Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature

  • Jun Yin
  • Wolfgang M. KueblerEmail author
Review Article


Transient receptor potential (TRP) ion channel superfamily is involved in sensing and transmission of a broad variety of external or internal stimuli, including but not limited to mechanical stress. Based on homology analysis, genetic and molecular studies have recently identified TRP channels in different tissues, comprising blood vessels. In invertebrates, many TRP channels including five TRPV channels identified in Caenorhabditis elegans and two in Drosophila have been implicated in mechanosensory behaviors as molecular basis of volume regulation, hearing and touch sensitivity. Consistently, in mammals many TRP family members such as TRPC1, TRPC3, TRPC6, TRPM4, TRPM7, TRPN1, TRPA1, TRPY1, TRPP1, TRPP2, and notably, TRPV1, TPRV2 as well as TRPV4 have been reported to be involved in mechanotransduction. This review summarizes recent and at times controversial findings on the role and regulation of TRP channels in mechanotransduction. Specifically, we highlight the relevance of TRPV channels in vascular regulation and focus on TRPV4 in the vascular system of the lung, which is constantly exposed to a unique combination of circumferential and longitudinal strains. In light of our observation in intact pulmonary microvessels that mechanical stress induced Ca2+ signaling in endothelial cells is closely related to TRPV4 activity, we postulate that TRPV4 plays a critical role in lung vascular mechanotransduction. The progress in this rapidly expanding field may allow for the identification of new molecular targets and the development of new therapeutic approaches in a number of intractable diseases related to mechanical stress.


TRP channels Vascular Mechanotransduction 



We thank Julia Hoffmann and Stephanie Kaestle for Western blot analyses shown in Fig. 4, Dr. Joerg Baeurle for immunohistological images in Fig. 4, and Dr. Wolfgang Liedtke, Departments of Medicine, Neurology, and Neurobiology, Duke University, Durham, NC, for kind provision of TRPV4−/− mice. This article was supported by the Deutsche Forschungsgemeinschaft (Ku1218/4; Ku1218/5), Canadian Institutes of Health Research (CIHR); and the Kaiserin-Friedrich Foundation, Berlin, Germany.


  1. 1.
    Davies, P. F., Barbee, K. A., Volin, M. V., Robotewskyj, A., Chen, J., Joseph, L., et al. (1997). Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annual Review of Physiology, 59, 527–549.PubMedGoogle Scholar
  2. 2.
    Davies, P. F., Spaan, J. A., & Krams, R. (2005). Shear stress biology of the endothelium. Annals of Biomedical Engineering, 33, 1714–1718.PubMedGoogle Scholar
  3. 3.
    Davis, M. J., & Hill, M. A. (1999). Signaling mechanisms underlying the vascular myogenic response. Physiological Reviews, 79, 387–423.PubMedGoogle Scholar
  4. 4.
    Ali, M. H., & Schumacker, P. T. (2002). Endothelial responses to mechanical stress: Where is the mechanosensor? Critical Care Medicine, 30, S198–S206.PubMedGoogle Scholar
  5. 5.
    Sharif-Naeini, R., Dedman, A., Folgering, J. H., Duprat, F., Patel, A., Nilius, B., et al. (2008). TRP channels and mechanosensory transduction: Insights into the arterial myogenic response. Pflugers Archiv, 456, 529–540.PubMedGoogle Scholar
  6. 6.
    Christensen, A. P., & Corey, D. P. (2007). TRP channels in mechanosensation: Direct or indirect activation? Nature Reviews. Neuroscience, 8, 510–521.PubMedGoogle Scholar
  7. 7.
    Pedersen, S. F., & Nilius, B. (2007). Transient receptor potential channels in mechanosensing and cell volume regulation. Methods in Enzymology, 428, 183–207.PubMedGoogle Scholar
  8. 8.
    Liedtke, W., & Kim, C. (2005). Functionality of the TRPV subfamily of TRP ion channels: Add mechano-TRP and osmo-TRP to the lexicon! Cellular and Molecular Life Sciences, 62, 2985–3001.PubMedGoogle Scholar
  9. 9.
    Mutai, H., & Heller, S. (2003). Vertebrate and invertebrate TRPV-like mechanoreceptors. Cell Calcium, 33, 471–478.PubMedGoogle Scholar
  10. 10.
    O’Neil, R. G., & Heller, S. (2005). The mechanosensitive nature of TRPV channels. Pflugers Archiv, 451, 193–203.PubMedGoogle Scholar
  11. 11.
    Tobin, D. M., & Bargmann, C. I. (2004). Invertebrate nociception: Behaviors, neurons and molecules. Journal of Neurobiology, 61, 161–174.PubMedGoogle Scholar
  12. 12.
    Kahn-Kirby, A. H., & Bargmann, C. I. (2006). TRP channels in C. elegans. Annual Review of Physiology, 68, 719–736.PubMedGoogle Scholar
  13. 13.
    Liedtke, W. (2008). Molecular mechanisms of TRPV4-mediated neural signaling. Annals of the New York Academy of Sciences, 1144, 42–52.PubMedGoogle Scholar
  14. 14.
