Cell Biochemistry and Biophysics

, Volume 55, Issue 2, pp 55–79

Inflammation, Aging, and Cancer: Tumoricidal Versus Tumorigenesis of Immunity

A Common Denominator Mapping Chronic Diseases
Original Research

Abstract

Acute inflammation is a highly regulated defense mechanism of immune system possessing two well-balanced and biologically opposing arms termed apoptosis (‘Yin’) and wound healing (‘Yang’) processes. Unresolved or chronic inflammation (oxidative stress) is perhaps the loss of balance between ‘Yin’ and ‘Yang’ that would induce co-expression of exaggerated or ‘mismatched’ apoptotic and wound healing factors in the microenvironment of tissues (‘immune meltdown’). Unresolved inflammation could initiate the genesis of many age-associated chronic illnesses such as autoimmune and neurodegenerative diseases or tumors/cancers. In this perspective ‘birds’ eye’ view of major interrelated co-morbidity risk factors that participate in biological shifts of growth-arresting (‘tumoricidal’) or growth-promoting (‘tumorigenic’) properties of immune cells and the genesis of chronic inflammatory diseases and cancer will be discussed. Persistent inflammation is perhaps a common denominator in the genesis of nearly all age-associated health problems or cancer. Future challenging opportunities for diagnosis, prevention, and/or therapy of chronic illnesses will require an integrated understanding and identification of developmental phases of inflammation-induced immune dysfunction and age-associated hormonal and physiological readjustments of organ systems. Designing suitable cohort studies to establish the oxido-redox status of adults may prove to be an effective strategy in assessing individual’s health toward developing personal medicine for healthy aging.

Keywords

Unresolved inflammation Aging Cancer Innate and adaptive immunity Autoimmune and neurodegenerative diseases Stem cells Hormonal change 

References

  1. 1.
    Khatami, M. (2008). “Yin and Yang” in inflammation: Duality in innate immune cell function and tumorigenesis. Expert Opinion on Biological Therapy, 8, 1461–1472.PubMedCrossRefGoogle Scholar
  2. 2.
    Peggs, K. S., Quezada, S. A., & Allison, J. P. (2008). Cell intrinsic mechanisms of T cell inhibition and application to cancer therapy. Immunological Reviews, 224, 141–165.PubMedCrossRefGoogle Scholar
  3. 3.
    De La Fuente, M., Hernandez, A., & Vallejo, M. C. (2005). The immune system in the oxidative stress conditions of aging and hypertension: Favorable effects of antioxidants and physical exercise. Antioxidants & Redox Signaling, 7, 1356–1366.CrossRefGoogle Scholar
  4. 4.
    Griffin, W. S. (2006). Inflammation and neurodegenerative diseases. American Journal of Clinical Nutrition, 83, 470–474.Google Scholar
  5. 5.
    Bright, J. J., Kanakasabai, S., Chearwae, W., & Chakraborty, S. (2008). PPAR regulation of inflammatory signaling in CNS disease. PPAR Research, 2008, 658520.PubMedCrossRefGoogle Scholar
  6. 6.
    DiFilippo, C. D., Cuzzocrea, S., Rossi, F., Marfella, R., & D’Amico, M. (2006). Oxidative stress as the leading cause of acute myocardial infarction in diabetics. Cardiovascular Drug Review, 24, 77–87.CrossRefGoogle Scholar
  7. 7.
    Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: When the immune system subjugate the brain. Nature Reviews Neuroscience, 9, 46–56.PubMedCrossRefGoogle Scholar
  8. 8.
    Vasto, S., Candore, G., Listi, F., Balistreri, C. R., et al. (2008). Inflammation, genes and zinc in Alzheimer’s disease. Brain Research Review, 58, 96–105.CrossRefGoogle Scholar
  9. 9.
    von Bernhardi, R. (2007). Glial cell dysregulation: A new perspective on Alzheimer disease. Neurotoxicity Research, 4, 215–232.CrossRefGoogle Scholar
  10. 10.
    Walter, S., Letiembre, M., Liu, Y., Heine, H., et al. (2007). Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cellular Physiology and Biochemistry, 20, 947–956.PubMedCrossRefGoogle Scholar
  11. 11.
    Siffrin, V., Brandt, A. U., Herz, J., & Zipp, F. (2007). New insights into adaptive immunity in chronic neuroinflammation. Advances in Immunology, 96, 1–40.PubMedCrossRefGoogle Scholar
  12. 12.
