Cell Biochemistry and Biophysics

, Volume 60, Issue 1–2, pp 113–118 | Cite as

Targeting the Ubiquitin E3 Ligase MuRF1 to Inhibit Muscle Atrophy

  • Michael J. Eddins
  • Jeffrey G. Marblestone
  • K. G. Suresh Kumar
  • Craig A. Leach
  • David E. Sterner
  • Michael R. Mattern
  • Benjamin Nicholson
Original Paper


Progressive muscle wasting, also known as myopathy or muscle atrophy is a debilitating and life-threatening disorder. Myopathy is a pathological condition of many diseases including cancer, diabetes, COPD, and AIDS and is a natural consequence of inactivity and aging (sarcopenia). Muscle atrophy occurs when there is a net loss of muscle mass resulting in a change in the balance between protein synthesis and protein degradation. The ubiquitin pathway and specific ubiquitin pathway enzymes have been directly implicated in the progression of atrophy. The ubiquitin E3 ligase Muscle-specific RING Finger E3 ligase (MuRF1) is upregulated and increases protein degradation and muscle wasting in numerous muscle atrophy models. The inhibition of MuRF1 could be a novel mechanism to prevent or reverse muscle wasting associated with various pathologies. We screened a small molecule library for inhibitors to MuRF1 activity and identified P013222, an inhibitor of MuRF1 autoubiquitylation. Further, P013222 was shown to inhibit MuRF1-dependent substrate ubiquitylation, and was active in inhibiting MuRF1 in a cellular atrophy model. Thus MuRF1 can be targeted in a specific manner and produce positive results in cellular atrophy models.