    Bergel, D. H., Caro, C. G., & Seed, W. A. (1967). Asymmetrical transmission of pressure waves in the pulmonary vascular system of the dog. Journal of Physiology, 188, 41P–42P.PubMedGoogle Scholar
  15. 15.
    Presson, R. G., Jr., Baumgartner, W. A., Jr., Peterson, A. J., Glenny, R. W., & Wagner, W. W., Jr. (2002). Pulmonary capillaries are recruited during pulsatile flow. Journal of Applied Physiology, 92, 1183–1190.PubMedGoogle Scholar
  16. 16.
    Wagner, W. W., Jr., Todoran, T. M., Tanabe, N., Wagner, T. M., Tanner, J. A., Glenny, R. W., et al. (1999). Pulmonary capillary perfusion: Intra-alveolar fractal patterns and interalveolar independence. Journal of Applied Physiology, 86, 825–831.PubMedGoogle Scholar
  17. 17.
    Kuebler, W. M., Ying, X., & Bhattacharya, J. (2002). Pressure-induced endothelial Ca2+ oscillations in lung capillaries. American Journal of Physiology Lung Cellular and Molecular Physiology, 282, L917–L923.PubMedGoogle Scholar
  18. 18.
    Sadurski, R., Tsukada, H., Ying, X., Bhattacharya, S., & Bhattacharya, J. (1994). Diameters of juxtacapillary venules determined by oil-drop method in rat lung. Journal of Applied Physiology, 77, 718–725.PubMedGoogle Scholar
  19. 19.
    Sun, R. Y., Nieman, G. F., Hakim, T. S., & Chang, H. K. (1987). Effects of lung volume and alveolar surface tension on pulmonary vascular resistance. Journal of Applied Physiology, 62, 1622–1626.PubMedGoogle Scholar
  20. 20.
    Folgering, J. H., Sharif-Naeini, R., Dedman, A., Patel, A., Delmas, P., & Honore, E. (2008). Molecular basis of the mammalian pressure-sensitive ion channels: Focus on vascular mechanotransduction. Progress in Biophysics and Molecular Biology, 97, 180–195.PubMedGoogle Scholar
  21. 21.
    Helmke, B. P., & Davies, P. F. (2002). The cytoskeleton under external fluid mechanical forces: Hemodynamic forces acting on the endothelium. Annals of Biomedical Engineering, 30, 284–296.PubMedGoogle Scholar
  22. 22.
    Ingber, D. E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.PubMedGoogle Scholar
  23. 23.
    Tseng, H., Peterson, T. E., & Berk, B. C. (1995). Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circulation Research, 77, 869–878.PubMedGoogle Scholar
  24. 24.
    Lansman, J. B., Hallam, T. J., & Rink, T. J. (1987). Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature, 325, 811–813.PubMedGoogle Scholar
  25. 25.
    Schwarz, G., Droogmans, G., & Nilius, B. (1992). Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Archiv, 421, 394–396.PubMedGoogle Scholar
  26. 26.
    Schwarz, G., Callewaert, G., Droogmans, G., & Nilius, B. (1992). Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. Journal of Physiology, 458, 527–538.PubMedGoogle Scholar
  27. 27.
    Hoyer, J., Kohler, R., Haase, W., & Distler, A. (1996). Up-regulation of pressure-activated Ca2+-permeable cation channel in intact vascular endothelium of hypertensive rats. Proceedings of the National Academy of Sciences of the United States of America, 93, 11253–11258.PubMedGoogle Scholar
  28. 28.
    Hoyer, J., Kohler, R., & Distler, A. (1997). Mechanosensitive cation channels in aortic endothelium of normotensive and hypertensive rats. Hypertension, 30, 112–119.PubMedGoogle Scholar
  29. 29.
    Kohler, R., Schonfelder, G., Hopp, H., Distler, A., & Hoyer, J. (1998). Stretch-activated cation channel in human umbilical vein endothelium in normal pregnancy and in preeclampsia. Journal of Hypertension, 16, 1149–1156.PubMedGoogle Scholar
  30. 30.
    Hutcheson, I. R., & Griffith, T. M. (1994). Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. American Journal of Physiology, 266, H590–H596.PubMedGoogle Scholar
  31. 31.
    Alevriadou, B. R., Eskin, S. G., McIntire, L. V., & Schilling, W. P. (1993). Effect of shear stress on 86Rb+ efflux from calf pulmonary artery endothelial cells. Annals of Biomedical Engineering, 21, 1–7.PubMedGoogle Scholar
  32. 32.
    Naruse, K., & Sokabe, M. (1993). Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. American Journal of Physiology, 264, C1037–C1044.PubMedGoogle Scholar
  33. 33.
    Naruse, K., Yamada, T., & Sokabe, M. (1998). Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. American Journal of Physiology, 274, H1532–H1538.PubMedGoogle Scholar
  34. 34.
    Yang, X. C., & Sachs, F. (1989). Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science, 243, 1068–1071.PubMedGoogle Scholar
  35. 35.
    Cosens, D. J., & Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature, 224, 285–287.PubMedGoogle Scholar
  36. 36.
    Montell, C., & Rubin, G. M. (1989). Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron, 2, 1313–1323.PubMedGoogle Scholar
  37. 37.
