An Emerging Model for BAP1’s Role in Regulating Cell Cycle Progression

  • Ziad M. Eletr
  • Keith D. WilkinsonEmail author
Review Paper


BRCA1-associated protein-1 (BAP1) is a 729 residue, nuclear-localized deubiquitinating enzyme (DUB) that displays tumor suppressor properties in the BAP1-null NCI-H226 lung carcinoma cell line. Studies that have altered BAP1 cellular levels or enzymatic activity have reported defects in cell cycle progression, notably at the G1/S transition. Recently BAP1 was shown to associate with the transcriptional regulator host cell factor 1 (HCF-1). The BAP1/HCF-1 interaction is mediated by the HCF-1 Kelch domain and an HCF-1 binding motif (HBM) within BAP1. HCF-1 is modified with ubiquitin in vivo, and ectopic studies suggest BAP1 deubiquitinates HCF-1. HCF-1 is a chromatin-associated protein thought to both activate and repress transcription by linking appropriate histone-modifying enzymes to a subset of transcription factors. One known role of HCF-1 is to promote cell cycle progression at the G1/S boundary by recruiting H3K4 histone methyltransferases to the E2F1 transcription factor so that genes required for S-phase can be transcribed. Given the robust associations between BAP1/HCF-1 and HCF-1/E2Fs, it is reasonable to speculate that BAP1 influences cell proliferation at G1/S by co-regulating transcription from HCF-1/E2F-governed promoters


BAP1 Ubiquitin C-terminal hydrolase Protease Deubiquitylase 


  1. 1.
    Ventii, K. H., Devi, N. S., Friedrich, K. L., Chernova, T. A., Tighiouart, M., Van Meir, E. G., et al. (2008). BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. Cancer Research, 68, 6953–6962.PubMedCrossRefGoogle Scholar
  2. 2.
    Jensen, D. E., Proctor, M., Marquis, S. T., Gardner, H. P., Ha, S. I., Chodosh, L. A., et al. (1998). BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression. Oncogene, 16, 1097–1112.PubMedCrossRefGoogle Scholar
  3. 3.
    Nishikawa, H., Wu, W., Koike, A., Kojima, R., Gomi, H., Fukuda, M., et al. (2009). BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Research, 69, 111–119.PubMedCrossRefGoogle Scholar
  4. 4.
    Machida, Y. J., Machida, Y., Vashisht, A. A., Wohlschlegel, J. A., & Dutta, A. (2009). The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. Journal of Biological Chemistry, 284, 34179–34188.PubMedCrossRefGoogle Scholar
  5. 5.
    Sowa, M. E., Bennett, E. J., Gygi, S. P., & Harper, J. W. (2009). Defining the human deubiquitinating enzyme interaction landscape. Cell, 138, 389–403.PubMedCrossRefGoogle Scholar
  6. 6.
    Misaghi, S., Ottosen, S., Izrael-Tomasevic, A., Arnott, D., Lamkanfi, M., Lee, J., et al. (2009). Association of C-terminal ubiquitin hydrolase BRCA1-associated protein 1 with cell cycle regulator host cell factor 1. Molecular and Cellular Biology, 29, 2181–2192.PubMedCrossRefGoogle Scholar
  7. 7.
    Tyagi, S., Chabes, A. L., Wysocka, J., & Herr, W. (2007). E2F activation of S phase promoters via association with HCF-1 and the MLL family of histone H3K4 methyltransferases. Mol Cell, 27, 107–119.PubMedCrossRefGoogle Scholar
  8. 8.
    Tyagi, S., & Herr, W. (2009). E2F1 mediates DNA damage and apoptosis through HCF-1 and the MLL family of histone methyltransferases. EMBO Journal, 28, 3185–3195.PubMedCrossRefGoogle Scholar
  9. 9.
    Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.PubMedCrossRefGoogle Scholar
  10. 10.
    Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRefGoogle Scholar
  11. 11.
    Hicke, L. (2001). Protein regulation by monoubiquitin. Nature Reviews Molecular Cell Biology, 2, 195–201.PubMedCrossRefGoogle Scholar
  12. 12.
    Schwartz, A. L., & Ciechanover, A. (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual Review of Medicine, 50, 57–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Komander, D. (2009). The emerging complexity of protein ubiquitination. Biochemical Society Transactions, 37, 937–953.PubMedCrossRefGoogle Scholar
  14. 14.
