Cell Biochemistry and Biophysics

, Volume 58, Issue 3, pp 169–179 | Cite as

Effects of Menadione, Hydrogen Peroxide, and Quercetin on Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T-Cells

  • Irina Baran
  • Constanta Ganea
  • Agata Scordino
  • Francesco Musumeci
  • Vincenza Barresi
  • Salvatore Tudisco
  • Simona Privitera
  • Rosaria Grasso
  • Daniele F. Condorelli
  • Ioan Ursu
  • Virgil Baran
  • Eva Katona
  • Maria-Magdalena Mocanu
  • Marisa Gulino
  • Raluca Ungureanu
  • Mihaela Surcel
  • Cornel Ursaciuc
Original Research

Abstract

Menadione (MD) is an effective cytotoxic drug able to produce intracellularly large amounts of superoxide anion. Quercetin (QC), a widely distributed bioflavonoid, can exert both antioxidant and pro-oxidant effects and is known to specifically inhibit cell proliferation and induce apoptosis in different cancer cell types. We have investigated the relation between delayed luminescence (DL) induced by UV-laser excitation and the effects of MD, hydrogen peroxide, and QC on apoptosis and cell cycle in human leukemia Jurkat T-cells. Treatments with 500 μM H2O2 and 250 μM MD for 20 min produced 66.0 ± 4.9 and 46.4 ± 8.6% apoptotic cell fractions, respectively. Long-term (24 h) pre-exposure to 5 μM, but not 0.5 μM QC enhanced apoptosis induced by MD, whereas short-term (1 h) pre-incubation with 10 μM QC offered 50% protection against H2O2-induced apoptosis, but potentiated apoptosis induced by MD. Since physiological levels of QC in the blood are normally less than 10 μM, these data can provide relevant information regarding the benefits of flavonoid-combined treatments of leukemia. All the three drugs exerted significant effects on DL. Our data are consistent with (1) the involvement of Complex I of the mitochondrial respiratory chain as an important source of delayed light emission on the 10 μs–10 ms scale, (2) the ability of superoxide anions to quench DL on the 100 μs–10 ms scale, probably via inhibition of reverse electron transfer at the Fe/S centers in Complex I, and (3) the relative insensitivity of DL to intracellular OH and H2O2 levels.

Keywords

Apoptosis Delayed luminescence Oxidative stress Flavonoids Mitochondrial respiratory chain Leukemia 

Notes

Acknowledgments

This work was partially supported by the Romanian Ministry of Education and Research under CNCSIS-UEFISCSU Grant PNII-IDEI no. 1138/2009, code 1449/2008, and CNMP Grant PNII-Partnership no. 71-073/2007.