    Hardie, R. C., & Minke, B. (1992). The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 8, 643–651.PubMedGoogle Scholar
  38. 38.
    Wong, F., Schaefer, E. L., Roop, B. C., LaMendola, J. N., Johnson-Seaton, D., & Shao, D. (1989). Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron, 3, 81–94.PubMedGoogle Scholar
  39. 39.
    Montell, C. (2001). Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Science’s STKE, 2001, RE1.PubMedGoogle Scholar
  40. 40.
    Clapham, D. E. (2003). TRP channels as cellular sensors. Nature, 426, 517–524.PubMedGoogle Scholar
  41. 41.
    Hoenderop, J. G., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B., et al. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO Journal, 22, 776–785.PubMedGoogle Scholar
  42. 42.
    Dohke, Y., Oh, Y. S., Ambudkar, I. S., & Turner, R. J. (2004). Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. Journal of Biological Chemistry, 279, 12242–12248.PubMedGoogle Scholar
  43. 43.
    Montell, C. (2001). An end in sight to a long TRP. Neuron, 30, 3–5.PubMedGoogle Scholar
  44. 44.
    Vannier, B., Zhu, X., Brown, D., & Birnbaumer, L. (1998). The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. Journal of Biological Chemistry, 273, 8675–8679.PubMedGoogle Scholar
  45. 45.
    Vazquez, G., Wedel, B. J., Kawasaki, B. T., Bird, G. S., & Putney, J. W., Jr. (2004). Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. Journal of Biological Chemistry, 279, 40521–40528.PubMedGoogle Scholar
  46. 46.
    Vazquez, G., Wedel, B. J., Aziz, O., Trebak, M., & Putney, J. W., Jr. (2004). The mammalian TRPC cation channels. Biochimica et Biophysica Acta, 1742, 21–36.PubMedGoogle Scholar
  47. 47.
    Sukharev, S., & Corey, D. P. (2004). Mechanosensitive channels: Multiplicity of families and gating paradigms. Science’s STKE, 2004, re4.PubMedGoogle Scholar
  48. 48.
    Kung, C. (2005). A possible unifying principle for mechanosensation. Nature, 436, 647–654.PubMedGoogle Scholar
  49. 49.
    Colbert, H. A., & Bargmann, C. I. (1995). Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron, 14, 803–812.PubMedGoogle Scholar
  50. 50.
    Colbert, H. A., & Bargmann, C. I. (1997). Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. Learning & Memory, 4, 179–191.Google Scholar
  51. 51.
    Colbert, H. A., Smith, T. L., & Bargmann, C. I. (1997). OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. Journal of Neuroscience, 17, 8259–8269.PubMedGoogle Scholar
  52. 52.
    Tobin, D., Madsen, D., Kahn-Kirby, A., Peckol, E., Moulder, G., Barstead, R., et al. (2002). Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron, 35, 307–318.PubMedGoogle Scholar
  53. 53.
    Kim, J., Chung, Y. D., Park, D. Y., Choi, S., Shin, D. W., Soh, H., et al. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature, 424, 81–84.PubMedGoogle Scholar
  54. 54.
    Gong, Z., Son, W., Chung, Y. D., Kim, J., Shin, D. W., McClung, C. A., et al. (2004). Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. Journal of Neuroscience, 24, 9059–9066.PubMedGoogle Scholar
  55. 55.
    Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., et al. (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell, 103, 525–535.PubMedGoogle Scholar
  56. 56.
    Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., & Plant, T. D. (2000). OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biology, 2, 695–702.PubMedGoogle Scholar
  57. 57.
    Wissenbach, U., Bodding, M., Freichel, M., & Flockerzi, V. (2000). Trp12, a novel Trp related protein from kidney. FEBS Letters, 485, 127–134.PubMedGoogle Scholar
  58. 58.
    Delany, N. S., Hurle, M., Facer, P., Alnadaf, T., Plumpton, C., Kinghorn, I., et al. (2001). Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics, 4, 165–174.PubMedGoogle Scholar
  59. 59.
    Alvarez, D. F., King, J. A., Weber, D., Addison, E., Liedtke, W., & Townsley, M. I. (2006). Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: A novel mechanism of acute lung injury. Circulation Research, 99, 988–995.PubMedGoogle Scholar
  60. 60.
    Yin, J., Hoffmann, J., Kaestle, S. M., Neye, N., Wang, L., Baeurle, J., et al. (2008). Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circulation Research, 102, 966–974.PubMedGoogle Scholar
  61. 61.
    Gao, X., Wu, L., & O’Neil, R. G. (2003). Temperature-modulated diversity of TRPV4 channel gating: Activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. Journal of Biological Chemistry, 278, 27129–27137.PubMedGoogle Scholar
  62. 62.
    Guler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., & Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience, 22, 6408–6414.PubMedGoogle Scholar
  63. 63.
    Liedtke, W., Tobin, D. M., Bargmann, C. I., & Friedman, J. M. (2003). Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 2), 14531–14536.PubMedGoogle Scholar
  64. 64.