    Vaknin-Dembinsky, A., Balashov, K., & Weiner, H. L. (2006). IL-23 is increased in dendritic cells in multiple sclerosis and down-regulation of IL-23 by antisense oligos increases dendritic cell IL-10 production. Journal of Immunology, 176, 1768–1774.Google Scholar
  13. 13.
    O’Brien, K., Fitzgerald, D. C., Naiken, K., Alugupalli, K. R., Rostami, A. M., & Gran, B. (2008). Role of the innate immune system in autoimmune inflammatory demyelination. Current Medicinal Chemistry, 15, 1105–1115.PubMedCrossRefGoogle Scholar
  14. 14.
    Sethi, G., Sung, B., & Aggarwal, B. B. (2008). TNF: A master switch for inflammation and cancer. Frontiers in Bioscience, 13, 5094–5107.PubMedCrossRefGoogle Scholar
  15. 15.
    Wood, J. D. (2006). Histamine, mast cells, and the enteric nervous system in the irritable bowel syndrome, enteritis and food allergies. Gut, 55, 445–447.PubMedCrossRefGoogle Scholar
  16. 16.
    Dalgleish, A. G., & O’Bryrne, K. (2006). Inflammation and cancer: The role of immune response and angiogenesis. Cancer Treatment and Research, 130, 1–38.PubMedCrossRefGoogle Scholar
  17. 17.
    de Visser, K. E., Eichten, A., & Coussens, L. M. (2006). Paradoxical roles of the immune system during cancer development. Nature Reviews Cancer, 6, 24–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Ignarro, L. J., & Napoli, C. (2005). Novel features of nitric oxide, endothelial nitric oxide synthase, and atherosclerosis. Current Diabetes Reports, 5, 17–23.PubMedCrossRefGoogle Scholar
  19. 19.
    Aviv, A. (2001). Hypothesis: Pulse pressure and human longevity. Hypertension, 37, 1060–1066.PubMedGoogle Scholar
  20. 20.
    Varo, N., Libby, P., Nuzzo, R., Italiano, J., et al. (2005). Elevated release of sCD40L from platelets of diabetic patients by thrombin, glucose and advanced glycation end products. Diabetes & Vascular Disease Research, 2, 81–87.CrossRefGoogle Scholar
  21. 21.
    Mundy, G. R. (2007). Osteoporosis and inflammation. Nutrition Reviews, 65, S147–S151.PubMedCrossRefGoogle Scholar
  22. 22.
    Kay, A. B. (2005). The role of eosinophils in the pathogenesis of asthma. Trends in Molecular Medicine, 11, 148–152.PubMedCrossRefGoogle Scholar
  23. 23.
    Heins, C., Fanihagh, F., & Steuhl, K. P. (2003). Squamous cell carcinoma of the conjunctiva in patients with atopic eczema. Cornea, 22, 135–137.CrossRefGoogle Scholar
  24. 24.
    Karrasch, S., Holz, O., & Jorres, R. A. (2008). Aging and induced senescence as factors in the pathogenesis of lung emphysema. Respiratory Medicine, 102, 1215–1230.PubMedCrossRefGoogle Scholar
  25. 25.
    Peek, R. M., Jr., & Crabtree, J. E. (2006). Helicobacter infection and gastric neoplasia. Journal of Pathology, 208, 233–248.PubMedCrossRefGoogle Scholar
  26. 26.
    Bazzichi, L., Rossi, A., Massimetti, G., Giannaccini, G., et al. (2007). Cytokine patterns in fibromyalgia and their correlation with clinical manifestations. Clinical and Experimental Rheumatology, 25, 225–230.PubMedGoogle Scholar
  27. 27.
    Landau, D. A., Rosenzwaig, M., Saadoun, D., Trebeden-Negre, H., et al. (2008). Correlation of clinical and virologic responses to antiviral treatment and regulatory T cell evolution in patients with hepatitis C virus-induced mixed cryoglobulinemia vasculitis. Arthritis and Rheumatism, 58, 2897–2907.PubMedCrossRefGoogle Scholar
  28. 28.
    Serbina, N. V., Jia, T., Hohl, T. M., & Pamer, E. G. (2008). Monocyte-mediated defense against microbial pathogens. Annual Review of Immunology, 26, 421–452.PubMedCrossRefGoogle Scholar
  29. 29.
    Gordon, S., & Taylor, P. R. (2005). Monocyte and macrophage heterogeniety. Nature Reviews Immunology, 5, 953–964.PubMedCrossRefGoogle Scholar
  30. 30.
    Lodoen, M. B., & Lanier, L. L. (2006). Natural killer cells as an initial defense against pathogens. Current Opinion in Immunology, 18, 391–398.PubMedCrossRefGoogle Scholar
  31. 31.