References

  1. 1.
    Laux, I., & Nel, A. (2001). Evidence that oxidative stress-induced apoptosis by menadione involves Fas-dependent and Fas-independent pathways. Clinical Immunology, 101, 335–344.CrossRefPubMedGoogle Scholar
  2. 2.
    Matzno, S., Yamaguchi, Y., Akiyoshi, T., Nakabayashi, T., & Matsuyama, K. (2008). An attempt to evaluate the effect of vitamin K3 using as an enhancer of anticancer agents. Biological and Pharmaceutical Bulletin, 31, 1270–1273.CrossRefPubMedGoogle Scholar
  3. 3.
    Brière, J. J., Schlemmer, D., Chretien, D., & Rustin, P. (2004). Quinone analogues regulate mitochondrial substrate competitive oxidation. Biochemical and Biophysical Research Communications, 316, 1138–1142.CrossRefPubMedGoogle Scholar
  4. 4.
    Criddle, D. N., Gerasimenko, J. V., Baumgartner, H. K., Jaffar, M., Voronina, S., Sutton, R., et al. (2007). Calcium signalling and pancreatic cell death: Apoptosis or necrosis? Cell Death and Differentiation, 14, 1285–1294.CrossRefPubMedGoogle Scholar
  5. 5.
    Floreani, M., & Carpenedo, F. (1992). One- and two-electron reduction of menadione in guinea-pig and rat cardiac tissue. General Pharmacology, 23, 757–762.PubMedGoogle Scholar
  6. 6.
    Chen, D., Daniel, K. G., Chen, M. S., Kuhn, D. J., Landis-Piwowar, K. R., & Dou, Q. P. (2005). Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochemical Pharmacology, 69, 1421–1432.CrossRefPubMedGoogle Scholar
  7. 7.
    De Vincenzo, R., Ferlini, C., Distefano, M., Gaggini, C., Riva, A., Bombardelli, E., et al. (2000). In vitro evaluation of newly developed chalcone analogues in human cancer cells. Cancer Chemotherapy and Pharmacology, 46, 305–312.CrossRefPubMedGoogle Scholar
  8. 8.
    Ferraresi, R., Troiano, L., Roat, E., Lugli, E., Nemes, E., Nasi, M., et al. (2005). Essential requirement of reduced glutathione (GSH) for the anti-oxidant effect of the flavonoid quercetin. Free Radical Research, 39, 1249–1258.CrossRefPubMedGoogle Scholar
  9. 9.
    Jeong, J. H., An, J. Y., Kwon, Y. T., Rhee, J. G., & Lee, Y. J. (2009). Effects of low dose quercetin: Cancer cell-specific inhibition of cell cycle progression. Journal of Cellular Biochemistry, 106, 73–82.CrossRefPubMedGoogle Scholar
  10. 10.
    Kim, G. N., & Jang, H. D. (2009). Protective mechanism of quercetin and rutin using glutathione metabolism on H2O2-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences, 1171, 530–537.CrossRefPubMedGoogle Scholar
  11. 11.
    Kim, B. M., Choi, Y. J., Han, Y., Yun, Y. S., & Hong, S. H. (2009). N, N-dimethyl phytosphingosine induces caspase-8-dependent cytochrome c release and apoptosis through ROS generation in human leukemia cells. Toxicology and Applied Pharmacology, 239, 87–97.CrossRefPubMedGoogle Scholar
  12. 12.
    Rao, Y. K., Geethangili, M., Fang, S. H., & Tzeng, Y. M. (2007). Antioxidant and cytotoxic activities of naturally occurring phenolic and related compounds: A comparative study. Food and Chemical Toxicology, 45, 1770–1776.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang, Q., Zhao, X. H., & Wang, Z. J. (2009). Cytotoxicity of flavones and flavonols to a human esophageal squamous cell carcinoma cell line (KYSE-510) by induction of G2/M arrest and apoptosis. Toxicology in Vitro, 23, 797–807.CrossRefPubMedGoogle Scholar
  14. 14.
    Yen, G. C., Duh, P. D., Tsai, H. L., & Huang, S. L. (2003). Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, Biotechnology, and Biochemistry, 67, 1215–1222.CrossRefPubMedGoogle Scholar
  15. 15.
    Fiorani, M., Guidarelli, A., Blasa, M., Azzolini, C., Candiracci, M., Piatti, E., et al. (2010). Mitochondria accumulate large amounts of quercetin: Prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid. The Journal of Nutritional Biochemistry, 21, 397–404.CrossRefPubMedGoogle Scholar
  16. 16.
    De Marchi, U., Biasutto, L., Garbisa, S., Toninello, A., & Zoratti, M. (2009). Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: A demonstration of the ambivalent redox character of polyphenols. Biochimica et Biophysica Acta, 1787, 1425–1432.CrossRefPubMedGoogle Scholar
  17. 17.
    Dorta, D. J., Pigoso, A. A., Mingatto, F. E., Rodrigues, T., Prado, I. M., Helena, A. F., et al. (2005). The interaction of flavonoids with mitochondria: Effects on energetic processes. Chemico-Biological Interactions, 152, 67–78.CrossRefPubMedGoogle Scholar