    Kohler, R., Heyken, W. T., Heinau, P., Schubert, R., Si, H., Kacik, M., et al. (2006). Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1495–1502.PubMedGoogle Scholar
  65. 65.
    Hartmannsgruber, V., Heyken, W. T., Kacik, M., Kaistha, A., Grgic, I., Harteneck, C., et al. (2007). Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE, 2, e827.PubMedGoogle Scholar
  66. 66.
    Loot, A. E., Popp, R., Fisslthaler, B., Vriens, J., Nilius, B., & Fleming, I. (2008). Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovascular Research, 80, 445–452.PubMedGoogle Scholar
  67. 67.
    Saliez, J., Bouzin, C., Rath, G., Ghisdal, P., Desjardins, F., Rezzani, R., et al. (2008). Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation, 117, 1065–1074.PubMedGoogle Scholar
  68. 68.
    Jia, Y., Wang, X., Varty, L., Rizzo, C. A., Yang, R., Correll, C. C., et al. (2004). Functional TRPV4 channels are expressed in human airway smooth muscle cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 287, L272–L278.PubMedGoogle Scholar
  69. 69.
    Sipe, W. E., Brierley, S. M., Martin, C. M., Phillis, B. D., Cruz, F. B., Grady, E. F., et al. (2008). Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294, G1288–G1298.PubMedGoogle Scholar
  70. 70.
    Cenac, N., Altier, C., Chapman, K., Liedtke, W., Zamponi, G., & Vergnolle, N. (2008). Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology, 135, 937–946, 946.PubMedGoogle Scholar
  71. 71.
    Parker, J. C., Ivey, C. L., & Tucker, J. A. (1998). Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. Journal of Applied Physiology, 84, 1113–1118.PubMedGoogle Scholar
  72. 72.
    Hamanaka, K., Jian, M. Y., Weber, D. S., Alvarez, D. F., Townsley, M. I., Al-Mehdi, A. B., et al. (2007). TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. American Journal of Physiology Lung Cellular and Molecular Physiology, 293, L923–L932.PubMedGoogle Scholar
  73. 73.
    Jian, M. Y., King, J. A., Al-Mehdi, A. B., Liedtke, W., & Townsley, M. I. (2008). High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. American Journal of Respiratory Cell and Molecular Biology, 38, 386–392.PubMedGoogle Scholar
  74. 74.
    Caterina, M. J., & Julius, D. (1999). Sense and specificity: A molecular identity for nociceptors. Current Opinion in Neurobiology, 9, 525–530.PubMedGoogle Scholar
  75. 75.
    Minke, B., & Cook, B. (2002). TRP channel proteins and signal transduction. Physiological Reviews, 82, 429–472.PubMedGoogle Scholar
  76. 76.
    Kanzaki, M., Zhang, Y. Q., Mashima, H., Li, L., Shibata, H., & Kojima, I. (1999). Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nature Cell Biology, 1, 165–170.PubMedGoogle Scholar
  77. 77.
    Stokes, A. J., Wakano, C., Del Carmen, K. A., Koblan-Huberson, M., & Turner, H. (2005). Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. Journal of Cellular Biochemistry, 94, 669–683.PubMedGoogle Scholar
  78. 78.
    Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., Shigekawa, M., et al. (2003). TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circulation Research, 93, 829–838.PubMedGoogle Scholar
  79. 79.
    Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. R., et al. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288, 306–313.PubMedGoogle Scholar
  80. 80.
    Davis, J. B., Gray, J., Gunthorpe, M. J., Hatcher, J. P., Davey, P. T., Overend, P., et al. (2000). Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, 183–187.PubMedGoogle Scholar
  81. 81.
    Birder, L. A., Nakamura, Y., Kiss, S., Nealen, M. L., Barrick, S., Kanai, A. J., et al. (2002). Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neuroscience, 5, 856–860.PubMedGoogle Scholar
  82. 82.
    Rong, W., Hillsley, K., Davis, J. B., Hicks, G., Winchester, W. J., & Grundy, D. (2004). Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. Journal of Physiology, 560, 867–881.PubMedGoogle Scholar
  83. 83.
    Scotland, R. S., Chauhan, S., Davis, C., De, F. C., Hunt, S., Kabir, J., et al. (2004). Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: A novel mechanism involved in myogenic constriction. Circulation Research, 95, 1027–1034.PubMedGoogle Scholar
  84. 84.
    Chan, C. L., Facer, P., Davis, J. B., Smith, G. D., Egerton, J., Bountra, C., et al. (2003). Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet, 361, 385–391.PubMedGoogle Scholar
  85. 85.
    Sharif-Naeini, R., Witty, M. F., Seguela, P., & Bourque, C. W. (2006). An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neuroscience, 9, 93–98.PubMedGoogle Scholar
  86. 86.
    Ciura, S., & Bourque, C. W. (2006). Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. Journal of Neuroscience, 26, 9069–9075.PubMedGoogle Scholar
  87. 87.
    Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., & Hamill, O. P. (2005). TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biology, 7, 179–185.PubMedGoogle Scholar
  88. 88.
    Dietrich, A., Kalwa, H., Storch, U., Schnitzler, M., Salanova, B., Pinkenburg, O., et al. (2007). Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Archiv, 455, 465–477.PubMedGoogle Scholar
  89. 89.
