Cell Biochemistry and Biophysics

, Volume 61, Issue 2, pp 237–250

Defective Protein Folding and Aggregation as the Basis of Neurodegenerative Diseases: The Darker Aspect of Proteins

Review Paper

Abstract

The ability of a polypeptide to fold into a unique, functional, and three-dimensional structure depends on the intrinsic properties of the amino acid sequence, function of the molecular chaperones, proteins, and enzymes. Every polypeptide has a finite tendency to misfold and this forms the darker side of the protein world. Partially folded and misfolded proteins that escape the cellular quality control mechanism have the high tendency to form inter-molecular hydrogen bonding between the same protein molecules resulting in aggregation. This review summarizes the underlying and universal mechanism of protein folding. It also deals with the factors responsible for protein misfolding and aggregation. This article describes some of the consequences of such behavior particularly in the context of neurodegenerative conformational diseases such as Alzheimer’s, Parkinson’s, Huntington’s, amyotrophic lateral sclerosis and other non-neurodegenerative conformational diseases such as cancer and cystic fibrosis etc. This will encourage a more proactive approach to the early diagnosis of conformational diseases and nutritional counseling for patients.

Graphical Abstract

Keywords

Aggregation Conformational diseases Protein misfolding Molecular chaperones 

References

  1. 1.
    Onuchic, J. N., & Wolynes, P. G. (2004). Theory of protein folding. Current Opinion in Structural Biology, 14, 70–75.PubMedCrossRefGoogle Scholar
  2. 2.
    Anfinsen, C. (1972). The formation and stabilization of protein structure. Biochemistry Journal, 128, 737–749.Google Scholar
  3. 3.
    Alexander, P. A., He, Y., Chen, Y., Orban, J., & Bryan, P. N. (2007). The design and characterization of two proteins with 88% sequence identity but different structure and function. Proceedings of the National Academy of Scences of the United States of America, 104, 11963–11968.CrossRefGoogle Scholar
  4. 4.
    Barrick, D., Hughson, F. M., & Baldwin, R. L. (1994). Molecular mechanisms of acid denaturation The role of histidine residues in the partial unfolding of apomyoglobin. Journal of Molecular Biology, 237, 588–601.PubMedCrossRefGoogle Scholar
  5. 5.
    Jaenicke, R. (1991). Protein folding: Local structure, domains, subunits, and assemblies. Biochemistry, 30, 3147–3161.PubMedCrossRefGoogle Scholar
  6. 6.
    Naeem, A., Khan, A., & Khan, R. H. (2005). Partially folded intermediate state of concanavalin A retains its carbohydrate specificity. Biochemistry and Biophysics Research Communications, 331, 1284–1294.CrossRefGoogle Scholar
  7. 7.
    Ballery, N., Desmadril, M., Minard, P., & Yon, J. M. (1993). Characterization of an intermediate in the folding pathway of phosphoglycerate kinase: Chemical reactivity of genetically introduced cysteinyl residues during the folding process. Biochemistry, 32, 708–714.PubMedCrossRefGoogle Scholar
  8. 8.
    Matousschek, A., Serrano, L., Meiering, E. M., Bycroft, M., & Ferscht, A. R. (1992). The folding of an enzyme IV Structure of an intermediate in the refolding of barnase analyzed by a protein engineering procedure. Journal of Molecular Biology, 224, 837–845.CrossRefGoogle Scholar
  9. 9.
    Naeem, A., Khan, K. A., & Khan, R. H. (2004). Characterization of a partially folded intermediate of papain induced by fluorinated alcohols at low pH. Archives of Biochemistry and Biophysics, 432, 79–87.PubMedGoogle Scholar
  10. 10.
    Goto, Y., & Nishikiori, S. J. (1991). Role of electrostatic repulsion in the acidic molten globule of cytochrome c. Journal of Molecular Biology, 222, 679–686.PubMedCrossRefGoogle Scholar
  11. 11.
    Naeem, A., Ahmad, T., Muzaffar, M., Ahmad, S., & Saleemuddin, M. (2011). A partially folded state of ovalbumin at low pH tends to aggregate. Cell Biochemistry and Biophysics, 59, 29–38.PubMedCrossRefGoogle Scholar
  12. 12.