Ubiquitin ligase Muscle wasting Myosin degradation Proteasome 


  1. 1.
    Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry, 70, 503–533.PubMedCrossRefGoogle Scholar
  2. 2.
    Pickart, C. M., & Eddins, M. J. (2004). Ubiquitin: structures, functions, mechanisms. Biochimica et Biophysica Acta, 1695(1–3), 55–72.PubMedGoogle Scholar
  3. 3.
    Sun, L., & Chen, Z. J. (2004). The novel functions of ubiquitination in signaling. Current Opinion in Cell Biology, 16(2), 119–126.PubMedCrossRefGoogle Scholar
  4. 4.
    Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.PubMedCrossRefGoogle Scholar
  5. 5.
    Pickart, C. M., & Fushman, D. (2004). Polyubiquitin chains: polymeric protein signals. Current Opinion in Chemical Biology, 8(6), 610–616.PubMedCrossRefGoogle Scholar
  6. 6.
    Eddins, M. J., Varadan, R., Fushman, D., Pickart, C. M., & Wolberger, C. (2007). Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. Journal of Molecular Biology, 367(1), 204–211.PubMedCrossRefGoogle Scholar
  7. 7.
    Amerik, A. Y., & Hochstrasser, M. (2004). Mechanism and function of deubiquitinating enzymes. Biochimica et Biophysica Acta, 1695(1–3), 189–207.PubMedGoogle Scholar
  8. 8.
    Chung, C. H., & Baek, S. H. (1999). Deubiquitinating enzymes: their diversity and emerging roles. Biochemical and Biophysical Research Communications, 266(3), 633–640.PubMedCrossRefGoogle Scholar
  9. 9.
    D’Andrea, A., & Pellman, D. (1998). Deubiquitinating enzymes: a new class of biological regulators. Critical Reviews in Biochemistry and Molecular Biology, 33(5), 337–352.PubMedCrossRefGoogle Scholar
  10. 10.
    Wilkinson, K. D. (2000). Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Seminars in Cell and Developmental Biology, 11(3), 141–148.PubMedCrossRefGoogle Scholar
  11. 11.
    Wilkinson, K. D., & Hochstrasser, M. (1998). The deubiquitinating enzymes. In J. M. Peters, J. R. Harris, & D. Finley (Eds.), Ubiquitin and the biology of the cell (pp. 99–125). New York: Plenum Press.Google Scholar
  12. 12.
    Deshaies, R. J., & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry, 78, 399–434.PubMedCrossRefGoogle Scholar
  13. 13.
    Ardley, H. C. (2009). Ring finger ubiquitin protein ligases and their implication to the pathogenesis of human diseases. Current Pharmaceutical Design, 15(31), 3697–3715.PubMedCrossRefGoogle Scholar
  14. 14.
    Chasapis, C. T., & Spyroulias, G. A. (2009). RING finger E(3) ubiquitin ligases: structure and drug discovery. Current Pharmaceutical Design, 15(31), 3716–3731.PubMedCrossRefGoogle Scholar
  15. 15.
    Ciechanover, A. (2003). The ubiquitin proteolytic system and pathogenesis of human diseases: a novel platform for mechanism-based drug targeting. Biochemical Society Transactions, 31(2), 474–481.PubMedCrossRefGoogle Scholar
  16. 16.
    Lakshmanan, M., Bughani, U., Duraisamy, S., Diwan, M., Dastidar, S., & Ray, A. (2008). Molecular targeting of E3 ligases–a therapeutic approach for cancer. Expert Opinion on Therapeutic Targets, 12(7), 855–870.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernassola, F., Karin, M., Ciechanover, A., & Melino, G. (2008). The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell, 14(1), 10–21.PubMedCrossRefGoogle Scholar
  18. 18.
    Scheffner, M., & Staub, O. (2007). HECT E3s and human disease. BMC Biochemistry, 8(Suppl 1), S6.PubMedCrossRefGoogle Scholar
  19. 19.
    Cardozo, T., & Pagano, M. (2004). The SCF ubiquitin ligase: insights into a molecular machine. Nature Reviews Molecular Cell Biology, 5(9), 739–751.PubMedCrossRefGoogle Scholar
  20. 20.
    Petroski, M. D., & Deshaies, R. J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology, 6(1), 9–20.PubMedCrossRefGoogle Scholar
  21. 21.
    Attaix, D., Aurousseau, E., Combaret, L., Kee, A., Larbaud, D., Ralliere, C., et al. (1998). Ubiquitin–proteasome-dependent proteolysis in skeletal muscle. Reproduction, Nutrition, Development, 38(2), 153–165.PubMedCrossRefGoogle Scholar
  22. 22.