    Inoue, R., Jensen, L. J., Shi, J., Morita, H., Nishida, M., Honda, A., et al. (2006). Transient receptor potential channels in cardiovascular function and disease. Circulation Research, 99, 119–131.PubMedGoogle Scholar
  90. 90.
    Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circulation Research, 104, 1399–1409.PubMedGoogle Scholar
  91. 91.
    Dietrich, A., Mederos, Y. S., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., et al. (2005). Increased vascular smooth muscle contractility in TRPC6−/− mice. Molecular and Cellular Biology, 25, 6980–6989.PubMedGoogle Scholar
  92. 92.
    Welsh, D. G., Morielli, A. D., Nelson, M. T., & Brayden, J. E. (2002). Transient receptor potential channels regulate myogenic tone of resistance arteries. Circulation Research, 90, 248–250.PubMedGoogle Scholar
  93. 93.
    Gottlieb, P., Folgering, J., Maroto, R., Raso, A., Wood, T. G., Kurosky, A., et al. (2008). Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Archiv, 455, 1097–1103.PubMedGoogle Scholar
  94. 94.
    Narayanan, J., Imig, M., Roman, R. J., & Harder, D. R. (1994). Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol. American Journal of Physiology, 266, H1840–H1845.PubMedGoogle Scholar
  95. 95.
    Harder, D. R., Lange, A. R., Gebremedhin, D., Birks, E. K., & Roman, R. J. (1997). Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. Journal of Vascular Research, 34, 237–243.PubMedGoogle Scholar
  96. 96.
    Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131–185.PubMedGoogle Scholar
  97. 97.
    Basora, N., Boulay, G., Bilodeau, L., Rousseau, E., & Payet, M. D. (2003). 20-Hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. Journal of Biological Chemistry, 278, 31709–31716.PubMedGoogle Scholar
  98. 98.
    Earley, S., Straub, S. V., & Brayden, J. E. (2007). Protein kinase C regulates vascular myogenic tone through activation of TRPM4. American Journal of Physiology. Heart and Circulatory Physiology, 292, H2613–H2622.PubMedGoogle Scholar
  99. 99.
    Earley, S., Waldron, B. J., & Brayden, J. E. (2004). Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circulation Research, 95, 922–929.PubMedGoogle Scholar
  100. 100.
    Morita, H., Honda, A., Inoue, R., Ito, Y., Abe, K., Nelson, M. T., et al. (2007). Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. Journal of Pharmacological Sciences, 103, 417–426.PubMedGoogle Scholar
  101. 101.
    Oancea, E., Wolfe, J. T., & Clapham, D. E. (2006). Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circulation Research, 98, 245–253.PubMedGoogle Scholar
  102. 102.
    Numata, T., Shimizu, T., & Okada, Y. (2007). TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. American Journal of Physiology. Cell Physiology, 292, C460–C467.PubMedGoogle Scholar
  103. 103.
    Numata, T., Shimizu, T., & Okada, Y. (2007). Direct mechano-stress sensitivity of TRPM7 channel. Cellular Physiology and Biochemistry, 19, 1–8.PubMedGoogle Scholar
  104. 104.
    Praetorius, H. A., & Spring, K. R. (2001). Bending the MDCK cell primary cilium increases intracellular calcium. Journal of Membrane Biology, 184, 71–79.PubMedGoogle Scholar
  105. 105.
    Praetorius, H. A., & Spring, K. R. (2005). A physiological view of the primary cilium. Annual Review of Physiology, 67, 515–529.PubMedGoogle Scholar
  106. 106.
    Giamarchi, A., Padilla, F., Coste, B., Raoux, M., Crest, M., Honore, E., et al. (2006). The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Reports, 7, 787–793.PubMedGoogle Scholar
  107. 107.
    Clapham, D. E., Julius, D., Montell, C., & Schultz, G. (2005). International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacological Reviews, 57, 427–450.PubMedGoogle Scholar
  108. 108.
    Arnaout, M. A. (2001). Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annual Review of Medicine, 52, 93–123.PubMedGoogle Scholar
  109. 109.
    Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L., & Witman, G. B. (2002). Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Current Biology, 12, R378–R380.PubMedGoogle Scholar
  110. 110.
    Yoder, B. K., Hou, X., & Guay-Woodford, L. M. (2002). The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. Journal of the American Society of Nephrology, 13, 2508–2516.PubMedGoogle Scholar
  111. 111.
    Qian, F., Germino, F. J., Cai, Y., Zhang, X., Somlo, S., & Germino, G. G. (1997). PKD1 interacts with PKD2 through a probable coiled-coil domain. Nature Genetics, 16, 179–183.PubMedGoogle Scholar
  112. 112.
    Hanaoka, K., Qian, F., Boletta, A., Bhunia, A. K., Piontek, K., Tsiokas, L., et al. (2000). Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature, 408, 990–994.PubMedGoogle Scholar
  113. 113.
    Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., et al. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genetics, 33, 129–137.PubMedGoogle Scholar
  114. 114.
    Hughes, J., Ward, C. J., Peral, B., Aspinwall, R., Clark, K., San Millan, J. L., et al. (1995). The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nature Genetics, 10, 151–160.PubMedGoogle Scholar
  115. 115.