    Beswick, H. T., & Harding, J. J. (1987). Conformational changes induced in lens alpha-and gamma crystallins by modification with glucose 6-phosphate Implications for cataract. Biochemistry Journal, 246, 761–769.Google Scholar
  13. 13.
    Vlassara, H., Bucala, R., & Striker, L. (1994). Pathogenic effects of advanced glycosylation: Biochemical, biologic, and clinical implications for diabetes and aging. Laboratory Investigation, 70, 138–151.PubMedGoogle Scholar
  14. 14.
    Harding, J. J. (1985). Non enzymatic covalent post translational modification of proteins in vivo. Advances in Protein Chemistry, 37, 247–334.PubMedCrossRefGoogle Scholar
  15. 15.
    Hardesty, B., & Kramer, G. (2001). Folding of a nascent peptide on the ribosome. Progress in Nucleic Acid Research and Molecular Biology, 66, 41–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Bukau, B., & Horwich, A. L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351–366.PubMedCrossRefGoogle Scholar
  17. 17.
    Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.PubMedCrossRefGoogle Scholar
  18. 18.
    Schiene, C., & Fischer, G. (2000). Enzymes that catalyse the restructuring of proteins. Current Opinion in Structural Biology, 10, 40–45.PubMedCrossRefGoogle Scholar
  19. 19.
    Dobson, C. M. (2003). Protein folding and misfolding. Nature, 426, 884–890.PubMedCrossRefGoogle Scholar
  20. 20.
    Rose, G., Fleming, P., Banavar, J., & Maritan, A. (2006). A backbone-based theory of protein folding. Proceedings of the National Academy of Sciences of the United States of America, 103, 166231–166233.CrossRefGoogle Scholar
  21. 21.
    Ptitsyn, O. B. (1995). Molten globule and protein folding. Advances in Protein Chemistry, 47, 83–87.PubMedCrossRefGoogle Scholar
  22. 22.
    Pande, V. S., & Rokhsar, D. S. (1998). Is the molten globule a third phase of proteins. Proceedings of the National Academy of Sciences of the United States of America, 95, 1490–1494.PubMedCrossRefGoogle Scholar
  23. 23.
    Soto, C. (2003). Unfolding the role of protein misfolding in neurodegenerative diseases. Nature Reviews Neuroscience, 4, 49–60.PubMedCrossRefGoogle Scholar
  24. 24.
    Davis, R., Dobson, C. M., & Vendruscolo, M. (2002). Determination of the structures of distinct transition state ensembles for a β-sheet peptide with parallel folding pathways. Journal of Chemical Physics, 117, 9510–9517.CrossRefGoogle Scholar
  25. 25.
    Flynn, G. C., Pohl, J., Flocco, MT., & Rothman, J. E. (1991). Peptide-binding specificity of the molecular chaperone BiP. Nature, 353, 726–730.PubMedCrossRefGoogle Scholar
  26. 26.
    Landry, S. J., Jordan, R., McMacken, R., & Gierasch, L. M. (1992). Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature, 355, 455–457.PubMedCrossRefGoogle Scholar
  27. 27.
    Gething, M. J., & Sambrook, J. (1992). Protein folding in the cell. Nature, 355, 33–45.PubMedCrossRefGoogle Scholar
  28. 28.
    Harti, F. U., Martin, J., & Neupert, W. (1992). Protein folding in the cell: The role of molecular chaperones Hsp70 and Hsp60. Annual Review of Biophysics and Biomolecular Structure, 21, 293–322.CrossRefGoogle Scholar
  29. 29.
    Schmid, F. X. (1991). Catalysis and assistance of protein folding. Current Opinion in Structural Biology, 1, 36–41.CrossRefGoogle Scholar
  30. 30.
    Uversky, V. N., & Fink, A. (Eds.). (2006). “Protein misfolding, aggregation and conformational diseases”, Part A: Protein aggregation and conformational diseases, series: Protein Reviews, Vol. 4, p. 419.Google Scholar
  31. 31.
    Kelly, J. (1998). Alternative conformation of amyloidogenic proteins and their multi-step assembly pathways. Current Opinion in Structural Biology, 8, 101–106.PubMedCrossRefGoogle Scholar
  32. 32.
    Dobson, C. M. (2001). The structural basis of protein folding and its links with human disease. Philosophical Transactions of the Royal Society London B, 356, 133–145.CrossRefGoogle Scholar
  33. 33.