    Kim, H. T., Kim, K. P., Lledias, F., Kisselev, A. F., Scaglione, K. M., Skowyra, D., et al. (2007). Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. Journal of Biological Chemistry, 282, 17375–17386.PubMedCrossRefGoogle Scholar
  15. 15.
    Bernassola, F., Karin, M., Ciechanover, A., & Melino, G. (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell, 14, 10–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.PubMedCrossRefGoogle Scholar
  17. 17.
    Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K., et al. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell, 123, 773–786.PubMedCrossRefGoogle Scholar
  18. 18.
    Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695, 189–207.PubMedCrossRefGoogle Scholar
  19. 19.
    Komander, D., Clague, M. J., & Urbe, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nature Reviews Molecular Cell Biology, 10, 550–563.PubMedCrossRefGoogle Scholar
  20. 20.
    Larsen, C. N., Krantz, B. A., & Wilkinson, K. D. (1998). Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry, 37, 3358–3368.PubMedCrossRefGoogle Scholar
  21. 21.
    Johnston, S. C., Riddle, S. M., Cohen, R. E., & Hill, C. P. (1999). Structural basis for the specificity of ubiquitin C-terminal hydrolases. EMBO Journal, 18, 3877–3887.PubMedCrossRefGoogle Scholar
  22. 22.
    Komander, D., Reyes-Turcu, F., Licchesi, J. D., Odenwaelder, P., Wilkinson, K. D., & Barford, D. (2009). Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Report, 10, 466–473.CrossRefGoogle Scholar
  23. 23.
    Yao, T., Song, L., Jin, J., Cai, Y., Takahashi, H., Swanson, S. K., et al. (2008). Distinct modes of regulation of the Uch37 deubiquitinating enzyme in the proteasome and in the Ino80 chromatin-remodeling complex. Molecular Cell, 31, 909–917.PubMedCrossRefGoogle Scholar
  24. 24.
    Yao, T., Song, L., Xu, W., DeMartino, G. N., Florens, L., Swanson, S. K., et al. (2006). Proteasome recruitment and activation of the Uch37 deubiquitinating enzyme by Adrm1. Nature Cell Biology, 8, 994–1002.PubMedCrossRefGoogle Scholar
  25. 25.
    Qiu, X. B., Ouyang, S. Y., Li, C. J., Miao, S., Wang, L., & Goldberg, A. L. (2006). hRpn13/ADRM1/GP110 is a novel proteasome subunit that binds the deubiquitinating enzyme, UCH37. EMBO Journal, 25, 5742–5753.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamazaki, J., Iemura, S., Natsume, T., Yashiroda, H., Tanaka, K., & Murata, S. (2006). A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO Journal, 25, 4524–4536.PubMedCrossRefGoogle Scholar
  27. 27.
    Lam, Y. A., Xu, W., DeMartino, G. N., & Cohen, R. E. (1997). Editing of ubiquitin conjugates by an isopeptidase in the 26S proteasome. Nature, 385, 737–740.PubMedCrossRefGoogle Scholar
  28. 28.
    Nishikawa, H., Ooka, S., Sato, K., Arima, K., Okamoto, J., Klevit, R. E., et al. (2004). Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. Journal of Biological Chemistry, 279, 3916–3924.PubMedCrossRefGoogle Scholar
  29. 29.
    Morris, J. R., & Solomon, E. (2004). BRCA1:BARD1 induces the formation of conjugated ubiquitin structures, dependent on K6 of ubiquitin, in cells during DNA replication and repair. Human Molecular Genetics, 13, 807–817.PubMedCrossRefGoogle Scholar
  30. 30.
    Wu-Baer, F., Lagrazon, K., Yuan, W., & Baer, R. (2003). The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. Journal of Biological Chemistry, 278, 34743–34746.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, A., Kleiman, F. E., Manley, J. L., Ouchi, T., & Pan, Z. Q. (2002). Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. Journal of Biological Chemistry, 277, 22085–22092.PubMedCrossRefGoogle Scholar
  32. 32.
    Mallery, D. L., Vandenberg, C. J., & Hiom, K. (2002). Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO Journal, 21, 6755–6762.PubMedCrossRefGoogle Scholar
  33. 33.
    Starita, L. M., Horwitz, A. A., Keogh, M. C., Ishioka, C., Parvin, J. D., & Chiba, N. (2005). BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II. Journal of Biological Chemistry, 280, 24498–24505.PubMedCrossRefGoogle Scholar
  34. 34.