  18. 18.
    Metodiewa, D., Jaiswal, A. K., Cenas, N., Dickancaité, E., & Segura-Aguilar, J. (1999). Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radical Biology and Medicine, 26, 107–116.CrossRefPubMedGoogle Scholar
  19. 19.
    Barbouti, A., Amorgianiotis, C., Kolettas, E., Kanavaros, P., & Galaris, D. (2007). Hydrogen peroxide inhibits caspase-dependent apoptosis by inactivating procaspase-9 in an iron-dependent manner. Free Radical Biology and Medicine, 43, 1377–1387.CrossRefPubMedGoogle Scholar
  20. 20.
    Chien, S. Y., Wu, Y. C., Chung, J. G., Yang, J. S., Lu, H. F., Tsou, M. F., et al. (2009). Quercetin-induced apoptosis acts through mitochondrial- and caspase-3-dependent pathways in human breast cancer MDA-MB-231 cells. Human and Experimental Toxicology, 28, 493–503.CrossRefPubMedGoogle Scholar
  21. 21.
    Dumont, A., Hehner, S. P., Hofmann, T. G., Ueffing, M., Dröge, W., & Schmitz, M. L. (1999). Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene, 18, 747–757.CrossRefPubMedGoogle Scholar
  22. 22.
    Foster, K. A., Galeffi, F., Gerich, F. J., Turner, D. A., & Müller, M. (2006). Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Progress in Neurobiology, 79, 136–171.CrossRefPubMedGoogle Scholar
  23. 23.
    Godar, D. E. (1999). UVA1 radiation triggers two different final apoptotic pathways. Journal of Investigative Dermatology, 112, 3–12.CrossRefPubMedGoogle Scholar
  24. 24.
    Long, X., Goldenthal, M. J., Wu, G. M., & Marín-García, J. (2004). Mitochondrial Ca2+ flux and respiratory enzyme activity decline are early events in cardiomyocytes response to H2O2. Journal of Molecular and Cellular Cardiology, 37, 63–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Macho, A., Hirsch, T., Marzo, I., Marchetti, P., Dallaporta, B., Susin, S. A., et al. (1997). Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. Journal of Immunology, 158, 4612–4619.Google Scholar
  26. 26.
    Saito, Y., Nishio, K., Ogawa, Y., Kimata, J., Kinumi, T., Yoshida, Y., et al. (2006). Turning point in apoptosis/necrosis induced by hydrogen peroxide. Free Radical Research, 40, 619–630.CrossRefPubMedGoogle Scholar
  27. 27.
    Lyamzaev, K. G., Izyumov, D. S., Avetisyan, A. V., Yang, F., Pletjushkina, O. Y., & Chernyak, B. V. (2004). Inhibition of mitochondrial bioenergetics: The effects on structure of mitochondria in the cell and on apoptosis. Acta Biochimica Polonica, 51, 553–562.PubMedGoogle Scholar
  28. 28.
    Ortner, M. A., Ebert, B., Hein, E., Zumbusch, K., Nolte, D., Sukowski, U., et al. (2003). Time gated fluorescence spectroscopy in Barrett’s oesophagus. Gut., 52, 28–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Musumeci, F., Applegate, L. A., Privitera, G., Scordino, A., Tudisco, S., & Niggli, H. J. (2005). Spectral analysis of laser-induced ultraweak delayed luminescence in cultured normal and tumor human cells: Temperature dependence. Journal of Photochemistry and Photobiology B: Biology, 79, 93–99.CrossRefGoogle Scholar
  30. 30.
    Kim, H. W., Sim, S. B., Kim, C. K., Kim, J., Choi, C., You, H., et al. (2005). Spontaneous photon emission and delayed luminescence of two types of human lung cancer tissues: Adenocarcinoma and squamous cell carcinoma. Cancer Letters, 229, 283–289.CrossRefPubMedGoogle Scholar
  31. 31.
    Kemmner, W., Wan, K., Rüttinger, S., Ebert, B., Macdonald, R., Klamm, U., et al. (2008). Silencing of human ferrochelatase causes abundant protoporphyrin-IX accumulation in colon cancer. FASEB Journal, 22, 500–509.CrossRefPubMedGoogle Scholar
  32. 32.
    Mik, E. G., Johannes, T., Zuurbier, C. J., Heinen, A., Houben-Weerts, J. H., Balestra, G. M., et al. (2008). In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique. Biophysical Journal, 95, 3977–3990.CrossRefPubMedGoogle Scholar
  33. 33.
    Felker, P., Izawa, S., Good, N. E., & Haug, A. (1973). Effects of electron transport inhibitors on millisecond delayed light emission from chloroplasts. Biochimica et Biophysica Acta, 325, 193–196.CrossRefPubMedGoogle Scholar
  34. 34.
    Popp, F. A., Nagl, W., Li, K. H., Scholz, W., Weingartner, O., & Wolf, R. (1984). Biophoton emission. New evidence for coherence and DNA as source. Cell Biophysics, 6, 33–52.PubMedGoogle Scholar