    Bonasio, R., & von Andrian, U. H. (2006). Generation, migration and function of circulating dendritic cells. Current Opinion in Immunology, 18, 503–511.PubMedCrossRefGoogle Scholar
  32. 32.
    Colonna, M., Trinchieri, G., & Liu, Y.-J. (2004). Plasmacytoid dendritic cells in immunity. Nature Immunology, 5, 1219–1226.PubMedCrossRefGoogle Scholar
  33. 33.
    Gurish, M. F., & Boyce, J. A. (2006). Mast cells: Ontogeny, homing, and recruitment of a unique innate effector cell. Journal of Allergy and Clinical Immunology, 117, 1285–1291.PubMedCrossRefGoogle Scholar
  34. 34.
    Kabelitz, D., & Medzhitov, R. (2007). Innate immunity-cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Current Opinion in Immunology, 19, 1–3.PubMedCrossRefGoogle Scholar
  35. 35.
    Behrens, M. D., Wagner, W. M., Krco, C. J., Erskine, C. L., et al. (2008). The endogenous danger signal, crystalline uric acid, signals for enhanced antibody immunity. Blood, 111, 1472–1479.PubMedCrossRefGoogle Scholar
  36. 36.
    Yi-Deng, J., Tao, S., Hui-Ping, Z., Jian-Tuan, X., et al. (2007). Folate and ApoE DNA methylation induced by homocysteine in human monocytes. DNA and Cell Biology, 26, 737–744.PubMedCrossRefGoogle Scholar
  37. 37.
    Boldyrev, A. A., & Johnson, P. (2007). Homocysteine and its derivatives as possible modulators of neuronal and non-neuronal cell glutamate receptors in Alzheimer’s disease. Journal of Alzheimer’s Disease, 11, 219–228.PubMedGoogle Scholar
  38. 38.
    Drayton, D. L., Liao, S., Mounzer, R. H., & Ruddle, N. H. (2006). Lymphoid organ development: From ontology to neogenesis. Nature Immunology, 7, 344–353.PubMedCrossRefGoogle Scholar
  39. 39.
    Ferrantini, M., Capone, L., & Belardelli, F. (2008). Dendritic cells and cytokines in immune rejection of cancer. Cytokine and Growth Factor Reviews, 19, 93–107.PubMedCrossRefGoogle Scholar
  40. 40.
    Khatami, M. (2005). Developmental phases of inflammation-induced massive lymphoid hyperplasia and extensive changes in epithelium in an experimental model of allergy. Implications for a direct link between inflammation and carcinogenesis. American Journal of Therapeutics, 12, 117–126.PubMedCrossRefGoogle Scholar
  41. 41.
    Terkeltaub, R., Zachariae, C., Santoro, D., Martin, J., et al. (1991). Monocyte-derived neutrophil chemotactic factor/interleukin-8 is a potential mediator of crystal-induced inflammation. Arthritis and Rheumatism, 34, 894–903.PubMedCrossRefGoogle Scholar
  42. 42.
    Guerra, H. (2007). The brucellae and their success as pathogens. Critical Reviews in Microbiology, 33, 325–331.PubMedCrossRefGoogle Scholar
  43. 43.
    Matzinger, P. (2002). The danger model: A renewed sense of self. Science, 296, 301–305.PubMedCrossRefGoogle Scholar
  44. 44.
    Blagosklonny, M. V. (2004). Prospective strategies to enforce selectively cell death in cancer cells. Oncogene, 23, 2967–2975.PubMedCrossRefGoogle Scholar
  45. 45.
    Kamanna, V. S., & Kashyap, M. L. (2008). Mechanism of action of niacin. American Journal of Cardiology, 17, 20B–26B.CrossRefGoogle Scholar
  46. 46.
    Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F., & Lanzavecchia, A. (2005). Selected toll-like receptor agonist combinations synergically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunology, 6, 769–776.PubMedCrossRefGoogle Scholar
  47. 47.
    Sitkovsky, M., Lukashev, D., Deaglio, S., Dwyer, K., et al. (2008). Adenosine A2A receptor antagonists: Blockade of adenosinergic effects and T regulatory cells. British Journal of Pharmacology, 153, S457–S464.PubMedCrossRefGoogle Scholar
  48. 48.
    Ibaraki, T., Muramatsu, M., Takai, S., et al. (2005). The relationship of tryptase- and chymase-positive mast cells to angiogenesis in stage 1 non-small cell cancer. European Journal of Cardio-Thoracic Surgery, 28, 617–621.PubMedCrossRefGoogle Scholar
  49. 49.