    Attaix, D., Combaret, L., Tilignac, T., & Taillandier, D. (1999). Adaptation of the ubiquitin–proteasome proteolytic pathway in cancer cachexia. Molecular Biology Reports, 26(1–2), 77–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Lecker, S. H., Solomon, V., Mitch, W. E., & Goldberg, A. L. (1999). Muscle protein breakdown and the critical role of the ubiquitin–proteasome pathway in normal and disease states. Journal of Nutrition, 129(1S Suppl), 227S–237S.PubMedGoogle Scholar
  24. 24.
    Solomon, V., & Goldberg, A. L. (1996). Importance of the ATP–ubiquitin–proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. The Journal of Biological Chemistry, 271(43), 26690–26697.PubMedCrossRefGoogle Scholar
  25. 25.
    Jagoe, R. T., Lecker, S. H., Gomes, M., & Goldberg, A. L. (2002). Patterns of gene expression in atrophying skeletal muscles: response to food deprivation. FASEB Journal, 16(13), 1697–1712.PubMedCrossRefGoogle Scholar
  26. 26.
    Lecker, S. H., Jagoe, R. T., Gilbert, A., Gomes, M., Baracos, V., Bailey, J., et al. (2004). Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB Journal, 18(1), 39–51.PubMedCrossRefGoogle Scholar
  27. 27.
    Gomes, M. D., Lecker, S. H., Jagoe, R. T., Navon, A., & Goldberg, A. L. (2001). Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proceedings of the National Academy of Sciences of the United States of America, 98(25), 14440–14445.PubMedCrossRefGoogle Scholar
  28. 28.
    Combaret, L., Adegoke, O. A., Bedard, N., Baracos, V., Attaix, D., & Wing, S. S. (2005). USP19 is a ubiquitin-specific protease regulated in rat skeletal muscle during catabolic states. American Journal of Physiology Endocrinology and Metabolism, 288(4), E693–E700.PubMedCrossRefGoogle Scholar
  29. 29.
    Bodine, S. C., Latres, E., Baumhueter, S., Lai, V. K., Nunez, L., Clarke, B. A., et al. (2001). Identification of ubiquitin ligases required for skeletal muscle atrophy. Science, 294(5547), 1704–1708.PubMedCrossRefGoogle Scholar
  30. 30.
    Cohen, S., Brault, J. J., Gygi, S. P., Glass, D. J., Valenzuela, D. M., Gartner, C., et al. (2009). During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. Journal of Cell Biology, 185(6), 1083–1095.PubMedCrossRefGoogle Scholar
  31. 31.
    Clarke, B. A., Drujan, D., Willis, M. S., Murphy, L. O., Corpina, R. A., Burova, E., et al. (2007). The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metabolism, 6(5), 376–385.PubMedCrossRefGoogle Scholar
  32. 32.
    Koyama, S., Hata, S., Witt, C. C., Ono, Y., Lerche, S., Ojima, K., et al. (2008). Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. Journal of Molecular Biology, 376(5), 1224–1236.PubMedCrossRefGoogle Scholar
  33. 33.
    Mearini, G., Gedicke, C., Schlossarek, S., Witt, C. C., Kramer, E., Cao, P., et al. (2010). Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovascular Research, 85(2), 357–366.PubMedCrossRefGoogle Scholar
  34. 34.
    Witt, S. H., Granzier, H., Witt, C. C., & Labeit, S. (2005). MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: towards understanding MURF-dependent muscle ubiquitination. Journal of Molecular Biology, 350(4), 713–722.PubMedCrossRefGoogle Scholar
  35. 35.
    Glass, D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. International Journal of Biochemistry and Cell Biology, 37(10), 1974–1984.PubMedCrossRefGoogle Scholar
  36. 36.
    Labeit, S., Kohl, C. H., Witt, C. C., Labeit, D., Jung, J., & Granzier, H. (2010). Modulation of muscle atrophy, fatigue and MLC phosphorylation by MuRF1 as indicated by hindlimb suspension studies on MuRF1-KO mice. Journal of Biomedicine and Biotechnology, 2010, 693741, 1–9.Google Scholar
  37. 37.
    Kudryashova, E., Kudryashov, D., Kramerova, I., & Spencer, M. J. (2005). Trim32 is a ubiquitin ligase mutated in limb girdle muscular dystrophy type 2H that binds to skeletal muscle myosin and ubiquitinates actin. Journal of Molecular Biology, 354(2), 413–424.PubMedCrossRefGoogle Scholar
  38. 38.
    Kudryashova, E., Wu, J., Havton, L. A., & Spencer, M. J. (2009). Deficiency of the E3 ubiquitin ligase TRIM32 in mice leads to a myopathy with a neurogenic component. Human Molecular Genetics, 18(7), 1353–1367.PubMedCrossRefGoogle Scholar
  39. 39.
    Lagirand-Cantaloube, J., Offner, N., Csibi, A., Leibovitch, M. P., Batonnet-Pichon, S., Tintignac, L. A., et al. (2008). The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO Journal, 27(8), 1266–1276.PubMedCrossRefGoogle Scholar
