MicroRNAs Are Involved in Homocysteine-Induced Cardiac Remodeling

  • Paras K. Mishra
  • Neetu Tyagi
  • Soumi Kundu
  • Suresh C. Tyagi
Original Research


Elevated level of homocysteine (Hcy) called hyperhomocysteinemia (HHcy) is one of the major risk factors for chronic heart failure. Although the role of Hcy in cardiac remodeling is documented, the regulatory mechanism involved therein is still nebulous. MicroRNAs (miRNAs) and dicer have been implicated in regulation of cardiovascular diseases. Dicer is the only known enzyme involved in miRNA maturation. We investigated the involvement of dicer and miRNA in Hcy-induced cardiac remodeling. HL-1 cardiomyocytes were cultured in different doses of Hcy. Total RNA was isolated and RT-PCR and real-time PCR was performed for dicer, MMP-2,-9, TIMP-1,-3, and NOX-4. MiRNA microarray was used for analyzing the differential expression of miRNAs. Individual miRNA assay was also done. Western blotting was used to assess the MMP-9 expression in HHcy cardiomyocytes. The RT-PCR results suggest that dicer expression is enhanced in HHcy cardiomyocytes suggesting its involvement in cardiac remodeling caused due to high dose of Hcy. On the other hand, high dose of Hcy increased NOX-4 expression, a marker for oxidative stress. Additionally, HHcy cardiomyocytes showed elevated levels of MMP-2,-9 and TIMP-1,-3, and reduced expression of TIMP-4, suggesting cardiac remodeling due to oxidative stress. The miRNA microarray assay revealed differential expression of 11 miRNAs and among them miR-188 show dramatic downregulation. These findings suggest that dicer and miRNAs especially miR-188 are involved in Hcy-induced cardiac remodeling.


MicroRNA Dicer Hyperhomocysteinemia Congestive heart failure Extracellular matrix remodeling Matrix-metalloproteinase (MMP) Tissue inhibitors of metalloproteinase (TIMP) 