    Booth, D. R., Sunde, M., Bellotti, V., Robinson, C. V., Hutchinson, W. L., et al. (1997). Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature, 385, 78–793.CrossRefGoogle Scholar
  34. 34.
    Thomas, P. J., Qu, B. H., & Pedersen, P. L. (1995). Defective protein folding as a basis of human disease. Trends in Biochemical Sciences, 20, 456–459.PubMedCrossRefGoogle Scholar
  35. 35.
    Castillo, V., & Ventura, S. (2009). Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Computational Biology, 5, 1–16.CrossRefGoogle Scholar
  36. 36.
    Amaral, M. D. (2004). CFTR and chaperones processing and degradation. Journal of Molecular Neuroscience, 23, 41–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Pullara, F., & Emanuele, A. (2008). Early stages of β2-microglobulin aggregation and the inhibiting action of αB-crystallin. Proteins, 73, 1037–1046.PubMedCrossRefGoogle Scholar
  38. 38.
    Sherman, M. Y., & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases. Neuron, 29, 15–32.PubMedCrossRefGoogle Scholar
  39. 39.
    Kayed, R., Head, E., Thompson, J. L., et al. (2003). Common structure of soluble amyloid oligomers implies common mechanisms of pathogenesis. Science, 300, 486–489.PubMedCrossRefGoogle Scholar
  40. 40.
    Fandrich, M., & Dobson, C. M. (2002). The behaviour of poly amino acids reveals an inverse side chain effect in amyloid structure formation. EMBO Journal, 21, 5682–5690.PubMedCrossRefGoogle Scholar
  41. 41.
    Smith, J. F., Knowles, T. P., Dobson, C. M., et al. (2006). Characterization of the nanoscale properties of individual amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 103, 15806–15811.PubMedCrossRefGoogle Scholar
  42. 42.
    Makin, O. S., Sikorski, P., & Serpell, L. C. (2006). Diffraction to study protein and peptide assemblies. Current Opinion in Chemical Biology, 10, 417–422.PubMedCrossRefGoogle Scholar
  43. 43.
    Tycko, R. (2003). Insights into the amyloid folding problem from solid-state NMR. Biochemistry, 42, 3151–3159.PubMedCrossRefGoogle Scholar
  44. 44.
    Torok, M., Milton, S., Kayed, R., et al. (2002). Structural and dynamic features of Alzheimer’s Aβ peptide in amyloid fibrils studied by site-directed spin labelling. Journal of Biological Chemistry, 277, 40810–40815.PubMedCrossRefGoogle Scholar
  45. 45.
    Goldsbury, C., Kistler, J., Aebi, U., et al. (1999). Watching amyloid fibrils grow by time-lapse atomic force microscopy. Journal of Molecular Biology, 285, 33–39.PubMedCrossRefGoogle Scholar
  46. 46.
    Serpell, L., Sunde, M., Benson, M., et al. (2000). The protofilament substructure of amyloid fibrils. Journal of Molecular Biology, 300, 1033–1039.PubMedCrossRefGoogle Scholar
  47. 47.
    Jimenez, J. L., Guijarro, J. I., Orlova, E., et al. (1999). Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO Journal, 18, 815–821.PubMedCrossRefGoogle Scholar
  48. 48.
    Jimenez, J. L., Tennent, G., Pepys, M. B., et al. (2001). Structural diversity of ex vivo amyloid fibrils studied by cryo-electron microscopy. Journal of Molecular Biology, 311, 241–247.PubMedCrossRefGoogle Scholar
  49. 49.
    Jimenez, J. L., Nettleton, E. J., Bouchard, M., et al. (2002). The protofilament structure of insulin amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 99, 9196–9201.PubMedCrossRefGoogle Scholar
  50. 50.
    Eanes, E. D., & Glenner, G. G. (1968). X-ray diffraction studies on amyloid filaments. Journal of Histochemistry and Cytochemistry, 16, 673–677.PubMedCrossRefGoogle Scholar
  51. 51.
    Sunde, M., & Blake, C. C. (1998). From the globular to the fibrous state: Protein structure and structural conversion in amyloid formation. Quarterly Review of Biophysics, 31, 1–39.CrossRefGoogle Scholar
  52. 52.