    Sandford, R., Sgotto, B., Aparicio, S., Brenner, S., Vaudin, M., Wilson, R. K., et al. (1997). Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Human Molecular Genetics, 6, 1483–1489.PubMedGoogle Scholar
  116. 116.
    Koulen, P., Cai, Y., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., et al. (2002). Polycystin-2 is an intracellular calcium release channel. Nature Cell Biology, 4, 191–197.PubMedGoogle Scholar
  117. 117.
    Kottgen, M., Buchholz, B., Garcia-Gonzalez, M. A., Kotsis, F., Fu, X., Doerken, M., et al. (2008). TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 182, 437–447.PubMedGoogle Scholar
  118. 118.
    Walker, R. G., Willingham, A. T., & Zuker, C. S. (2000). A Drosophila mechanosensory transduction channel. Science, 287, 2229–2234.PubMedGoogle Scholar
  119. 119.
    Sidi, S., Friedrich, R. W., & Nicolson, T. (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science, 301, 96–99.PubMedGoogle Scholar
  120. 120.
    Jaquemar, D., Schenker, T., & Trueb, B. (1999). An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. Journal of Biological Chemistry, 274, 7325–7333.PubMedGoogle Scholar
  121. 121.
    Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., et al. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41, 849–857.PubMedGoogle Scholar
  122. 122.
    Jordt, S. E., Bautista, D. M., Chuang, H. H., McKemy, D. D., Zygmunt, P. M., Hogestatt, E. D., et al. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 427, 260–265.PubMedGoogle Scholar
  123. 123.
    Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., Hricik, T. R., et al. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112, 819–829.PubMedGoogle Scholar
  124. 124.
    Corey, D. P., Garcia-Anoveros, J., Holt, J. R., Kwan, K. Y., Lin, S. Y., Vollrath, M. A., et al. (2004). TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 432, 723–730.PubMedGoogle Scholar
  125. 125.
    Howard, J., & Bechstedt, S. (2004). Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Current Biology, 14, R224–R226.PubMedGoogle Scholar
  126. 126.
    Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124, 1269–1282.PubMedGoogle Scholar
  127. 127.
    Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D. S., Woolf, C. J., et al. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 50, 277–289.PubMedGoogle Scholar
  128. 128.
    Di, P. F., Belyantseva, I. A., Kim, H. J., Vogt, T. F., Kachar, B., & Noben-Trauth, K. (2002). Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 14994–14999.Google Scholar
  129. 129.
    Corey, D. P. (2006). What is the hair cell transduction channel? Journal of Physiology, 576, 23–28.PubMedGoogle Scholar
  130. 130.
    van Aken, A. F., tiba-Davies, M., Marcotti, W., Goodyear, R. J., Bryant, J. E., Richardson, G. P., et al. (2008). TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. Journal of Physiology, 586, 5403–5418.PubMedGoogle Scholar
  131. 131.
    Zhou, X. L., Batiza, A. F., Loukin, S. H., Palmer, C. P., Kung, C., & Saimi, Y. (2003). The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proceedings of the National Academy of Sciences of the United States of America, 100, 7105–7110.PubMedGoogle Scholar
  132. 132.
    Myers, B. R., Saimi, Y., Julius, D., & Kung, C. (2008). Multiple unbiased prospective screens identify TRP channels and their conserved gating elements. Journal of General Physiology, 132, 481–486.PubMedGoogle Scholar
  133. 133.
    Bezzerides, V. J., Ramsey, I. S., Kotecha, S., Greka, A., & Clapham, D. E. (2004). Rapid vesicular translocation and insertion of TRP channels. Nature Cell Biology, 6, 709–720.PubMedGoogle Scholar
  134. 134.
    Iwata, Y., Katanosaka, Y., Arai, Y., Komamura, K., Miyatake, K., & Shigekawa, M. (2003). A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. Journal of Cell Biology, 161, 957–967.PubMedGoogle Scholar
  135. 135.
    Rizzo, V., Sung, A., Oh, P., & Schnitzer, J. E. (1998). Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. Journal of Biological Chemistry, 273, 26323–26329.PubMedGoogle Scholar
  136. 136.
    Yu, J., Bergaya, S., Murata, T., Alp, I. F., Bauer, M. P., Lin, M. I., et al. (2006). Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. Journal of Clinical Investigation, 116, 1284–1291.PubMedGoogle Scholar
  137. 137.
    Radel, C., Carlile-Klusacek, M., & Rizzo, V. (2007). Participation of caveolae in β1 integrin-mediated mechanotransduction. Biochemical and Biophysical Research Communications, 358, 626–631.PubMedGoogle Scholar
  138. 138.
    van Deurs, B., Roepstorff, K., Hommelgaard, A. M., & Sandvig, K. (2003). Caveolae: Anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13, 92–100.PubMedGoogle Scholar
  139. 139.
    Isshiki, M., & Anderson, R. G. (2003). Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic, 4, 717–723.PubMedGoogle Scholar
  140. 140.
