Cell Biochemistry and Biophysics

, Volume 58, Issue 2, pp 75–83 | Cite as

Redox Buffer Capacity of the Cell: Theoretical and Experimental Approach

  • Grigory G. Martinovich
  • Irina V. Martinovich
  • Sergey N. Cherenkevich
  • Heinrich Sauer
Original Paper


Reactive oxygen species (ROS) are involved in a variety of biological phenomena, such as mutation, carcinogenesis, inflammation, aging, development, and signal transduction. Intracellular generation of ROS might lead to the activation of redox signaling or oxidative stress. Nonetheless, it is difficult to estimate whether ROS-induced intracellular events are beneficial or deleterious to the cell. The quantitative basis of changes in the intracellular redox state of cells is not well-defined, thus leading to the dilemma that redox changes induced by oxidants in distinct cell types cannot be predicted. To overcome this limitation this study undertakes to analyze on a theoretical as well as on an experimental basis the intracellular redox state changes occurring inside cells upon addition of oxidants or reductants. 2,7-Dichlorodihydrofluorescein (H2DCF) was used to characterize the redox buffer capacity in erythrocytes. It was shown that the redox buffer capacity of erythrocytes in the relation to peroxynitrite (ONOO) is 2.1 times lower than the redox buffer capacity of erythrocytes in the relation to hydrogen peroxide (H2O2). The feasibility of redox buffer capacity assessment as an innovative tool for investigation and description of redox signaling events in cells is discussed.


Reactive oxygen species Redox state Reduction potential Redox signaling Oxidative stress Nernst equation 



This study was supported in part by the Belarusian Republican Foundation for Fundamental Research (Grant B08-056 and Grant B09-067).