Matrix metalloproteinase


Tissue inhibitor of metalloproteinase


Nicotinamide adenine diphosphate oxidase


Congestive heart failure


cardiovascular diseases




Reverse transcription polymerase chain reaction


  1. 1.
    Herrmann, W., Herrmann, M., & Obeid, R. (2007). Hyperhomocysteinaemia: A critical review of old and new aspects. Current Drug Metabolism, 8(1), 17–31.CrossRefPubMedGoogle Scholar
  2. 2.
    Martin-Herrero, F., Jimenez-Candil, J., Martin-Moreiras, J., Pabon, P., Cruz-Gonzalez, I., Martin-Garcia, A., et al. (2008). Homocysteine, cause or consequence? International Journal of Cardiology, 129(2), 276–277.CrossRefGoogle Scholar
  3. 3.
    Refsum, H., Smith, A. D., Ueland, P. M., Nexo, E., Clarke, R., McPartlin, J., et al. (2004). Facts and recommendations about total homocysteine determinations: An expert opinion. Clinical Chemistry, 50(1), 3–32.CrossRefPubMedGoogle Scholar
  4. 4.
    Wierzbicki, A. S. (2007). Homocysteine and cardiovascular disease: A review of the evidence. Diabetes & Vascular Disease Research, 4(2), 143–150.CrossRefGoogle Scholar
  5. 5.
    Jhee, K. H., & Kruger, W. D. (2005). The role of cystathionine beta-synthase in homocysteine metabolism. Antioxidants Redox Signaling, 7(5–6), 813–822.PubMedGoogle Scholar
  6. 6.
    Graham, I. M., Daly, L. E., Refsum, H. M., Robinson, K., Brattstrom, L. E., Ueland, P. M., et al. (1997). Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA, 277(22), 1775–1781.CrossRefPubMedGoogle Scholar
  7. 7.
    Blacher, J., Demuth, K., Guerin, A. P., Vadez, C., Moatti, N., Safar, M. E., et al. (1999). Association between plasma homocysteine concentrations and cardiac hypertrophy in end-stage renal disease. Journal of Nephrology, 12(4), 248–255.PubMedGoogle Scholar
  8. 8.
    Blacher, J., & Safar, M. E. (2001). Homocysteine, folic acid, B vitamins and cardiovascular risk. Journal of Nutrition, Health & Aging, 5(3), 196–199.Google Scholar
  9. 9.
    Lee, R. T. (2001). Matrix metalloproteinase inhibition and the prevention of heart failure. Trends in Cardiovascular Medicine, 11(5), 202–205.CrossRefPubMedGoogle Scholar
  10. 10.
    Sakata, Y., Yamamoto, K., Mano, T., Nishikawa, N., Yoshida, J., Hori, M., et al. (2004). Activation of matrix metalloproteinases precedes left ventricular remodeling in hypertensive heart failure rats: Its inhibition as a primary effect of angiotensin-converting enzyme inhibitor. Circulation, 109(17), 2143–2149.CrossRefPubMedGoogle Scholar
  11. 11.
    Spinale, F. G., Coker, M. L., Bond, B. R., & Zellner, J. L. (2000). Myocardial matrix degradation and metalloproteinase activation in the failing heart: A potential therapeutic target. Cardiovascular Research, 46(2), 225–238.CrossRefPubMedGoogle Scholar
  12. 12.
    Tyagi, S. C., Smiley, L. M., Mujumdar, V. S., Clonts, B., & Parker, J. L. (1998). Reduction-oxidation (Redox) and vascular tissue level of homocyst(e)ine in human coronary atherosclerotic lesions and role in extracellular matrix remodeling and vascular tone. Molecular and Cellular Biochemistry, 181(1–2), 107–116.CrossRefPubMedGoogle Scholar
  13. 13.
    Lominadze, D., Roberts, A. M., Tyagi, N., Moshal, K. S., & Tyagi, S. C. (2006). Homocysteine causes cerebrovascular leakage in mice. American Journal of Physiology. Heart and Circulatory Physiology, 290(3), H1206–H1213.CrossRefPubMedGoogle Scholar
  14. 14.
    Moshal, K. S., Sen, U., Tyagi, N., Henderson, B., Steed, M., Ovechkin, A. V., et al. (2006). Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. American Journal of Physiology. Cell Physiology, 290(3), C883–C891.CrossRefPubMedGoogle Scholar
  15. 15.
    Moshal, K. S., Tipparaju, S. M., Vacek, T. P., Kumar, M., Singh, M., Frank, I. E., et al. (2008). Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia. American Journal of Physiology. Heart and Circulatory Physiology, 295(2), H890–H897.CrossRefPubMedGoogle Scholar
  16. 16.
    Tyagi, S. C., Rodriguez, W., Patel, A. M., Roberts, A. M., Falcone, J. C., Passmore, J. C., et al. (2005). Hyperhomocysteinemic diabetic cardiomyopathy: Oxidative stress, remodeling, and endothelial-myocyte uncoupling. Journal of Cardiovascular Pharmacology and Therapeutics, 10(1), 1–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Cheng, Y., Ji, R., Yue, J., Yang, J., Liu, X., Chen, H., et al. (2007). MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? American Journal of Pathology, 170(6), 1831–1840.CrossRefPubMedGoogle Scholar
  18. 18.
    Mishra, P. K., Tyagi, N., Kumar, M., & Tyagi, S. C. (2009). MicroRNAs as a therapeutic target for cardiovascular diseases. Journal of Cellular and Molecular Medicine, 13(4), 778–789.CrossRefPubMedGoogle Scholar
  19. 19.
    Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100(3), 416–424.CrossRefPubMedGoogle Scholar
  20. 20.
    Tatsuguchi, M., Seok, H. Y., Callis, T. E., Thomson, J. M., Chen, J. F., Newman, M., et al. (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. Journal of Molecular and Cellular Cardiology, 42(6), 1137–1141.CrossRefPubMedGoogle Scholar
  21. 21.
    Thum, T., Catalucci, D., & Bauersachs, J. (2008). MicroRNAs: Novel regulators in cardiac development and disease. Cardiovascular Research, 79(4), 562–570.CrossRefPubMedGoogle Scholar
  22. 22.
    Van Rooij, E., & Olson, E. N. (2007). MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. Journal of Clinical Investigation, 117(9), 2369–2376.CrossRefPubMedGoogle Scholar