    Murata, T., Lin, M. I., Stan, R. V., Bauer, P. M., Yu, J., & Sessa, W. C. (2007). Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. Journal of Biological Chemistry, 282, 16631–16643.PubMedGoogle Scholar
  141. 141.
    Park, H., Go, Y. M., Darji, R., Choi, J. W., Lisanti, M. P., Maland, M. C., et al. (2000). Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. American Journal of Physiology. Heart and Circulatory Physiology, 278, H1285–H1293.PubMedGoogle Scholar
  142. 142.
    Conrad, P. A., Smart, E. J., Ying, Y. S., Anderson, R. G., & Bloom, G. S. (1995). Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. Journal of Cell Biology, 131, 1421–1433.PubMedGoogle Scholar
  143. 143.
    Sun, R. J., Muller, S., Zhuang, F. Y., Stoltz, J. F., & Wang, X. (2003). Caveolin-1 redistribution in human endothelial cells induced by laminar flow and cytokine. Biorheology, 40, 31–39.PubMedGoogle Scholar
  144. 144.
    Rizzo, V., Morton, C., dePaola, N., Schnitzer, J. E., & Davies, P. F. (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1720–H1729.PubMedGoogle Scholar
  145. 145.
    Boyd, N. L., Park, H., Yi, H., Boo, Y. C., Sorescu, G. P., Sykes, M., et al. (2003). Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1113–H1122.PubMedGoogle Scholar
  146. 146.
    Fleming, I., Rueben, A., Popp, R., Fisslthaler, B., Schrodt, S., Sander, A., et al. (2007). Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2612–2618.PubMedGoogle Scholar
  147. 147.
    Kwiatek, A. M., Minshall, R. D., Cool, D. R., Skidgel, R. A., Malik, A. B., & Tiruppathi, C. (2006). Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Molecular Pharmacology, 70, 1174–1183.PubMedGoogle Scholar
  148. 148.
    Pani, B., & Singh, B. B. (2009). Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium, 45, 625–633.PubMedGoogle Scholar
  149. 149.
    Jin, X., Touhey, J., & Gaudet, R. (2006). Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. Journal of Biological Chemistry, 281, 25006–25010.PubMedGoogle Scholar
  150. 150.
    Chang, Q., Gyftogianni, E., van de Graaf, S. F., Hoefs, S., Weidema, F. A., Bindels, R. J., et al. (2004). Molecular determinants in TRPV5 channel assembly. Journal of Biological Chemistry, 279, 54304–54311.PubMedGoogle Scholar
  151. 151.
    Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V., & Niemeyer, B. A. (2004). Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. Journal of Biological Chemistry, 279, 34456–34463.PubMedGoogle Scholar
  152. 152.
    Kahr, H., Schindl, R., Fritsch, R., Heinze, B., Hofbauer, M., Hack, M. E., et al. (2004). CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells. Journal of Physiology, 557, 121–132.PubMedGoogle Scholar
  153. 153.
    Lussier, M. P., Cayouette, S., Lepage, P. K., Bernier, C. L., Francoeur, N., St-Hilaire, M., et al. (2005). MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. Journal of Biological Chemistry, 280, 19393–19400.PubMedGoogle Scholar
  154. 154.
    Xu, X. Z., Chien, F., Butler, A., Salkoff, L., & Montell, C. (2000). TRPγ, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron, 26, 647–657.PubMedGoogle Scholar
  155. 155.
    Garcia-Sanz, N., Fernandez-Carvajal, A., Morenilla-Palao, C., Planells-Cases, R., Fajardo-Sanchez, E., Fernandez-Ballester, G., et al. (2004). Identification of a tetramerization domain in the C terminus of the vanilloid receptor. Journal of Neuroscience, 24, 5307–5314.PubMedGoogle Scholar
  156. 156.
    Engelke, M., Friedrich, O., Budde, P., Schafer, C., Niemann, U., Zitt, C., et al. (2002). Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. FEBS Letters, 523, 193–199.PubMedGoogle Scholar
  157. 157.
    Tsuruda, P. R., Julius, D., & Minor, D. L., Jr. (2006). Coiled coils direct assembly of a cold-activated TRP channel. Neuron, 51, 201–212.PubMedGoogle Scholar
  158. 158.
    Hellwig, N., Albrecht, N., Harteneck, C., Schultz, G., & Schaefer, M. (2005). Homo- and heteromeric assembly of TRPV channel subunits. Journal of Cell Science, 118, 917–928.PubMedGoogle Scholar
  159. 159.
    Schindl, R., & Romanin, C. (2007). Assembly domains in TRP channels. Biochemical Society Transactions, 35, 84–85.PubMedGoogle Scholar
  160. 160.
    Arniges, M., Fernandez-Fernandez, J. M., Albrecht, N., Schaefer, M., & Valverde, M. A. (2006). Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. Journal of Biological Chemistry, 281, 1580–1586.PubMedGoogle Scholar
  161. 161.
    Cioffi, D. L., Uhlig, S., & Stevens, T. (2009). Subunit stoichiometry of the endogenous endothelial ISOC channel in the pulmonary microcirculation [Abstract]. FASEB Journal, 23, 964.12.Google Scholar
  162. 162.