    Thakur, K. A., & Wetzel, R. (2002). Mutational analysis of the structural organization of polyglutamine aggregates. Proceedings of the National Academy of Sciences of the United States of America, 99, 17014–17019.PubMedCrossRefGoogle Scholar
  53. 53.
    Ross, C. A., Michelle, A., Poirier, M. A., Wanker, E. E., & Amzel, M. (2003). Polyglutamine fibrillogenesis: The pathway unfolds. Proceedings of the National Academy of Sciences of the United States of America, 100, 1–3.PubMedCrossRefGoogle Scholar
  54. 54.
    Sabate, R., De Groot, N. S., & Ventura, S. (2010). Protein folding and aggregation in bacteria. Cellular and Molecular Life Sciences, 67, 2695–2715.PubMedCrossRefGoogle Scholar
  55. 55.
    Uversky, V. N. (2009). Intrinsic disorder in proteins associated with neurodegenerative diseases. Frontier Bioscience, 14, 5188–5238.CrossRefGoogle Scholar
  56. 56.
    Morimoto, R. I., & Santoro, M. G. (1998). Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nature Biotechnology, 16, 833–838.PubMedCrossRefGoogle Scholar
  57. 57.
    Bukau, B., Weissmanand, J., & Horwich, A. (2006). Molecular chaperones and protein quality control. Cell, 125, 445–451.CrossRefGoogle Scholar
  58. 58.
    Auluck, P. K., Chan, H. Y., Trojanowsk, J. Q., Lee, V. M., & Bonini, N. M. (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science, 295, 865–868.PubMedCrossRefGoogle Scholar
  59. 59.
    Klucken, J., Shin, Y., Masliah, E., Hyman, B. T., & McLean, P. J. (2004). Hsp70 reduces alpha-synuclein aggregation and toxicity. Journal of Biological Chemistry, 279, 25497–25502.PubMedCrossRefGoogle Scholar
  60. 60.
    Sakahira, H., Breuer, P., Hayer-Hartl, M. K., & Hartl, F. U. (2002). Molecular chaperones as modulators of polyglutamine protein aggregation and toxicity. Proceedings of the National Academy of Sciences of the United States of America, 99, 16412–16418.PubMedCrossRefGoogle Scholar
  61. 61.
    De Jong, W. W., Leunissen, J. A., Leenen, P. J., Zweers, A., & Versteeg, M. (1988). Comparison with small heat shock proteins and Schistosoma egg antigen. Journal of Biological Chemistry, 263, 5141–5149.PubMedGoogle Scholar
  62. 62.
    Pauli, D., Tonka, C. H., Tissieres, A., & Arrigo, A. P. (1990). Tissue-specific expression of the heat shock protein HSP27 during Drosophila melanogaster development. Journal of Cell Biology, 111, 817–828.PubMedCrossRefGoogle Scholar
  63. 63.
    Wagstaff, M. J., Collaco-Moraes, Y., Smith, J., De Belleroche, J. S., Coffin, R. S., & Latchman, D. S. (1998). Protection of neuronal cells from apoptosis by Hsp27 delivered with a herpes simplex virus-based vector. Journal of Biological Chemistry, 274, 5061–5069.CrossRefGoogle Scholar
  64. 64.
    Benjamin, I. J., & McMillan, D. R. (1998). Stress (heat shock) proteins: Molecular chaperones in cardiovascular biology and disease. Circulation Research, 83, 117–132.PubMedGoogle Scholar
  65. 65.
    Bruey, J. M., Ducasse, C., Bonniaud, P., Ravagnan, L., Susin, S. A., Diaz-Latoud, C., et al. (2000). Hsp27 negatively regulates cell death by interacting with cytochrome c. Nature Cell Biology, 2, 645–652.PubMedCrossRefGoogle Scholar
  66. 66.
    Rane, M. J., Pan, Y., Singh, S., Powell, D., Wu, W. R., & Cummins, T. (2003). Heat shock protein 27 controls apoptosis by regulating Akt activation. Journal of Biological Chemistry, 278, 27828–27835.PubMedCrossRefGoogle Scholar
  67. 67.
    Wyttenbach, A., Sauvageot, O., Carmichael, J., Diaz-Latoud, C., Arrigo, A. P., & Rubinsztein, D. C. (2002). Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntington. Human Molecular Genetics, 11, 1137–1151.PubMedCrossRefGoogle Scholar
  68. 68.
