Cell Biochemistry and Biophysics

, Volume 57, Issue 1, pp 9–17 | Cite as

Hmgb1 Promotes Wound Healing of 3T3 Mouse Fibroblasts via Rage-Dependent ERK1/2 Activation

  • Elia Ranzato
  • Mauro Patrone
  • Marco Pedrazzi
  • Bruno Burlando
Original Paper


HMGb1 is a nuclear protein playing a role in DNA architecture and transcription. This protein has also been shown to function as a cytokine and to stimulate keratinocyte scratch wound healing. Due to the importance of finding new wound healing molecules, we have studied the effects of HMGb1 on fibroblasts, another major skin cell type, using the NIH 3T3 line. HMGb1 expression in these cells was assessed by Western blot, while its nuclear localization was pointed out by confocal immunofluorescence. HMGb1-induced cell proliferation with a maximum at a concentration of 10 nM, and such a dose also stimulated cell migration and scratch wound healing. Western blot analysis showed that HMGb1 activates ERK1/2, while the use of an anti-RAGE receptor-blocking antibody and of the selective MEK1/2 inhibitor PD98059 blocked ERK1/2 activation and wound healing responses to HMGb1. Taken together data show that HMGb1 promotes 3T3 fibroblast wound healing by inducing cell proliferation and migration, and that this occurs through the activation of the RAGE/MEK/ERK pathway. In conclusion, HMGb1 seems a good candidate for the development of medical treatments to be used on chronic or severe wounds.


Confocal co-localization Cytotoxicity assays PD98059 Scratch wound assay Transwell chemotaxis assay 