    Katdare, M., Efmova, E. V., Labay, E., Khodarev, N. N., et al. (2007). Diverse TNF-alpha-induced death pathways are enhanced by inhibition of NF-kB. International Journal of Oncology, 31, 1519–1528.PubMedGoogle Scholar
  50. 50.
    Khatami, M. (2007). Standardizing cancer biomarkers criteria: Data elements as a foundation for a database. Inflammatory mediator/M-CSF as model marker. Cell Biochemistry and Biophysics, 47, 187–198.PubMedCrossRefGoogle Scholar
  51. 51.
    Ridker, P. M. (2007). C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus. Journal of the American College of Cardiology, 49, 2129–2138.PubMedCrossRefGoogle Scholar
  52. 52.
    Feinstein, R., Kanety, H., Papa, M. Z., Lunenfeld, B., & Karasik, A. (1993). Tumor necrosis factor-alpha suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. Journal of Biological Chemistry, 268, 26055–26058.PubMedGoogle Scholar
  53. 53.
    Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: A double-edged sword. Nature Reviews Immunology, 3, 745–756.PubMedCrossRefGoogle Scholar
  54. 54.
    Risques, R. A., Rabinovitch, P. S., & Brentnall, T. A. (2006). Cancer surveillance in inflammatory bowel disease: New molecular approaches. Current Opinion in Gastroenterology, 22, 382–390.PubMedCrossRefGoogle Scholar
  55. 55.
    Royds, J. A., & Iacopetta, B. (2006). P53 and disease: When the guardian angel fails. Cell Death and Differentiation, 13, 1017–1026.PubMedCrossRefGoogle Scholar
  56. 56.
    Rosales, J. L., & Lee, K.-Y. (2006). Extraneuronal roles of cyclin-dependent kinase 5. BioEssays, 28, 1023–1034.PubMedCrossRefGoogle Scholar
  57. 57.
    Valent, P., Schernthaner, G. H., Sperr, W. R., Fritsch, G., et al. (2001). Variable expression of activation-linked surface antigens on human mast cells in health and disease. Immunological Reviews, 179, 74–81.PubMedCrossRefGoogle Scholar
  58. 58.
    Jawdat, D. M., Rowden, G., & Marshall, J. S. (2006). Mast cells have pivotal role in TNF-independent lymph node hypertrophy and the mobilization of Langerhans cells in response to bacterial peptidoglycan. Journal of Immunology, 177, 1755–1762.Google Scholar
  59. 59.
    Church, M. K., Holgate, S. T., Shute, J. K., et al. (1998). Mast cell-derived mediators. In E. Middleton Jr., E. F. Ellis, & J. W. Yunginger (Eds.), Allergy: Principles and practice (5th ed., pp. 146–167). Mosby: St. Louis.Google Scholar
  60. 60.
    Kaparakis, M., Walduck, A. K., Price, J. D., Pedersen, J. S., Van Rooijen, N., et al. (2008). Macrophages are mediators of gastritis in acute Helicobacter pylori infection in C57BL/6 mice. Infection and Immunity (Epub ahead of print).Google Scholar
  61. 61.
    Gordon, S. (2003). Alternative activation of macrophages. Nature Reviews Immunology, 3, 23–35.PubMedCrossRefGoogle Scholar
  62. 62.
    Van Ginderachter, J. A., Movahedi, K., Hassanzadeh Ghassabeh, G., Meerschaut, S., et al. (2006). Classical and alternative activation of mononuclear phagocytes: Picking of the best of both worlds for tumor promotion. Immunology, 211, 487–501.Google Scholar
  63. 63.
    Verreck, F. A., de Boer, T., Langenberg, D. M., Hoeve, M. A., et al. (2004). Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proceedings of the National Academy of Science of the United States of America, 101, 4560–4565.CrossRefGoogle Scholar
  64. 64.
    Juliet, P. A., Hayashi, T., Iguchi, A., & Ignarro, L. J. (2003). Concomitant production of nitric oxide and superoxide in human macrophages. Biochemical and Biophysical Research Communications, 310, 367–370.PubMedCrossRefGoogle Scholar
  65. 65.
    Pozzi, L. A., Maciaszek, J. W., & Rock, K. L. (2005). Both dendritic cells and macrophages can stimulate naïve CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. Journal of Immunology, 175, 2071–2081.Google Scholar
  66. 66.
    Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. New England Journal of Medicine, 315, 1650–1659.PubMedCrossRefGoogle Scholar
  67. 67.