    Zourlidou, A., Payne Smith, M. D., & Latchman, D. S. (2004). HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. Journal of Neurochemistry, 88, 1439–1448.PubMedCrossRefGoogle Scholar
  69. 69.
    Cuervo, A. M., Wong, E. S. P., & Martinez-Vicente, M. (2010). Protein degradation, aggregation and misfolding. Movement Disorders, 25, S49–S54.PubMedCrossRefGoogle Scholar
  70. 70.
    Rubinsztein, D. C. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 780–786.PubMedCrossRefGoogle Scholar
  71. 71.
    Pandey, U. B., Nie, Z., Batlevi, Y., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447, 859–863.PubMedCrossRefGoogle Scholar
  72. 72.
    Iwata, A., Riley, B. E., Johnston, J. A., & Kopito, R. R. (2005). HDAC6 and microtubules are required for autophagic degradation of aggregated Huntington. Journal of Biological Chemistry, 280, 40282–40292.PubMedCrossRefGoogle Scholar
  73. 73.
    Cookson, M. R. (2005). The biochemistry of Parkinson’s disease. Annual Review of Biochemistry, 74, 29–52.PubMedCrossRefGoogle Scholar
  74. 74.
    Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., & Minoshima, S. (1998). Mutations in the parldn gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608.PubMedCrossRefGoogle Scholar
  75. 75.
    Shimura, H., Hattori, N., Kubo, S., Yoshikuni, K., Mizuno, Y., et al. (2000). Familial Parkinson’s disease gene product, parkin, is an ubiquitin-protein ligase. Nature Genetics, 25, 302–305.PubMedCrossRefGoogle Scholar
  76. 76.
    Sriram, S. R., Li, X., Ko, H. S., Kenny, K. K., Chung Wong, E., et al. (2005). The biochemistry of Parkinson’s disease. Human Molecular Genetics, 14, 2571–2586.PubMedCrossRefGoogle Scholar
  77. 77.
    Hampe, C., Ardila-Osorio, H., Fournier, M., Alexis, B., & Olga, C. (2006). Biochemical analysis of Parkinson’s disease-causing variants of Parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Human Molecular Genetics, 15, 2059–2207.PubMedCrossRefGoogle Scholar
  78. 78.
    Matsuda, N., Kitami, T., Suzuki, T., Mizuno, Y., Hattori, N., & Tanaka, K. (2006). Diverse effects pathogenic mutations of Parkin that catalyze multiple monoub- iquitylation in vitro. Journal of Biological Chemistry, 281, 3204–3209.PubMedCrossRefGoogle Scholar
  79. 79.
    Lim, K. L., Chew, K. C., & Tan, J. M. (2009). Parkin mediates non-classical, proteasomal-independent ubiquitination of synphilin-466. Apoptosis, 14, 455–468.CrossRefGoogle Scholar
  80. 80.
    Lim, K. L., Dawson, V. L., & Dawson, T. M. (2006). Parkin- mediated lysine 63-linked polyubiquitination: A link to Lewy Body formation. Neurobiology of Aging, 27, 524–529.PubMedCrossRefGoogle Scholar
  81. 81.
    Thomas, P. J., Shenbagamurthi, P., Sondek, J., Hullihen, J. M., & Pedersen, P. L. (1992). The cystic fibrosis transmembrane conductance regulator effects of the most common cystic fibrosis-causing mutation on the secondary structure and stability of a synthetic peptide. Journal of Biological Chemistry, 267, 5727–5730.PubMedGoogle Scholar
  82. 82.
    Stewart Loh, N. (2010). The missing zinc: p53 misfolding and cancer. Metallomics, 2, 442–449.PubMedCrossRefGoogle Scholar
  83. 83.
    Kereszturi, E., Szmola, R., Kukor, Z., et al. (2009). Hereditary pancreatitis caused by mutation-induced misfolding of human cationic trypsinogen: A novel disease mechanism. Human Mutation, 30, 575–582.PubMedCrossRefGoogle Scholar
  84. 84.
    Garthwaite, J., Charles, S. L., & Chess-Williams, R. (1988). Endothelium derived relaxing factor release on activation of NMDA receptors suggests role as intracellular messenger in the brain. Nature, 336, 385–388.PubMedCrossRefGoogle Scholar
  85. 85.