  1. 1.
    Sauer, H., Wartenberg, M., & Hescheler, J. (2001). Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cellular Physiology and Biochemistry, 11, 173–186.CrossRefPubMedGoogle Scholar
  2. 2.
    Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95.PubMedGoogle Scholar
  3. 3.
    Jones, D. P. (2006). Redefining oxidative stress. Antioxidants & Redox Signaling, 8, 1865–1879.CrossRefGoogle Scholar
  4. 4.
    Sies, H., & Jones, D. P. (2007). Oxidative stress. San Diego: Elsevier.Google Scholar
  5. 5.
    Kirlin, W., Cai, J., Thompson, S., Diaz, D., Kavanagh, T., & Jones, D. (1999). Glutathione redox potential in response to differentiation and enzyme inducers. Free Radical Biology and Medicine, 27, 1208–1218.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith, J., Ladi, E., Mayer-Proschel, M., & Noble, M. (2000). Redox state is a central precursor cell modulator of the balance between self-renewal and differentiation in a dividing glial. Proceedings of the National Academy of Sciences of the United States of America, 97, 10032–10037.CrossRefPubMedGoogle Scholar
  7. 7.
    Kranner, I., Birtic, S., Anderson, K. M., & Pritchard, H. W. (2006). Glutathione half-cell reduction potential: A universal stress marker and modulator of programmed cell death? Free Radical Biology and Medicine, 40, 2155–2165.CrossRefPubMedGoogle Scholar
  8. 8.
    Schafer, F. Q., & Buettner, G. R. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology and Medicine, 30, 1191–1212.CrossRefPubMedGoogle Scholar
  9. 9.
    Hancock, J. T., Desikan, R., Neill, S. J., & Cross, A. R. (2004). New equations for redox and nano-signal transduction. Journal of Theoretical Biology, 226, 65–68.CrossRefPubMedGoogle Scholar
  10. 10.
    Jones, D. P., Go, Y. M., Anderson, C. L., Ziegler, T. R., Kinkade, J. M., & Kirlin, W. G. (2004). Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control. FASEB Journal, 18, 1246–1248.PubMedGoogle Scholar
  11. 11.
    Martinovich, G. G., Cherenkevich, S. N., & Sauer, H. (2005). Intracellular redox state: Towards quantitative description. European Biophysics Journal, 34, 937–942.CrossRefPubMedGoogle Scholar
  12. 12.
    Attene-Ramos, M., Kitiphongspattana, K., Ishii-Schrade, K., & Gaskins, H. (2005). Temporal changes of multiple redox couples from proliferation to growth arrest in IEC-6 intestinal epithelial cells. American Journal of Physiology. Cell Physiology, 289, C1220–C1228.CrossRefPubMedGoogle Scholar
  13. 13.
    Galli, S., Labato, M. I., Bal de Kier Joffe, E., Carreras, M. C., & Poderoso, J. J. (2003). Decreased mitochondrial nitric oxide synthase activity and hydrogen peroxide relate persistent tumoral proliferation to embryonic behavior. Cancer Research, 63, 6370–6377.PubMedGoogle Scholar
  14. 14.
    Teramoto, S., Tomita, T., Matsui, H., Ohga, E., Matsuse, T., & Ouchi, Y. (1999). Hydrogen peroxide-induced apoptosis and necrosis in human lung fibroblasts: Protective roles of glutathione. Japanese Journal of Pharmacology, 79, 33–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Koppenol, W. H., & Butler, J. (1985). Energetics of interconversion reactions of oxyradicals. Free Radical Biology and Medicine, 1, 91–131.CrossRefGoogle Scholar
  16. 16.
    Koppenol, W. H., Moreno, J. J., Pryor, W. A., Ischiropoulos, H., & Beckman, J. S. (1992). Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. Chemical Research in Toxicology, 5, 834–842.CrossRefPubMedGoogle Scholar
  17. 17.
    Pryor, W. A., & Squadrito, G. L. (1995). The chemistry of peroxynitrite: A product from the reaction of nitric oxide with superoxide. American Journal of Physiology, 268, L699–L722.PubMedGoogle Scholar
  18. 18.
    Radi, R., Peluffo, G., Alvarez, M., Navaliat, M., & Cayota, A. (2001). Unraveling peroxynitrite formation in biological system. Free Radical Biology and Medicine, 30, 463–488.CrossRefPubMedGoogle Scholar
  19. 19.
    Feelisch, M., Ostrowski, J., & Noack, E. (1989). On the mechanism of NO release from sydnonimines. Journal of Cardiovascular Pharmacology, 14, S13–S22.PubMedGoogle Scholar
  20. 20.
    LeBel, C. P., Ischiropoulos, H., & Bondy, S. C. (1992). Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chemical Research in Toxicology, 5, 227–231.CrossRefPubMedGoogle Scholar
  21. 21.
    Martinovich, G. G., & Cherenkevich, S. N. (2005). Consumption of intracellular hydrogen peroxide in epithelial human amnion cells (in Russ). Biomeditsinskaia khimiia, 51, 626–633.PubMedGoogle Scholar
  22. 22.
    Jakubowski, W., & Bartosz, G. (2000). 2,7-Dichlorofluorescin oxidation and reactive oxygen species: What does it measure? Cell Biology International, 24, 757–760.CrossRefPubMedGoogle Scholar
  23. 23.
    Hempel, S. L., Buettner, G. R., O’Malley, Y. Q., Wessels, D. A., & Flaherty, D. M. (1999). Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radical Biology and Medicine, 27, 146–159.CrossRefPubMedGoogle Scholar
  24. 24.
    Bohn, H., & Schonafinger, K. (1989). Oxygen and oxidation promote the release of nitric oxide from sydnonimines. Journal of Cardiovascular Pharmacology, 14, S6–S12.PubMedGoogle Scholar
  25. 25.
    Jones, D. P. (2002). Redox potential of GSH/GSSG couple: Assay and biological significance. Methods in Enzymology, 348, 93–112.CrossRefPubMedGoogle Scholar
  26. 26.
    Kemp, M., Go, Y. M., & Jones, D. P. (2008). Nonequilibrium thermodynamics of thiol/disulfide redox systems: A perspective on redox systems biology. Free Radical Biology and Medicine, 44, 921–937.CrossRefPubMedGoogle Scholar
  27. 27.
    Hutter, D. E., Till, B. G., & Greene, J. J. (1997). Redox state changes in density-dependent regulation of proliferation. Experimental Cell Research, 232, 435–438.CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffman, A., Spetner, L. M., & Burke, M. (2001). Cessation of cell proliferation by adjustment of cell redox potential. Journal of Theoretical Biology, 211, 403–407.CrossRefPubMedGoogle Scholar
  29. 29.
    Aw, T. Y. (2003). Cellular redox: A modulator of intestinal epithelial cell proliferation. News in Physiological Sciences, 18, 201–204.PubMedGoogle Scholar
  30. 30.
    Sauer, H., & Wartenberg, M. (2005). Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxidants & Redox Signaling, 7, 1423–1434.CrossRefGoogle Scholar
  31. 31.
    Winterbourn, C. C., & Hampton, M. B. (2008). Thiol chemistry and specificity in redox signaling. Free Radical Biology and Medicine, 45, 549–561.CrossRefPubMedGoogle Scholar
  32. 32.
    Janssen-Heininger, Y. M., Mossman, B. T., Heintz, N. H., Forman, H. J., Kalyanaraman, B., Finkel, T., et al. (2008). Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radical Biology and Medicine, 45, 1–17.CrossRefPubMedGoogle Scholar
  33. 33.
    Feng, W., Liu, G., Allen, P., & Pessah, I. (2000). Transmembrane redox sensor of ryanodine receptor complex. Journal of Biological Chemistry, 275, 35902–35907.CrossRefPubMedGoogle Scholar
  34. 34.
    Jonas, C. R., Ziegler, T. R., Gu, L. H., & Jones, D. P. (2002). Extracellular thiol/disulfide redox state affects proliferation rate in a human colon carcinoma (Caco2) cell line. Free Radical Biology and Medicine, 33, 1499–1506.CrossRefPubMedGoogle Scholar
  35. 35.
    Aon, M. A., Cortassa, S., Maack, C., & O’Rourke, B. (2007). Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. Journal of Biological Chemistry, 282, 21889–21900.CrossRefPubMedGoogle Scholar
  36. 36.
    May, J. M., & Qu, Z. (2004). Nitric oxide-induced oxidant stress in endothelial cells: Amelioration by ascorbic acid. Archives of Biochemistry and Biophysics, 429, 106–113.CrossRefPubMedGoogle Scholar
  37. 37.
    Kelly, F. J., & Tetley, T. D. (1997). Nitrogen dioxide depletes uric acid and ascorbic acid but not glutathione from lung lining fluid. Biochemical Journal, 325, 95–99.PubMedGoogle Scholar
  38. 38.
    Rice, M. E., & Russo-Menna, I. (1998). Differential compartmentalization of brain ascorbate and glutathione between neurons and glia. Neuroscience, 82, 1213–1223.CrossRefPubMedGoogle Scholar
  39. 39.
    Jones, D., Carlson, J., Mody, V., Cai, J., Lynn, M., & Sternberg, P. (2000). Redox state of glutathione in human plasma. Free Radical Biology and Medicine, 28, 625–635.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Grigory G. Martinovich
    • 1
  • Irina V. Martinovich
    • 1
  • Sergey N. Cherenkevich
    • 1
  • Heinrich Sauer
    • 2
  1. 1.Department of BiophysicsBelarusian State UniversityMinskRepublic of Belarus
  2. 2.Institute of PhysiologyGiessenGermany

Personalised recommendations