    Karin, M., & Lin, A. (2002). NF-kappa B at the crossroads of life and death. Nature Immunology, 3, 221–227.PubMedCrossRefGoogle Scholar
  68. 68.
    Akdis, M. (2008). T cell tolerance to inhaled allergens: Mechanisms and therapeutic approaches. Expert Opinion on Biological Therapy, 8, 769–777.PubMedCrossRefGoogle Scholar
  69. 69.
    Quezada, S. A., Jarvinen, L. Z., Lind, E. F., & Noelle, R. J. (2004). CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology, 22, 307–328.PubMedCrossRefGoogle Scholar
  70. 70.
    Khatami, M. (1999). Induction of conjunctival-associated lymphoid hyperplasia by antigen and tumor promoting agents: Targeting mediators of inflammatory responses as biomarkers for early detection of tumor/cancer. In AACR special conference proceedings: The biology and genetics of early detection and chemoprevention of cancer (Abstr), Bal Harbour, FL.Google Scholar
  71. 71.
    Mroczko, B., Groblewska, M., Wereszczynska-Siemiatkowska, U., Okulczyk, B., et al. (2007). Serum macrophage-colony stimulating factor levels in colorectal cancer patients correlate with lymph node metastasis and poor prognosis. Clinica Chimica Acta, 380, 208–212.CrossRefGoogle Scholar
  72. 72.
    Kucharewicz, I., Bodzenta-Lukaszyk, A., Szymanski, W., Mroczko, B., & Szmitkowski, M. (2007). Basal serum tryptase level correlates with severity of hymenoptera sting and age. Journal of Investigational Allergology and Clinical Immunology, 17, 65–69.PubMedGoogle Scholar
  73. 73.
    Suzuki, M., Kobayashi, H., Ohwada, M., Terao, T., et al. (1998). Macrophage-colony stimulating factor as a marker for malignant germ cell tumors of the ovary. Gynecologic Oncology, 68, 35–37.PubMedCrossRefGoogle Scholar
  74. 74.
    Wagner, D. D., & Frenette, P. S. (2008). The vessel wall and its interactions. Blood, 111, 5271–5281.PubMedCrossRefGoogle Scholar
  75. 75.
    Huttenlocher, A., & Poznansky, M. C. (2008). Reverse leukocyte migration can be attractive or repulsive. Trends in Cell Biology, 18, 298–306.PubMedCrossRefGoogle Scholar
  76. 76.
    Bellone, M., Mondino, A., & Corti, A. (2008). Vascular targeting, chemotherapy and active immunotherapy: Teaming up to attack cancer. Trends in Immunology, 29, 235–241.PubMedCrossRefGoogle Scholar
  77. 77.
    Nurden, A. T., Nurden, P., Sanchez, M., Andia, I., & Anitua, E. (2008). Platelets and wound healing. Frontiers in Bioscience, 13, 3532–3548.PubMedGoogle Scholar
  78. 78.
    Jackson, S. P. (2007). The growing complexity of platelet aggregation. Blood, 109, 5087–5095.PubMedCrossRefGoogle Scholar
  79. 79.
    Anitua, E., Andia, I., Ardanza, B., Nurden, P., & Nurden, A. T. (2004). Autologous platelets as a source of proteins for healing and tissue regeneration. Thrombosis and Haemostasis, 91, 4–15.PubMedGoogle Scholar
  80. 80.
    Stenmark, K. R., Fagan, K. A., & Frid, M. G. (2006). Hypoxia-induced pulmonary vascular remodeling: Cellular and molecular mechanisms. Circulation Research, 99, 675–691.PubMedCrossRefGoogle Scholar
  81. 81.
    Peerschke, E. I., Yin, W., Grigg, S. E., & Ghebrehiwet, B. (2006). Blood platelets activate the classical pathways of human complement. Journal of Thrombosis and Haemostasis, 4, 2035–2042.PubMedCrossRefGoogle Scholar
  82. 82.
    Madonna, R., Massaro, M., & De Caterina, R. (2008). Insulin potentiates cytokine-induced VCAM-1 expression in human endothelial cells. Biochimica et Biophysica Acta, 1782, 511–516.PubMedGoogle Scholar
  83. 83.
    Tobin, M. J. (2001). Chronic obstructive disease, pollution, pulmonary vascular disease, transplantation, pleural disease and lung cancer. American Journal of Respiratory and Critical Care Medicine, 164, 1789–1804.PubMedGoogle Scholar
  84. 84.