    Bredt, D. S., Hwang, P. M., Glatt, C. E., Lowenstein, C., Reed, R. R., & snyder, S. H. (1991). Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature, 351, 714–718.PubMedCrossRefGoogle Scholar
  86. 86.
    Uehara, T., Nakamura, T., Yao, D., Shi, Z. Q., et al. (2006). S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 441, 513–517.PubMedCrossRefGoogle Scholar
  87. 87.
    Yao, D., Gu, Z., Nakamura, T., Shi, Z. Q., Ma, Y., et al. (2004). Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proceedings of the National Academy of Sciences of the United States of America, 101, 10810–10814.PubMedCrossRefGoogle Scholar
  88. 88.
    Nakamura, T., & Lipton, S. A. (2007). Molecular mechanisms of nitrosative stress-mediated protein misfolding in neurodegenerative diseases. Cellular and Molecular Life Sciences, 64, 1609–1620.PubMedCrossRefGoogle Scholar
  89. 89.
    Fukushima, N., Furuta, D., Hidaka, Y., Moriyama, R., & Tsujiuchi, T. (2009). Post translational modifications of tubulin in nervous system. Journal of Neurochemistry, 109, 683–693.PubMedCrossRefGoogle Scholar
  90. 90.
    Gomes, R., Sousasilva, M., Quintas, A., Cordeiro, C., et al. (2005). Argpyrimidine, a methylglyoxal-derived advanced glycation end-product in familial amyloidotic polyneuropathy. Biochemical Journal, 385, 339–345.PubMedCrossRefGoogle Scholar
  91. 91.
    Obrenovich, M. E., & Monnier, V. M. (2004). Glycation stimulates amyloid formation. Science of Aging Knowledge Environment, 2, 3.Google Scholar
  92. 92.
    Cohen, M. P., & Ziyadeh, F. N. (1996). Role of amadori-modified nonenzymatically glycated serum proteins. Journal of the American Society of Nephrology, 7, 183–190.PubMedGoogle Scholar
  93. 93.
    Bunn, H. F., & Higgins, P. J. (1981). Kinetic analysis of the non enzymatic glycosylation of hemoglobin. Journal of Biological Chemistry, 213, 222–224.Google Scholar
  94. 94.
    Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366.PubMedCrossRefGoogle Scholar
  95. 95.
    Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.PubMedCrossRefGoogle Scholar
  96. 96.
    Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 297, 353–356.PubMedCrossRefGoogle Scholar
  97. 97.
    Serpell, L. C., & Smith, J. M. (2000). Direct visualisation of the beta-sheet structure of synthetic Alzheimer’s amyloid. Journal of Molecular Biology, 299, 225–231.PubMedCrossRefGoogle Scholar
  98. 98.
    Esler, W. P., & Wolfe, M. S. (2001). A portrait of Alzheimer secretasesnew features and familiar faces. Science, 293, 1449–1454.PubMedCrossRefGoogle Scholar
  99. 99.
    Citron, M. (2002). Alzheimer’s disease: Treatments in discovery and development. Nature Neuroscience, 5, 1055–1057.PubMedCrossRefGoogle Scholar
  100. 100.
    Michael, P., Vitek, T., Bhattacharya, K. J., et al. (1994). Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 91, 4766–4770.CrossRefGoogle Scholar
  101. 101.
    Pike, C., Walencewicz, A., Glabe, C., & Cotman, C. (1991). In vitro aging of beta-amyloid protein causes peptide aggregation and neurotoxicity. European Journal of Pharmacology, 207, 367–368.PubMedCrossRefGoogle Scholar
  102. 102.
    Pike, C., Burdick, D., Walencewicz, A., Glabe, C., & Cotman, C. (1993). Neurodegeneration induced by beta-amyloid peptides in vitro: The role of peptide assembly state. Journal of Neuroscience, 13, 1676–1687.PubMedGoogle Scholar
  103. 103.
    Forno, L. S. (1996). Neuropathology of Parkinson’s disease. Journal of Neuropathology and Experimental Neurology, 55, 259–272.PubMedCrossRefGoogle Scholar
  104. 104.
    Kruger, R., Kuhn, W., Muller, T., et al. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.PubMedCrossRefGoogle Scholar
  105. 105.
    Polymeropoulos, M. H., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.PubMedCrossRefGoogle Scholar
  106. 106.