  1. 1.
    Goodwin, G., Sanders, C., & Johns, E. (1973). A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. European Journal of Biochemistry, 38, 14–19.CrossRefPubMedGoogle Scholar
  2. 2.
    Li, J., Kokkola, R., Tabibzadeh, S., Yang, R., Ochani, M., Qiang, X., et al. (2003). Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Molecular Medicine, 9, 37–45.PubMedGoogle Scholar
  3. 3.
    Wang, H., Bloom, O., Zhang, M., Vishnubhakat, J. M., Ombrellino, M., Che, J., et al. (1999). HMG-1 as a late mediator of endotoxin lethality in mice. Science, 285, 248–251.CrossRefPubMedGoogle Scholar
  4. 4.
    Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191–195.CrossRefPubMedGoogle Scholar
  5. 5.
    Lotze, M. T., & Tracey, K. J. (2005). High-mobility group box 1 protein (HMGB1): Nuclear weapon in the immune arsenal. Nature Reviews Immunology, 5, 331–342.CrossRefPubMedGoogle Scholar
  6. 6.
    Degryse, B., Bonaldi, T., Scaffidi, P., Muller, S., Resnati, M., Sanvito, F., et al. (2001). The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. Journal of Cell Biology, 152, 1197–1206.CrossRefPubMedGoogle Scholar
  7. 7.
    Palumbo, R., Sampaolesi, M., De Marchis, F., Tonlorenzi, R., Colombetti, S., Mondino, A., et al. (2004). Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. Journal of Cell Biology, 164, 441–449.CrossRefPubMedGoogle Scholar
  8. 8.
    Chavakis, E., Hain, A., Vinci, M., Carmona, G., Bianchi, M. E., Vajkoczy, P., et al. (2007). High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circulation Research, 100, 204–212.CrossRefPubMedGoogle Scholar
  9. 9.
    Rauvala, H., & Rouhiainen, A. (2007). RAGE as a receptor of HMGB1 (Amphoterin): Roles in health and disease. Current Molecular Medicine, 7, 725–734.CrossRefPubMedGoogle Scholar
  10. 10.
    Martin, P. (1997). Wound healing–aiming for perfect skin regeneration. Science, 276, 75–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Welt, K., Hinrichs, R., Weiss, J., Burgdorf, W., Krieg, T., & Scharffetter-Kochanek, K. (2009). Wound healing. European Journal of Dermatology, 19, 413–416.PubMedGoogle Scholar
  12. 12.
    Declair, V. (1999). The importance of growth factors in wound healing. Ostomy Wound Management, 45, 64–74.Google Scholar
  13. 13.
    Broughton, G., Janis, J. E., & Attinger, C. E. (2006). The basic science of wound healing. Plastic and Reconstructive Surgery, 117, 12–34.CrossRefGoogle Scholar
  14. 14.
    Ranzato, E., Patrone, M., Pedrazzi, M., & Burlando, B. (2009). HMGb1 promotes scratch wound closure of HaCaT keratinocytes via ERK1/2 activation. Molecular and Cellular Biochemistry, 332, 199–205.CrossRefPubMedGoogle Scholar
  15. 15.
    Todaro, G. J., & Green, H. (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. Journal of Cell Biology, 17, 299–313.CrossRefPubMedGoogle Scholar
  16. 16.
    DeBiasio, R., Bright, G. R., Ernst, L. A., Waggoner, A. S., & Taylor, D. L. (1987). Five-parameter fluorescence imaging: Wound healing of living Swiss 3T3 cells. Journal of Cell Biology, 105, 1613–1622.CrossRefPubMedGoogle Scholar
  17. 17.
    Bassi, R., Giussani, P., Anelli, V., Colleoni, T., Pedrazzi, M., Patrone, M., et al. (2008). HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: Role in cell growth and migration. Journal of Neuro-oncology, 87, 23–33.CrossRefPubMedGoogle Scholar
  18. 18.
    Ishihara, K., Tsutsumi, K., Kawane, S., Nakajima, M., & Kasaoka, T. (2003). The receptor for advanced glycation end-products (RAGE) directly binds to ERK by a D-domain-like docking site. FEBS Letters, 550, 107–113.CrossRefPubMedGoogle Scholar
  19. 19.
    Kokkola, R., Andersson, A., Mullins, G., Ostberg, T., Treutiger, C. J., Arnold, B., et al. (2005). RAGE is the major receptor for the proinflammatory activity of HMGB1 in rodent macrophages. Scandinavian Journal of Immunology, 61, 1–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Sparatore, B., Passalacqua, M., Patrone, M., Melloni, E., & Pontremoli, S. (1996). Extracellular high-mobility group 1 protein is essential for murine erythroleukaemia cell differentiation. Biochemical Journal, 320, 253–256.PubMedGoogle Scholar
  21. 21.
    Pedrazzi, M., Patrone, M., Passalacqua, M., Ranzato, E., Colamassaro, D., Sparatore, B., et al. (2007). Selective proinflammatory activation of astrocytes by high-mobility group box 1 protein signaling. Journal of Immunology, 179, 8525–8532.Google Scholar
  22. 22.
    Sparatore, B., Patrone, M., Passalacqua, M., Pedrazzi, M., Ledda, S., Pontremoli, S., et al. (2005). Activation of A431 human carcinoma cell motility by extracellular high-mobility group box 1 protein and epidermal growth factor stimuli. Biochemical Journal, 389, 215–221.CrossRefPubMedGoogle Scholar
  23. 23.
    Borenfreund, E., Babich, H., & Martin-Alguacil, N. (1988). Comparison of two in vitro cytotoxicity assays: The neutral red (NR) and tetrozolium (MTT) tests. Toxicology in Vitro, 2, 1–6.CrossRefGoogle Scholar
  24. 24.
    Ekunwe, S. I., Hunter, R. D., & Hwang, H. M. (2005). Ultraviolet radiation increases the toxicity of pyrene, 1-aminopyrene and 1-hydroxypyrene to human keratinocytes. Internatioanl Journal of Environmental Research and Public Health, 2, 58–62.CrossRefGoogle Scholar
  25. 25.
    Ellerman, J. E., Brown, C. K., de Vera, M., Zeh, H. J., Billiar, T., Rubartelli, A., et al. (2007). Masquerader: High mobility group box-1 and cancer. Clin Cancer Res, 13, 2836–2848.CrossRefPubMedGoogle Scholar
  26. 26.
    Urbonaviciute, V., Furnrohr, B. G., Weber, C., Haslbeck, M., Wilhelm, S., Herrmann, M., et al. (2007). Factors masking HMGB1 in human serum and plasma. Journal of Leukocyte Biology, 81, 67–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Zimmermann, K., Volkel, D., Pable, S., Lindner, T., Kramberger, F., Bahrami, S., et al. (2004). Native versus recombinant high-mobility group B1 proteins: Functional activity in vitro. Inflammation, 28, 221–229.CrossRefPubMedGoogle Scholar
  28. 28.
    Hamada, N., Maeyama, T., Kawaguchi, T., Yoshimi, M., Fukumoto, J., Yamada, M., et al. (2008). The role of high mobility group box1 in pulmonary fibrosis. American Journal of Respiratory Cell and Molecular Biology, 39, 440–447.CrossRefPubMedGoogle Scholar
  29. 29.
    Straino, S., Di Carlo, A., Mangoni, A., De Mori, R., Guerra, L., Maurelli, R., et al. (2008). High-mobility group box 1 protein in human and murine skin: Involvement in wound healing. Journal of Investigative Dermatology, 128, 1545–1553.CrossRefPubMedGoogle Scholar
  30. 30.
    Porto, A., Palumbo, R., Pieroni, M., Aprigliano, G., Chiesa, R., Sanvito, F., et al. (2006). Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. The FASEB Journal, 20, 2565–2566.CrossRefPubMedGoogle Scholar
  31. 31.
    Yang, D., Chen, Q., Yang, H., Tracey, K. J., Bustin, M., & Oppenheim, J. J. (2007). High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. Journal of Leukocyte Biology, 81, 59–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Yu, M., Wang, H., Ding, A., Golenbock, D. T., Latz, E., Czura, C. J., et al. (2006). HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock, 26, 174–179.CrossRefPubMedGoogle Scholar
  33. 33.
    Eming, S. A., Krieg, T., & Davidson, J. M. (2007). Inflammation in wound repair: Molecular and cellular mechanisms. Journal of Investigative Dermatology, 127, 514–525.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Elia Ranzato
    • 1
    • 2
  • Mauro Patrone
    • 1
  • Marco Pedrazzi
    • 3
  • Bruno Burlando
    • 1
  1. 1.Department of Environment and Life SciencesDiSAV, University of Piemonte OrientaleAlessandriaItaly
  2. 2.Molecular Histology and Cell Growth UnitSan Raffaele Scientific InstituteMilanItaly
  3. 3.Department of Experimental Medicine-Biochemistry Section and Centre of Excellence for Biomedical ResearchUniversity of GenoaGenoaItaly

Personalised recommendations