    Li, W., Khatami, M., Robertson, G. A., Shen, S., & Rockey, J. H. (1984). Non-enzymatic glycosylation of bovine retinal microvessel basement membrane in vitro: Kinetic analysis and inhibition by aspirin. Investigative Ophthalmology & Visual Science, 25, 884–892.Google Scholar
  85. 85.
    Khatami, M. (2006). Focusing on promotion of innate immune response system for therapy, diagnosis and prevention of tumor/cancer (abstract). In 4th annual cytokine and inflammation conference (pp. 30–31). San Diego, CA.Google Scholar
  86. 86.
    Niederkorn, J. Y. (2006). See no evil, hear no evil, do no evil: The lessons of immune privilege. Nature Immunology, 7, 354–359.PubMedCrossRefGoogle Scholar
  87. 87.
    Zamiri, P., Sugita, S., & Streilein, J. W. (2007). Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chemical Immunology and Allergy, 92, 86–93.PubMedCrossRefGoogle Scholar
  88. 88.
    Naito, M., & Itoh, M. (2008). Patterns of infiltration of lymphocytes into the testis under normal and pathological conditions in mice. American Journal of Reproductive Immunology, 59, 55–61.PubMedGoogle Scholar
  89. 89.
    Hamrah, P., Huq, S. O., Liu, Y., Zhang, Q., & Dana, M. R. (2003). Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. Journal of Leukocyte Biology, 74, 172–178.PubMedCrossRefGoogle Scholar
  90. 90.
    Streilein, J. W., Masli, S., Takeuchi, M., & Kezuka, T. (2002). The eye’s view of antigen presentation. Human Immunology, 63, 435–443.PubMedCrossRefGoogle Scholar
  91. 91.
    Fischer, H. G., & Reichmann, G. (2001). Brain dendritic cells and macrophages/microglia in central nervous system inflammation. Journal of Immunology, 166, 2717–2726.Google Scholar
  92. 92.
    Yamamoto, E., Tamamaki, N., Nakamura, T., Kataoka, K., et al. (2008). Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke, 39, 3046–3056.CrossRefGoogle Scholar
  93. 93.
    Gran, B., Zhang, G. X., & Rostami, A. (2004). Role of the IL-12/IL-23 system in the regulation of T-cell responses in central nervous system inflammatory demyelination. Critical Reviews in Immunology, 24, 111–128.PubMedCrossRefGoogle Scholar
  94. 94.
    Owens, T., & Babcock, A. (2002). Immune response induction in the central nervous system. Frontiers in Bioscience, 7, d427–d438.PubMedCrossRefGoogle Scholar
  95. 95.
    Karman, J., Linq, C., Sandor, M., & Fabry, Z. (2004). Initiation of immune responses in brain is promoted by local dendritic cells. Journal of Immunology, 173, 2353–2361.Google Scholar
  96. 96.
    Scholz, M., Doerr, H. W., & Cinatl, J. (2003). Human cytomegalovirus retinitis: Pathogenicity, immune evasion and persistence. Trends in Microbiology, 11, 171–178.PubMedCrossRefGoogle Scholar
  97. 97.
    Knoernschild, T., Grasbon, T., Wilsch, C., Kampik, A., & Lutjen-Drecoll, E. (2003). RPE cell transplants to non-immune-privileged sites of the eye transform into fibroblast-like cells. Current Eye Research, 27, 25–34.PubMedCrossRefGoogle Scholar
  98. 98.
    Dheen, S. T., Kaur, C., & Ling, E. A. (2007). Microglial activation and its implications in the brain diseases. Current Medicinal Chemistry, 14, 1189–1197.PubMedCrossRefGoogle Scholar
  99. 99.
    Ponomarev, E. D., Shriver, L. P., Maresz, K., Pedras-Vasconelos, J., et al. (2007). GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the autoimmune encephalomyelitis. Journal of Immunology, 178, 39–48.Google Scholar
  100. 100.
    Zaheer, A., Zaheer, S., Sahu, S. K., Knight, S., Khosravi, H., et al. (2007). A novel role of glia maturation factor: Induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. Journal of Neurochemistry, 101, 364–376.PubMedCrossRefGoogle Scholar
  101. 101.
    Volmar, C. H., Ait-Ghezala, G., Frieling, J., Paris, D., & Mullan, M. J. (2008). The granulocyte macrophage colony stimulating factor (GM-CSF) regulates amyloid beta (Abeta) production. Cytokine, 42, 336–344.PubMedCrossRefGoogle Scholar
  102. 102.