    Garcia-Higuera, I., Taniguchi, T., Ganesan, S., Meyn, M. S., Timmers, C., Hejna, J., et al. (2001). Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Molecular Cell, 7, 249–262.PubMedCrossRefGoogle Scholar
  35. 35.
    Sato, K., Hayami, R., Wu, W., Nishikawa, T., Nishikawa, H., Okuda, Y., et al. (2004). Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. Journal of Biological Chemistry, 279, 30919–30922.PubMedCrossRefGoogle Scholar
  36. 36.
    Eakin, C. M., Maccoss, M. J., Finney, G. L., & Klevit, R. E. (2007). Estrogen receptor alpha is a putative substrate for the BRCA1 ubiquitin ligase. Proceedings of National Academic Science of United States of America, 104, 5794–5799.CrossRefGoogle Scholar
  37. 37.
    Scheuermann, J. C., de Ayala Alonso, A. G., Oktaba, K., Ly-Hartig, N., McGinty, R. K., Fraterman, S., et al. (2010). Histone H2A deubiquitinase activity of the polycomb repressive complex PR-DUB. Nature, 465, 243–247.PubMedCrossRefGoogle Scholar
  38. 38.
    Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes and Development, 14, 142–146.PubMedGoogle Scholar
  39. 39.
    Shi, X., Bowlin, K. M., & Garry, D. J. (2010). Fhl2 interacts with foxk1 and corepresses foxo4 activity in myogenic progenitors. Stem Cells, 28, 462–469.PubMedGoogle Scholar
  40. 40.
    Meeson, A. P., Shi, X., Alexander, M. S., Williams, R. S., Allen, R. E., Jiang, N., et al. (2007). Sox15 and Fhl3 transcriptionally coactivate Foxk1 and regulate myogenic progenitor cells. EMBO Journal, 26, 1902–1912.PubMedCrossRefGoogle Scholar
  41. 41.
    Hawke, T. J., Jiang, N., & Garry, D. J. (2003). Absence of p21CIP rescues myogenic progenitor cell proliferative and regenerative capacity in Foxk1 null mice. Journal of Biological Chemistry, 278, 4015–4020.PubMedCrossRefGoogle Scholar
  42. 42.
    Jensen, D. E., & Rauscher, F. J., 3rd. (1999). Defining biochemical functions for the BRCA1 tumor suppressor protein: analysis of the BRCA1 binding protein BAP1. Cancer Letters, 143(Suppl 1), S13–S17.PubMedCrossRefGoogle Scholar
  43. 43.
    Angeloni, D. (2007). Molecular analysis of deletions in human chromosome 3p21 and the role of resident cancer genes in disease. Briefings in functional genomics and proteomics, 6, 19–39.PubMedCrossRefGoogle Scholar
  44. 44.
    Wysocka, J., Reilly, P. T., & Herr, W. (2001). Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Molecular and Cellular Biology, 21, 3820–3829.PubMedCrossRefGoogle Scholar
  45. 45.
    Wilson, A. C., LaMarco, K., Peterson, M. G., & Herr, W. (1993). The VP16 accessory protein HCF is a family of polypeptides processed from a large precursor protein. Cell, 74, 115–125.PubMedCrossRefGoogle Scholar
  46. 46.
    Wilson, A. C., Peterson, M. G., & Herr, W. (1995). The HCF repeat is an unusual proteolytic cleavage signal. Genes and Development, 9, 2445–2458.PubMedCrossRefGoogle Scholar
  47. 47.
    Goto, H., Motomura, S., Wilson, A. C., Freiman, R. N., Nakabeppu, Y., Fukushima, K., et al. (1997). A single-point mutation in HCF causes temperature-sensitive cell-cycle arrest and disrupts VP16 function. Genes and Development, 11, 726–737.PubMedCrossRefGoogle Scholar
  48. 48.
    Reilly, P. T., Wysocka, J., & Herr, W. (2002). Inactivation of the retinoblastoma protein family can bypass the HCF-1 defect in tsBN67 cell proliferation and cytokinesis. Molecular and Cellular Biology, 22, 6767–6778.PubMedCrossRefGoogle Scholar
  49. 49.
    Julien, E., & Herr, W. (2003). Proteolytic processing is necessary to separate and ensure proper cell growth and cytokinesis functions of HCF-1. EMBO Journal, 22, 2360–2369.PubMedCrossRefGoogle Scholar
  50. 50.
    Freiman, R. N., & Herr, W. (1997). Viral mimicry: common mode of association with HCF by VP16 and the cellular protein LZIP. Genes and Development, 11, 3122–3127.PubMedCrossRefGoogle Scholar
  51. 51.
