). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Therapy, 12(5), 461–466.

    Article  Google Scholar 

  7. Patil, Y., & Panyam, J. (2009). Polymeric nanoparticles for siRNA delivery and gene silencing. International Journal of Pharmaceutics, 367(1–2), 195–203.

    Article  CAS  PubMed  Google Scholar 

  8. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., & Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 411(6836), 494–498.

    Article  CAS  PubMed  Google Scholar 

  9. Bumcrot, D., Manoharan, M., Koteliansky, V., & Sah, D. W. Y. (2006). RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, 2(12), 711–719.

    Article  CAS  PubMed  Google Scholar 

  10. Ozpolat, B., Sood, A. K., & Lopez-Berestein, G. (2010). Nanomedicine based approaches for the delivery of siRNA in cancer. Journal of Internal Medicine, 267(1), 44–53.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, S., Zhao, B., Jiang, H., Wang, B., & Ma, B. (2007). Cationic lipids and polymers mediated vectors for delivery of siRNA. Journal of Controlled Release, 123(1), 1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Hans, M. L., & Lowman, A. M. (2002). Biodegradable nanoparticles for drug delivery and targeting. Current Opinion in Solid State and Materials Science, 6(4), 319–327.

    Article  CAS  Google Scholar 

  13. Templeton, N., & Lasic, D. (1999). New directions in liposome gene delivery. Molecular Biotechnology, 11(2), 175–180.

    Article  CAS  PubMed  Google Scholar 

  14. Gaumet, M., Vargas, A., Gurny, R., & Delie, F. (2008). Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics, 69(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  15. Panyam, J., & Labhasetwar, V. (2003). Dynamics of endocytosis and exocytosis of poly(d, l-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells. Pharmaceutical Research, 20(2), 212–220.

    Article  CAS  PubMed  Google Scholar 

  16. Kratz, F. (2008). Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132(3), 171–183.

    Article  CAS  PubMed  Google Scholar 

  17. Wang, G., Siggers, K., Zhang, S., Jiang, H., Xu, Z., Zernicke, R., et al. (2008). Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharmaceutical Research, 25(12), 2896–2909.

    Article  CAS  PubMed  Google Scholar 

  18. Lü, J. M., Wang, X., Marin-Muller, C., Wang, H., Lin, P. H., Yao, Q., et al. (2009). Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Review of Molecular Diagnostics, 9(4), 325–341.

    Article  PubMed  Google Scholar 

  19. Liu, Y., Miyoshi, H., & Nakamura, M. (2007). Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles. International Journal of Cancer, 120(12), 2527–2537.

    Article  CAS  Google Scholar 

  20. Lin, W., Coombes, A. G. A., Davies, M. C., Davis, S. S., & Illum, L. (1993). Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. Journal of Drug Targeting, 1(3), 237–243.

    Article  CAS  PubMed  Google Scholar 

  21. Langer, K., Balthasar, S., Vogel, V., Dinauer, N., von Briesen, H., & Schubert, D. (2003). Optimization of the preparation process for human serum albumin (HSA) nanoparticles. International Journal of Pharmaceutics, 257(1–2), 169–180.

    Article  CAS  PubMed  Google Scholar 

  22. Douglas, J. (2007). Adenoviral vectors for gene therapy. Molecular Biotechnology, 36(1), 71–80.

    Article  CAS  PubMed  Google Scholar 

  23. Vorburger, S. A., & Hunt, K. K. (2002). Adenoviral gene therapy. The Oncologist, 7(1), 46–59.

    Article  CAS  PubMed  Google Scholar 

  24. Paul, A., Jardin, B., Kulamarva, A., Malhotra, M., Elias, C., & Prakash, S. (2010). Recombinant baculovirus as a highly potent vector for gene therapy of human colorectal carcinoma: molecular cloning, expression, and in vitro characterization. Molecular Biotechnology, 45(2), 129–139.

    Article  CAS  PubMed  Google Scholar 

  25. Wartlick, H., SpΣnkuch-Schmitt, B., Strebhardt, K., Kreuter, J. R., & Langer, K. (2004). Tumour cell delivery of antisense oligonuclceotides by human serum albumin nanoparticles. Journal of Controlled Release, 96(3), 483–495.

    Article  CAS  PubMed  Google Scholar 

  26. Arshady, R. (1990). Albumin microspheres and microcapsules: methodology of manufacturing techniques. Journal of Controlled Release, 14(2), 111–131.

    Article  CAS  Google Scholar 

  27. Leo, E., Angela Vandelli, M., Cameroni, R., & Forni, F. (1997). Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde: involvement of the drug in the cross-linking process. International Journal of Pharmaceutics, 155(1), 75–82.

    Article  CAS  Google Scholar 

  28. Segura, S., Espuelas, S., Renedo, M. J., & Irache, J. M. (2005). Potential of albumin nanoparticles as carriers for interferon gamma. Drug Development and Industrial Pharmacy, 31(3), 271–280.

    CAS  PubMed  Google Scholar 

  29. Zhang, S., Wang, G., Lin, X., Chatzinikolaidou, M., Jennissen, H. P., Laub, M., et al. (2008). Polyethylenimine-coated albumin nanoparticles for BMP-2 delivery. Biotechnology Progress, 24(4), 945–956.

    Article  CAS  PubMed  Google Scholar 

  30. Rhaese, S., von Briesen, H., Rübsamen-Waigmann, H., Kreuter, J., & Langer, K. (2003). Human serum albumin–polyethylenimine nanoparticles for gene delivery. Journal of Controlled Release, 92(1–2), 199–208.

    Article  CAS  PubMed  Google Scholar 

  31. Prabha, S., Zhou, W. Z., Panyam, J., & Labhasetwar, V. (2002). Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. International Journal of Pharmaceutics, 244(1–2), 105–115.

    Article  CAS  PubMed  Google Scholar 

  32. Yin Win, K., & Feng, S. S. (2005). Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26(15), 2713–2722.

    Article  Google Scholar 

  33. Helander, I. M., Alakomi, H. L., Latva-Kala, K., & Koski, P. (1997). Polyethyleneimine is an effective permeabilizer of Gram-negative bacteria. Microbiology, 143(10), 3193–3199.

    Article  CAS  PubMed  Google Scholar 

  34. Zauner, W., Farrow, N. A., & Haines, A. M. R. (2001). In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. Journal of Controlled Release, 71(1), 39–51.

    Article  CAS  PubMed  Google Scholar 

  35. Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., & Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in caco-2 cells is size dependent. Pharmaceutical Research, 14(11), 1568–1573.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by research grant to Satya Prakash from Canadian Institute of Health Research (CIHR) (MOP 93641), Canada. Sana Abbasi is supported by the McGill Faculty of Medicine Internal Studentship—G. G. Harris Fellowship. Arghya Paul acknowledges the financial support from NSERC Alexander Graham Bell Canada Graduate Scholarship. The authors are grateful for the assistance provided for TEM imaging by Dr. Xue-Dong Liu, McGill, Department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Prakash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbasi, S., Paul, A. & Prakash, S. Investigation of siRNA-Loaded Polyethylenimine-Coated Human Serum Albumin Nanoparticle Complexes for the Treatment of Breast Cancer. Cell Biochem Biophys 61, 277–287 (2011). https://doi.org/10.1007/s12013-011-9201-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9201-9

Keywords

Navigation