    Widera, D., Kaus, A., Kaltschmidt, C., & Kaltschmidt, B. (2008). Neuronal stem cells, inflammation and NF-kB: Basic principle of maintenance and repair or origin of brain tumours? Journal of Cellular and Molecular Medicine, 12, 459–470.PubMedCrossRefGoogle Scholar
  103. 103.
    Goronzy, J. J., & Weyand, C. M. (2005). T cell development and receptor diversity during aging. Current Opinion in Immunology, 17, 468–475.PubMedCrossRefGoogle Scholar
  104. 104.
    Capri, M., Monti, D., Salvioli, S., Lescai, F., et al. (2006). Complexity of anti-immunoscenescence strategies in humans. Artificial Organs, 30, 730–742.PubMedCrossRefGoogle Scholar
  105. 105.
    Xiao, S., Jin, H., Korn, T., Liu, S. M., et al. (2008). Retinoic acid increases Foxp3+ regulatory T cell and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. Journal of Immunology, 181, 2277–2284.Google Scholar
  106. 106.
    Jessup, H. K., Brewer, A. W., Omori, M., Rickel, E. A., et al. (2008). Intradermal administration of thymic stromal lymphopoietin induces a T cell-and eosinophil-dependent systemic th2 inflammatory response. Journal of Immunology, 181, 4311–4319.Google Scholar
  107. 107.
    Harvey, B. P., Quan, T. E., Rudenga, B. J., Roman, R. M., et al. (2008). Editing antigen presentation: Antigen transfer between human lymphocytes and macrophages mediated by class A scavenger receptors. Journal of Immunology, 181, 4043–4051.Google Scholar
  108. 108.
    Kohlmeier, J. E., Miller, S. C., Smith, J., Lu, B., et al. (2008). The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity, 29, 101–113.PubMedCrossRefGoogle Scholar
  109. 109.
    Doganci, A., Karwot, R., Maxeiner, J. H., Scholtes, P., et al. (2008). IL-2 receptor beta-chain signaling controls immunosuppressive CD4+ T cells in the draining lymph nodes and lung during allergic airway inflammation in vivo. Journal of Immunology, 181, 1917–1926.Google Scholar
  110. 110.
    Peggs, K. S., & Allison, J. P. (2005). Co-stimulatory pathways in lymphocyte regulation: The immunoglobulin superfamily. British Journal of Haematology, 130, 809–824.PubMedCrossRefGoogle Scholar
  111. 111.
    Anderson, C. F., Gerber, J. S., & Mosser, D. M. (2002). Modulating macrophage function with IgG immune complexes. Journal of Endotoxin Research, 8, 477–481.PubMedGoogle Scholar
  112. 112.
    Diz, R., McCray, S. K., & Clarke, S. H. (2008). B cell receptor affinity and B cell subset identity integrate to define the effectiveness, affinity threshold, and mechanism of anergy. Journal of Immunology, 181, 3834–3840.Google Scholar
  113. 113.
    Donshik, P. C., Ehlers, W. H., & Ballow, M. (2008). Giant papillary conjunctivitis. Immunology and Allergy Clinics of North America, 28, 83–103.PubMedCrossRefGoogle Scholar
  114. 114.
    Khatami, M. (2005). Cyclooxygenase inhibitor Ketorolac or mast cell stabilizers: Immunological challenges in cancer therapy. Clinical Cancer Research, 11, 1349–1351.PubMedGoogle Scholar
  115. 115.
    Rafi, A., Castle, S. C., Uvemura, K., & Makinodan, T. (2003). Immune dysfunction in the elderly and its reversal by antihistamines. Biomedicine and Pharmacotherapy, 57, 246–250.CrossRefGoogle Scholar
  116. 116.
    Jones, M. (2008). Understanding of the molecular mechanisms of allergy. Methods in Molecular Medicine, 138, 1–15.PubMedCrossRefGoogle Scholar
  117. 117.
    Anthony, R. M., Rutitzky, L. I., Urban, J. F., Jr., Stadecker, M. J., et al. (2007). Protective immune mechanisms in helminth infection. Nature Reviews. Immunology, 7, 975–987.PubMedCrossRefGoogle Scholar
  118. 118.
    Audicana, M. T., & Kennedy, M. W. (2008). Anisakis simplex: From obscure infectious worm to inducer of immune hypersensitivity. Clinical Microbiology Reviews, 21, 360–379.PubMedCrossRefGoogle Scholar
  119. 119.
    Harvima, I. T., Nilsson, G., Suttle, M.-M., & Naukkarinen, A. (2008). Is there a role for mast cells in psoriasis. Archives of Dermatological Research, 300, 461–478.PubMedCrossRefGoogle Scholar
  120. 120.