    Vriens, J., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., & Nilius, B. (2004). Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proceedings of the National Academy of Sciences of the United States of America, 101, 396–401.PubMedGoogle Scholar
  163. 163.
    Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., et al. (2005). Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circulation Research, 97, 908–915.PubMedGoogle Scholar
  164. 164.
    Mederos y Schnitzler, M., Storch, U., Meibers, S., Nurwakagari, P., Breit, A., Essin, K., et al. (2008). Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO Journal, 27, 3092–3103.PubMedGoogle Scholar
  165. 165.
    Sharif-Naeini, R., Folgering, J. H., Bichet, D., Duprat, F., Delmas, P., Patel, A., et al. (2009). Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. Journal of Molecular and Cellular Cardiology [Epub ahead of print].Google Scholar
  166. 166.
    Osol, G., Laher, I., & Kelley, M. (1993). Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. American Journal of Physiology, 265, H415–H420.PubMedGoogle Scholar
  167. 167.
    Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J., & Gill, D. L. (2006). A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 16586–16591.PubMedGoogle Scholar
  168. 168.
    Zhang, Z., & Bourque, C. W. (2003). Osmometry in osmosensory neurons. Nature Neuroscience, 6, 1021–1022.PubMedGoogle Scholar
  169. 169.
    Spencer, N. J., Kerrin, A., Singer, C. A., Hennig, G. W., Gerthoffer, W. T., & McDonnell, O. (2008). Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice. Neuroscience, 153, 518–534.PubMedGoogle Scholar
  170. 170.
    Shimohira, D., Kido, M. A., Danjo, A., Takao, T., Wang, B., Zhang, J. Q., et al. (2009). TRPV2 expression in rat oral mucosa. Histochemistry and Cell Biology, 132, 423–433.Google Scholar
  171. 171.
    Chen, L., Liu, C., & Liu, L. (2009). Osmolality-induced tuning of action potentials in trigeminal ganglion neurons. Neuroscience Letters, 452, 79–83.PubMedGoogle Scholar
  172. 172.
    Chen, L., Liu, C., Liu, L., & Cao, X. (2009). Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neuroscience Research, 64, 199–207.PubMedGoogle Scholar
  173. 173.
    Becker, D., Bereiter-Hahn, J., & Jendrach, M. (2009). Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. European Journal of Cell Biology, 88, 141–152.PubMedGoogle Scholar
  174. 174.
    Garcia-Elias, A., Lorenzo, I. M., Vicente, R., & Valverde, M. A. (2008). IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. Journal of Biological Chemistry, 283, 31284–31288.PubMedGoogle Scholar
  175. 175.
    Wegierski, T., Lewandrowski, U., Muller, B., Sickmann, A., & Walz, G. (2009). Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. Journal of Biological Chemistry, 284, 2923–2933.PubMedGoogle Scholar
  176. 176.
    Mizuno, A., Matsumoto, N., Imai, M., & Suzuki, M. (2003). Impaired osmotic sensation in mice lacking TRPV4. American Journal of Physiology. Cell Physiology, 285, C96–C101.PubMedGoogle Scholar
  177. 177.
    Liedtke, W., & Friedman, J. M. (2003). Abnormal osmotic regulation in trpv4−/− mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 13698–13703.PubMedGoogle Scholar
  178. 178.
    Troidl, C., Troidl, K., Schierling, W., Cai, W. J., Nef, H., Mollmann, H., et al. (2008). Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. Journal of Cellular and Molecular Medicine [Epub ahead of print].Google Scholar
  179. 179.
    Mochizuki, T., Sokabe, T., Araki, I., Fujishita, K., Shibasaki, K., Uchida, K., et al. (2009). The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. Journal of Biological Chemistry, 284, 21257–21264.PubMedGoogle Scholar
  180. 180.
    Thodeti, C. K., Matthews, B., Ravi, A., Mammoto, A., Ghosh, K., Bracha, A. L., et al. (2009). TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circulation Research, 104, 1123–1130.PubMedGoogle Scholar
  181. 181.
    Gevaert, T., Vriens, J., Segal, A., Everaerts, W., Roskams, T., Talavera, K., et al. (2007). Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. Journal of Clinical Investigation, 117, 3453–3462.PubMedGoogle Scholar
  182. 182.
    Tsiokas, L. (2009). Function and regulation of TRPP2 at the plasma membrane. American Journal of Physiology. Renal Physiology, 297, F1–F9.PubMedGoogle Scholar
  183. 183.
    Nilius, B., Prenen, J., Tang, J., Wang, C., Owsianik, G., Janssens, A., et al. (2005). Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. Journal of Biological Chemistry, 280, 6423–6433.PubMedGoogle Scholar
  184. 184.
    Kwan, H. Y., Huang, Y., & Yao, X. (2007). TRP channels in endothelial function and dysfunction. Biochimica et Biophysica Acta, 1772, 907–914.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.The Keenan Research Centre, Li Ka Shing Knowledge InstituteSt. Michael’s HospitalTorontoCanada
  2. 2.Department of SurgeryUniversity of TorontoTorontoCanada
  3. 3.Institute of PhysiologyCharité-Universitätsmedizin BerlinBerlinGermany
  4. 4.German Heart Institute BerlinBerlinGermany

Personalised recommendations