    Tetzlaff, J. E., Putcha, P., Outeiro, T. F., et al. (2008). CHIP targets toxic α-synuclein oligomers for degradation. The Journal of Biological Chemistry, 283, 17962–17968.PubMedCrossRefGoogle Scholar
  107. 107.
    Trojanowski, J., & Lee, V. (1998). Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: Implications for the pathogenesis of Parkinson disease and Lewy body dementia. Archives of Neurology, 55, 151–152.PubMedCrossRefGoogle Scholar
  108. 108.
    Ross, R. A., & Poirier, M. A. (2004). Protein aggregation and neurodegenerative diseases. Nature Medicine, 10, S10–S17.PubMedCrossRefGoogle Scholar
  109. 109.
    Kirkwood, S. C., Su, J. L., Conneally, P., & Foroud, T. (2001). Progression of symptoms in the early and middle stages of Huntington disease. Archives of Neurology, 58, 273–278.PubMedCrossRefGoogle Scholar
  110. 110.
    Davies, S. W., Turmaine, M., Cozens, B. A., et al. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell, 90, 537–548.PubMedCrossRefGoogle Scholar
  111. 111.
    Scherzinger, E., Sittler, A., Schweiger, K., Heiser, V., et al. (1999). Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: Implications for Huntington’s disease pathology. Proceedings of the National Academy of Sciences of the United States of America, 96, 4604–4609.PubMedCrossRefGoogle Scholar
  112. 112.
    Hoffner, G., & Djian, P. (2002). Protein aggregation in Huntington’s disease. Biochimie, 84, 273–278.PubMedCrossRefGoogle Scholar
  113. 113.
    Huang, C. C., Faber, P. W., Persichetti, F., et al. (1998). Amyloid formation by mutant huntingtin: Threshold, progressivity and recruitment of normal polyglutamine proteins. Somatic Cell and Molecular Genetics, 24, 217–233.PubMedCrossRefGoogle Scholar
  114. 114.
    Kazantsev, A., Preisinger, E., Dranovsky, A., Goldgaber, D., & Housman, D. (1999). Insoluble detergent-resistant aggregates form between pathological and nonpathological lengths of polyglutamine in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 96, 11404–11409.PubMedCrossRefGoogle Scholar
  115. 115.
    Véronique, V. B., Hussein, D., Patrick, A. D., Edor, K., Rouleau Guy, A. R., & Paul, V. N. (2010). TDP-43, protein aggregation, and amyotrophic lateral sclerosis. US Neurology, 5, 35–38.Google Scholar
  116. 116.
    Hudson, A. J. (1981). Amyotrophic lateral sclerosis and its association with dementia, Parkinsonism and other neurological disorders: A review. Brain, 104, 217–247.PubMedCrossRefGoogle Scholar
  117. 117.
    Strong, M. J., Volkening, K., Hammond, R., et al. (2007). TDP43 is a human low molecular weight neurofilament (hNFL) mRNAbinding protein. Molecular and Cellular Neuroscience, 35, 320–327.PubMedCrossRefGoogle Scholar
  118. 118.
    Neumann, M., Sampathu, D. M., Kwong, L. K., et al. (2006). Ubiquitinated TDP-43 in fronto temporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314, 130–133.PubMedCrossRefGoogle Scholar
  119. 119.
    Arai, T., Hasegawa, M., Akiyama, H., et al. (2006). TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochemical and Biophysical Research Communications, 351, 602–611.PubMedCrossRefGoogle Scholar
  120. 120.
    Mackenzie, I. R., Bigio, E. H., Ince, P. G., et al. (2007). Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Annals of Neurology, 61, 427–434.PubMedCrossRefGoogle Scholar
  121. 121.
    Crabbe, M. J. (1998). Cataract as a conformational disease: The Maillard reaction, alpha-crystallin and chemotherapy. Cellular and Molecular Biology, 44, 1047–1050.PubMedGoogle Scholar
  122. 122.
    Chen, Y. C., Reid, G. E., Simpson, R. J., & Truscott, R. J. (1997). Molecular evidence for the involvement of alpha crystallin in the coloration/crosslinking of crystallins in age related nuclear cataract. Experimental Eye Research, 65, 835–840.PubMedCrossRefGoogle Scholar
  123. 123.