  40. 40.
    Lagirand-Cantaloube, J., Cornille, K., Csibi, A., Batonnet-Pichon, S., Leibovitch, M. P., & Leibovitch, S. A. (2009). Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One, 4(3), e4973, 1–11.Google Scholar
  41. 41.
    Witt, C. C., Witt, S. H., Lerche, S., Labeit, D., Back, W., & Labeit, S. (2008). Cooperative control of striated muscle mass and metabolism by MuRF1 and MuRF2. EMBO Journal, 27(2), 350–360.PubMedCrossRefGoogle Scholar
  42. 42.
    Fielitz, J., Kim, M. S., Shelton, J. M., Latif, S., Spencer, J. A., Glass, D. J., et al. (2007). Myosin accumulation and striated muscle myopathy result from the loss of muscle RING finger 1 and 3. Journal of Clinical Investigation, 117(9), 2486–2495.PubMedCrossRefGoogle Scholar
  43. 43.
    Fielitz, J., van Rooij, E., Spencer, J. A., Shelton, J. M., Latif, S., van der Nagel, R., et al. (2007). Loss of muscle-specific RING-finger 3 predisposes the heart to cardiac rupture after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 104(11), 4377–4382.PubMedCrossRefGoogle Scholar
  44. 44.
    Tisdale, M. J. (2000). Biomedicine. Protein loss in cancer cachexia. Science, 289(5488), 2293–2294.PubMedCrossRefGoogle Scholar
  45. 45.
    Ding, X., Price, S. R., Bailey, J. L., & Mitch, W. E. (1997). Cellular mechanisms controlling protein degradation in catabolic states. Mineral and Electrolyte Metabolism, 23(3–6), 194–197.PubMedGoogle Scholar
  46. 46.
    McElhinny, A. S., Kakinuma, K., Sorimachi, H., Labeit, S., & Gregorio, C. C. (2002). Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. Journal of Cell Biology, 157(1), 125–136.PubMedCrossRefGoogle Scholar
  47. 47.
    Lee, S. W., Dai, G., Hu, Z., Wang, X., Du, J., & Mitch, W. E. (2004). Regulation of muscle protein degradation: coordinated control of apoptotic and ubiquitin–proteasome systems by phosphatidylinositol 3 kinase. Journal of the American Society of Nephrology, 15(6), 1537–1545.PubMedCrossRefGoogle Scholar
  48. 48.
    Inui, A. (2002). Cancer anorexia-cachexia syndrome: current issues in research and management. CA Cancer Journal for Clinicians, 52(2), 72–91.CrossRefGoogle Scholar
  49. 49.
    Gordon, J. N., Green, S. R., & Goggin, P. M. (2005). Cancer cachexia. QJM, 98(11), 779–788.PubMedCrossRefGoogle Scholar
  50. 50.
    Weyermann, P., Dallmann, R., Magyar, J., Anklin, C., Hufschmid, M., Dubach-Powell, J., et al. (2009). Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One, 4(3), e4774, 1–7.Google Scholar
  51. 51.
    Tan, B. H., & Fearon, K. C. (2008). Cachexia: prevalence and impact in medicine. Current Opinion in Clinical Nutrition and Metabolic Care, 11(4), 400–407.PubMedCrossRefGoogle Scholar
  52. 52.
    Marblestone, J. G., Suresh Kumar, K. G., Eddins, M. J., Leach, C. A., Sterner, D. E., Mattern, M. R., et al. (2010). Novel approach for characterizing ubiquitin E3 ligase function. Journal of Biomolecular Screening, 15(10), 1220–1228.PubMedCrossRefGoogle Scholar
  53. 53.
    Pickart, C. M., & Raasi, S. (2005). Controlled synthesis of polyubiquitin chains. Methods in Enzymology, 399, 21–36.PubMedCrossRefGoogle Scholar
  54. 54.
    Scheffner, M., Nuber, U., & Huibregtse, J. M. (1995). Protein ubiquitination involving an E1–E2–E3 enzyme ubiquitin thioester cascade. Nature, 373(6509), 81–83.PubMedCrossRefGoogle Scholar
  55. 55.
    Yano, C. L., Ventrucci, G., Field, W. N., Tisdale, M. J., & Gomes-Marcondes, M. C. (2008). Metabolic and morphological alterations induced by proteolysis-inducing factor from Walker tumour-bearing rats in C2C12 myotubes. BMC Cancer, 8, 24, 1–11.Google Scholar
  56. 56.
    Liao, J. W., Kang, J. J., Jeng, C. R., Chang, S. K., Kuo, M. J., Wang, S. C., et al. (2006). Cartap-induced cytotoxicity in mouse C2C12 myoblast cell line and the roles of calcium ion and oxidative stress on the toxic effects. Toxicology, 219(1–3), 73–84.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michael J. Eddins
    • 1
  • Jeffrey G. Marblestone
    • 1
  • K. G. Suresh Kumar
    • 1
  • Craig A. Leach
    • 1
  • David E. Sterner
    • 1
  • Michael R. Mattern
    • 1
  • Benjamin Nicholson
    • 1
  1. 1.ProgenraMalvernUSA

Personalised recommendations