    Lu, R., Yang, P., Padmakumar, S., & Misra, V. (1998). The herpesvirus transactivator VP16 mimics a human basic domain leucine zipper protein, luman, in its interaction with HCF. Journal of Virology, 72, 6291–6297.PubMedGoogle Scholar
  52. 52.
    Luciano, R. L., & Wilson, A. C. (2003). HCF-1 functions as a coactivator for the zinc finger protein Krox20. Journal of Biological Chemistry, 278, 51116–51124.PubMedCrossRefGoogle Scholar
  53. 53.
    Yokoyama, A., Wang, Z., Wysocka, J., Sanyal, M., Aufiero, D. J., Kitabayashi, I., et al. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Molecular and Cellular Biology, 24, 5639–5649.PubMedCrossRefGoogle Scholar
  54. 54.
    Wysocka, J., Myers, M. P., Laherty, C. D., Eisenman, R. N., & Herr, W. (2003). Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3–K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes and Development, 17, 896–911.PubMedCrossRefGoogle Scholar
  55. 55.
    Vogel, J. L., & Kristie, T. M. (2000). The novel coactivator C1 (HCF) coordinates multiprotein enhancer formation and mediates transcription activation by GABP. EMBO Journal, 19, 683–690.PubMedCrossRefGoogle Scholar
  56. 56.
    Gunther, M., Laithier, M., & Brison, O. (2000). A set of proteins interacting with transcription factor Sp1 identified in a two-hybrid screening. Molecular and Cellular Biochemistry, 210, 131–142.PubMedCrossRefGoogle Scholar
  57. 57.
    Narayanan, A., Ruyechan, W. T., & Kristie, T. M. (2007). The coactivator host cell factor-1 mediates Set1 and MLL1 H3K4 trimethylation at herpesvirus immediate early promoters for initiation of infection. Proceedings of National Academic Science of United States of America, 104, 10835–10840.CrossRefGoogle Scholar
  58. 58.
    Scarr, R. B., & Sharp, P. A. (2002). PDCD2 is a negative regulator of HCF-1 (C1). Oncogene, 21, 5245–5254.PubMedCrossRefGoogle Scholar
  59. 59.
    Ajuh, P. M., Browne, G. J., Hawkes, N. A., Cohen, P. T., Roberts, S. G., & Lamond, A. I. (2000). Association of a protein phosphatase 1 activity with the human factor C1 (HCF) complex. Nucleic Acids Research, 28, 678–686.PubMedCrossRefGoogle Scholar
  60. 60.
    Julien, E., & Herr, W. (2004). A switch in mitotic histone H4 lysine 20 methylation status is linked to M phase defects upon loss of HCF-1. Molecular Cell, 14, 713–725.PubMedCrossRefGoogle Scholar
  61. 61.
    DeGregori, J., & Johnson, D. G. (2006). Distinct and Overlapping Roles for E2F Family Members in Transcription, Proliferation and Apoptosis. Current Molecular Medicine, 6, 739–748.PubMedGoogle Scholar
  62. 62.
    Blais, A., & Dynlacht, B. D. (2004). Hitting their targets: an emerging picture of E2F and cell cycle control. Current Opinion in Genetics and Development, 14, 527–532.PubMedCrossRefGoogle Scholar
  63. 63.
    Cam, H., & Dynlacht, B. D. (2003). Emerging roles for E2F: beyond the G1/S transition and DNA replication. Cancer Cell, 3, 311–316.PubMedCrossRefGoogle Scholar
  64. 64.
    Trimarchi, J. M., & Lees, J. A. (2002). Sibling rivalry in the E2F family. Nature Reviews Molecular Cell Biology, 3, 11–20.PubMedCrossRefGoogle Scholar
  65. 65.
    Marti, A., Wirbelauer, C., Scheffner, M., & Krek, W. (1999). Interaction between ubiquitin-protein ligase SCFSKP2 and E2F–1 underlies the regulation of E2F-1 degradation. Nature Cell Biology, 1, 14–19.PubMedCrossRefGoogle Scholar
  66. 66.
    Shibutani, S. T., de la Cruz, A. F., Tran, V., Turbyfill, W. J., I. I. I., Reis, T., Edgar, B. A., et al. (2008). Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Developmental Cell, 15, 890–900.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of BiochemistryEmory UniversityAtlantaUSA

Personalised recommendations