    Ecroyd, H., & Carver, J. A. (2009). Crystallin proteins and amyloid fibrils. Cellular and Molecular Life Sciences, 66, 62–81.PubMedCrossRefGoogle Scholar
  124. 124.
    Meehan, S., Berry, Y., Luisi, B., Dobson, C. M., Carver, J. A., & MacPhee, C. E. (2004). Amyloid fibril formation by lens crystallin proteins and its implications for cataract formation. Journal of Biological Chemistry, 279, 3413–3419.PubMedCrossRefGoogle Scholar
  125. 125.
    Zhang, J., Yan, H., Harding, J. J., Liu, Z. X., Wang, X., & Ruan, Y. S. (2008). Identification of the primary targets of carbamylation in bovine lens proteins by mass spectrometry. Current Eye Research, 33, 963–976.PubMedCrossRefGoogle Scholar
  126. 126.
    Graw, J. (1999). Cataract mutations and lens development. Progress in Retinal and Eye Research, 18, 235–267.PubMedCrossRefGoogle Scholar
  127. 127.
    Graw, J. (2009). Genetics of crystallins: Cataract and beyond. Experimental Eye Research, 88, 173–189.PubMedCrossRefGoogle Scholar
  128. 128.
    Jung, J., Byeon, I. J., Wang, Y., King, J., & Gronenborn, A. M. (2009). The structure of the cataract-causing P23T mutant of human gamma d-crystallin exhibits distinctive local conformational and dynamic changes. Biochemistry, 48, 2597–2609.PubMedCrossRefGoogle Scholar
  129. 129.
    Sandilands, A., Hutcheson, A. M., Long, H. A., et al. (2002). Altered aggregation properties of mutant g-crystallins cause inherited cataract. EMBO Journal, 21, 6005–6014.PubMedCrossRefGoogle Scholar
  130. 130.
    Qu, B. H., Strickland, E., & Thomas, P. J. (1997). Cystic fibrosis: A disease of altered protein folding. Journal of Bioenergetics and Biomembranes, 29, 483–490.PubMedCrossRefGoogle Scholar
  131. 131.
    Smith, J. J., Travis, S. M., Greenberg, E. P., & Welsh, M. J. (1996). Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell, 85, 229–236.PubMedCrossRefGoogle Scholar
  132. 132.
    Pier, G. B., Grout, M., Zaidi, T. S., Olsen, J. C., Johnson, L. G., Yankaskas, J. R., et al. (1996). Role of mutant CFTR in hyper susceptibility of cystic fibrosis patients to lung infections. Science, 271, 64–67.PubMedCrossRefGoogle Scholar
  133. 133.
    Quinton, P. M. (1990). Cystic fibrosis: A disease in electrolyte transport. FASEB Journal, 4, 2709–2717.PubMedGoogle Scholar
  134. 134.
    Thomas, P. J., et al. (1992). The cystic fibrosis transmembrane conductance regulator. Journal of Biological Chemistry, 267, 5727–5730.PubMedGoogle Scholar
  135. 135.
    Taniguchi, S., Suzuki, N., Masuda, M., Hisanaga, S., Iwatsubo, T., Goedert, M., et al. (2005). Inhibition of heparin-induced tau filament formation by phenotiazines, polyphenols, and porphyrins. Journal of Biological Chemistry, 280, 7614–7623.PubMedCrossRefGoogle Scholar
  136. 136.
    De Felice, F., Houzel, J. C., Garcia-Abreu, J., Louzada, P., Afonso, R. C., & Meirelles, M. N. (2001). Inhibition of Alzheimer’s disease-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: Implications for Alzheimer’s therapy. FASEB Journal, 15, 1297–1299.PubMedGoogle Scholar
  137. 137.
    Raghu, P., Reddy, G. B., & Sivakumar, B. (2002). Inhibition of transthyretin amyloid fibril formation by 2,4-dinitrophenol through tetramer stabilization. Archives of Biochemistry and Biophysics, 400, 43–47.PubMedCrossRefGoogle Scholar
  138. 138.
    Polverino de Laureto, P., Taddei, N., Frare, E., Capanni, C., Costantini, S., Zurdo, J., Chiti, F., Dobson, C. M., & Fontana, A. (2003). Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis. Journal of Molecular Biology, 334, 129–141.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Biochemistry, Faculty of Life SciencesAligarh Muslim UniversityAligarhIndia

Personalised recommendations