  35. 35.
    Slawinski, J. (1988). Luminescence research and its relation to ultraweak cell radiation. Experientia, 44, 559–571.CrossRefPubMedGoogle Scholar
  36. 36.
    Hideg, E., Kobayashi, M., & Inaba, H. (1991). Spontaneous ultraweak light emission from respiring spinach leaf mitochondria. Biochimica et Biophysica Acta, 1098, 27–31.CrossRefGoogle Scholar
  37. 37.
    Tudisco, S., Scordino, A., Privitera, G., Baran, I., & Musumeci, F. (2004). ARETUSA – Advanced research equipment for fast ultraweak luminescence analysis: New developments. Nuclear Instruments and Methods in Physics Research Section A, 518, 463–464.CrossRefGoogle Scholar
  38. 38.
    Goltsev, V., Chernev, P., Zaharieva, I., Lambrev, P., & Strasser, R. J. (2005). Kinetics of delayed chlorophyll a fluorescence registered in milliseconds time range. Photosynthesis Research, 84, 209–215.CrossRefPubMedGoogle Scholar
  39. 39.
    Katsumata, M., Takeuchi, A., Kazumura, K., & Koike, T. (2008). New feature of delayed luminescence: Preillumination-induced concavity and convexity in delayed luminescence decay curve in the green alga Pseudokirchneriella subcapitata. Journal of Photochemistry and Photobiology B: Biology, 90, 152–162.CrossRefGoogle Scholar
  40. 40.
    Guo, Y., & Tan, J. (2009). A kinetic model structure for delayed fluorescence from plants. BioSystems, 95, 98–103.CrossRefPubMedGoogle Scholar
  41. 41.
    Baran, I., Ganea, C., Ursu, I., Musumeci, F., Scordino, A., Tudisco, S., et al. (2009). Effects of nocodazole and ionizing radiation on cell proliferation and delayed luminescence. Romanian Journal of Physics, 54, 557–567.Google Scholar
  42. 42.
    Koczor, C. A., Shokolenko, I. N., Boyd, A. K., Balk, S. P., Wilson, G. L., & Ledoux, S. P. (2009). Mitochondrial DNA damage initiates a cell cycle arrest by a Chk2-associated mechanism in mammalian cells. The Journal of Biological Chemistry, 284, 36191–36201.CrossRefPubMedGoogle Scholar
  43. 43.
    Seomun, Y., Kim, J. T., Kim, H. S., Park, J. Y., & Joo, C. K. (2005). Induction of p21Cip1-mediated G2/M arrest in H2O2-treated lens epithelial cells. Molecular Vision, 11, 764–774.PubMedGoogle Scholar
  44. 44.
    Khan, A. U. (1978). Activated oxygen: Singlet molecular oxygen and superoxide anion. Photochemistry and Photobiology, 28, 615–626.CrossRefGoogle Scholar
  45. 45.
    Chen, Z. H., Saito, Y., Yoshida, Y., & Niki, E. (2008). Effect of oxygen concentration on free radical-induced cytotoxicity. Bioscience, Biotechnology, and Biochemistry, 72, 1491–1497.CrossRefPubMedGoogle Scholar
  46. 46.
    Verkhovskaya, M. L., Belevich, N., Euro, L., Wikström, M., & Verkhovsky, M. I. (2008). Real-time electron transfer in respiratory complex I. Proceedings of the National Academy of Sciences of the United States of America, 105, 3763–3767.CrossRefPubMedGoogle Scholar
  47. 47.
    Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., et al. (2001). The photocycle of a flavine-binding domain of the blue light photoreceptor phototropin. The Journal of Biological Chemistry, 276, 36493–36500.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Irina Baran
    • 1
  • Constanta Ganea
    • 1
  • Agata Scordino
    • 2
    • 3
  • Francesco Musumeci
    • 2
    • 3
  • Vincenza Barresi
    • 4
  • Salvatore Tudisco
    • 2
    • 3
  • Simona Privitera
    • 2
    • 3
  • Rosaria Grasso
    • 2
    • 3
  • Daniele F. Condorelli
    • 4
  • Ioan Ursu
    • 5
  • Virgil Baran
    • 5
  • Eva Katona
    • 1
  • Maria-Magdalena Mocanu
    • 1
  • Marisa Gulino
    • 2
    • 3
  • Raluca Ungureanu
    • 1
  • Mihaela Surcel
    • 6
  • Cornel Ursaciuc
    • 6
  1. 1.Department of Biophysics“Carol Davila” University of Medicine and PharmacyBucharestRomania
  2. 2.Laboratori Nazionali del SudIstituto Nazionale di Fisica NucleareCataniaItaly
  3. 3.Dipartimento di Metodologie Fisiche e Chimiche per l’IngegneriaUniversità di CataniaCataniaItaly
  4. 4.Dipartimento di Scienze Chimiche, Sezione di Biochimica e Biologia MolecolareUniversità di CataniaCataniaItaly
  5. 5.IFIN-HHBucharestRomania
  6. 6.Department of Immunology“Victor Babes” National InstituteBucharestRomania

Personalised recommendations