  23. 23.
    Yang, W. J., Yang, D. D., Na, S., Sandusky, G. E., Zhang, Q., & Zhao, G. (2005). Dicer is required for embryonic angiogenesis during mouse development. Journal of Biological Chemistry, 280(10), 9330–9335.CrossRefPubMedGoogle Scholar
  24. 24.
    Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.CrossRefPubMedGoogle Scholar
  25. 25.
    Latronico, M. V., Catalucci, D., & Condorelli, G. (2007). Emerging role of microRNAs in cardiovascular biology. Circulation Research, 101(12), 1225–1236.CrossRefPubMedGoogle Scholar
  26. 26.
    Lai, E. C. (2002). Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genetics, 30(4), 363–364.CrossRefPubMedGoogle Scholar
  27. 27.
    Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural & Molecular Biology, 13(12), 1097–1101.CrossRefGoogle Scholar
  28. 28.
    Zhang, C. (2008). MicroRNAs: Role in cardiovascular biology and disease. Clinical Science, 114(12), 699–706.CrossRefPubMedGoogle Scholar
  29. 29.
    Ruby, J. G., Jan, C. H., & Bartel, D. P. (2007). Intronic microRNA precursors that bypass Drosha processing. Nature, 448(7149), 83–86.CrossRefPubMedGoogle Scholar
  30. 30.
    Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R. H., & Cuppen, E. (2005). Phylogenetic shadowing and computational identification of human microRNA genes. Cell, 120(1), 21–24.CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang, C. (2008). MicroRNomics: A newly emerging approach for disease biology. Physiological Genomics, 33(2), 139–147.CrossRefPubMedGoogle Scholar
  32. 32.
    Bernstein, E., Kim, S. Y., Carmell, M. A., Murchison, E. P., Alcorn, H., Li, M. Z., et al. (2003). Dicer is essential for mouse development. Nature Genetics, 35(3), 215–217.CrossRefPubMedGoogle Scholar
  33. 33.
    Murchison, E. P., Stein, P., Xuan, Z., Pan, H., Zhang, M. Q., Schultz, R. M., et al. (2007). Critical roles for Dicer in the female germline. Genes and Development, 21(6), 682–693.CrossRefPubMedGoogle Scholar
  34. 34.
    Lynn, F. C., Skewes-Cox, P., Kosaka, Y., McManus, M. T., Harfe, B. D., & German, M. S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 56(12), 2938–2945.CrossRefPubMedGoogle Scholar
  35. 35.
    Koralov, S. B., Muljo, S. A., Galler, G. R., Krek, A., Chakraborty, T., Kanellopoulou, C., et al. (2008). Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell, 132(5), 860–874.CrossRefPubMedGoogle Scholar
  36. 36.
    Davis, T. H., Cuellar, T. L., Koch, S. M., Barker, A. J., Harfe, B. D., McManus, M. T., et al. (2008). Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. Journal of Neuroscience, 28(17), 4322–4330.CrossRefPubMedGoogle Scholar
  37. 37.
    Kuehbacher, A., Urbich, C., Zeiher, A. M., & Dimmeler, S. (2007). Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circulation Research, 101(1), 59–68.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhao, Y., Ransom, J. F., Li, A., Vedantham, V., von Drehle, M., Muth, A. N., et al. (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129(2), 303–317.CrossRefPubMedGoogle Scholar
  39. 39.
    Suarez, Y., Fernandez-Hernando, C., Pober, J. S., & Sessa, W. C. (2007). Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circulation Research, 100(8), 1164–1173.CrossRefPubMedGoogle Scholar
  40. 40.
    Chen, J. F., Murchison, E. P., Tang, R., Callis, T. E., Tatsuguchi, M., Deng, Z., et al. (2008). Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proceedings of the National Academy of Science of the United States of America, 105(6), 2111–2116.CrossRefGoogle Scholar
  41. 41.
    de Ruijter, W., Westendorp, R. G., Assendelft, W. J., den Elzen, W. P., de Craen, A. J., le Cessie, S., et al. (2009). Use of Framingham risk score, new biomarkers to predict cardiovascular mortality in older people: Population based observational cohort study. BMJ, 338, a3083.CrossRefPubMedGoogle Scholar
  42. 42.
    Kundu, S., Kumar, M., Sen, U., Mishra, P. K., Tyagi, N., Metreveli, N., et al. (2009). Nitrotyrosinylation, remodeling and endothelial-myocyte uncoupling in iNOS, cystathionine beta synthase (CBS) knockouts and iNOS/CBS double knockout mice. Journal of Cellular Biochemistry, 106(1), 119–126.CrossRefPubMedGoogle Scholar
  43. 43.
    Tyagi, S. C., & Hoit, B. D. (2002). Metalloproteinase in myocardial adaptation and maladaptation. Journal of Cardiovascular Pharmacology and Therapeutics, 7(4), 241–246.CrossRefPubMedGoogle Scholar
  44. 44.
    Hsu, C. P., Huang, C. Y., Wang, J. S., Sun, P. C., & Shih, C. C. (2008). Extracellular matrix remodeling attenuated after experimental postinfarct left ventricular aneurysm repair. Annals of Thoracic Surgery, 86(4), 1243–1249.CrossRefPubMedGoogle Scholar
  45. 45.
    Claycomb, W. C., Lanson, N. A., Jr., Stallworth, B. S., Egeland, D. B., Delcarpio, J. B., Bahinski, A., et al. (1998). HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proceedings of the National Academy of Science of the United States of America, 95(6), 2979–2984.CrossRefGoogle Scholar
  46. 46.
    Tyagi, S. C. (1999). Homocysteine and heart disease: Pathophysiology of extracellular matrix. Clinical and Experimental Hypertension, 21(3), 181–198.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Paras K. Mishra
    • 1
  • Neetu Tyagi
    • 1
  • Soumi Kundu
    • 1
  • Suresh C. Tyagi
    • 1
  1. 1.Department of Physiology & BiophysicsUniversity of Louisville, School of MedicineLouisvilleUSA

Personalised recommendations