    Dvorak, A. M., Costa, J. J., Monahan-Early, R. A., Fox, P., & Galli, S. J. (1998). Ultrastructural analysis of human skin biopsy specimens from patients receiving recombinant human stem cell factor: Subcutaneous injection of rhSCF induces mast cell degranulation and granulation and granulocyte recruitment at the injection site. Journal of Allergy and Clinical Immunology, 101, 793–806.PubMedCrossRefGoogle Scholar
  121. 121.
    Metz, M., Magerl, M., Kuhl, N. F., Valeva, A., et al. (2009). Mast cells determine the magnitude of bacterial toxin-induced skin inflammation. Experimental Dermatology, 18, 160–166.PubMedCrossRefGoogle Scholar
  122. 122.
    Wimazal, F., Baumgartner, C., Sonneck, K., Zauner, C., et al. (2008). Mixed-lineage eosinophil/basophil crisis in MDS: A rare form of progression. European Journal of Clinical Investigation, 38, 447–455.PubMedCrossRefGoogle Scholar
  123. 123.
    DiScipio, R. G., & Schraufstatter, I. U. (2007). The role of the complement anaphylatoxins in the recruitment of eosinophils. International Immunopharmacology, 7, 1909–1923.PubMedCrossRefGoogle Scholar
  124. 124.
    Kohga, K., Takehara, T., Tatsumi, T., Ohkawa, K., et al. (2008). Serum levels of soluble major histocompatibility complex (MHC) classI-related chain A in patients with chronic liver diseases and changes during transcatheter arterial embolization for hepatocellular carcinoma. Cancer Science, 99, 1643–1649.PubMedCrossRefGoogle Scholar
  125. 125.
    Junushi, M., Vanneman, M., Munshi, N. C., Tai, Y. F., et al. (2008). MHC class I chain-related protein antibodies and shedding are associated with the progression of multiple myeloma. Proceedings of the National Academy of Sciences of the United States of America, 105, 1285–1290.CrossRefGoogle Scholar
  126. 126.
    Sansoni, P., Vescovoni, R., Fagnoni, F., Biasini, C., Zanni, F., et al. (2008). The immune system in extreme longevity. Experimental Gerontology, 43, 61–65.PubMedCrossRefGoogle Scholar
  127. 127.
    Kreider, T., Anthony, R. M., Urban, J. F., Jr., & Gause, W. C. (2007). Alternatively activated macrophages in helminth infections. Current Opinion in Immunology, 19, 448–453.PubMedCrossRefGoogle Scholar
  128. 128.
    Murdoch, C., & Lewis, C. E. (2005). Macrophage migration and gene expression in response to tumor hypoxia. International Journal of Cancer, 117, 701–708.CrossRefGoogle Scholar
  129. 129.
    Biswas, S. K., Gangi, L., Paul, S., Schioppa, T., et al. (2006). A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kB and enhanced IRF-3/STAT1 activation). Blood, 107, 2112–2122.PubMedCrossRefGoogle Scholar
  130. 130.
    Krampera, M., Sartoris, S., Liotta, F., Pasini, A., et al. (2007). Immune regulation by mesenchymal stem cells derived from adult spleen and thymus. Stem Cells and Development, 16, 797–810.PubMedCrossRefGoogle Scholar
  131. 131.
    Ballard, V. L., & Edelberg, J. M. (2007). Stem cells and the regeneration of the aging cardiovascular system. Circulation Research, 100, 1116–1127.PubMedCrossRefGoogle Scholar
  132. 132.
    Bhandoola, A., von Boehmer, H., Petrie, H. T., & Zuniga-Pflucker, J. C. (2007). Commitment and development potential of extrathymic and intrathymic T cell precursors: Plenty to choose from. Immunity, 26, 678–689.PubMedCrossRefGoogle Scholar
  133. 133.
    Yunis, E. J., Zuniga, J., Koda, P. S., Husain, Z., Romero, V., et al. (2006). Stem cells in aging: Influence of ontogenic, genetic and environmental factors. Journal of Stem Cells, 1, 125–147.PubMedGoogle Scholar
  134. 134.
    Fendrick, A. M., & Baldwin, J. L. (2001). Allergen-induced inflammation and the role of immunoglobulin E (IgE). American Journal of Therapeutics, 8, 291–297.PubMedCrossRefGoogle Scholar
  135. 135.
    Emre, Y., Hurtaud, C., Karaca, M., Nubel, T., et al. (2007). Role of uncoupling protein UCP2 in cell-mediated immunity: How macrophage-mediated insulitis is accelerated in a model of autoimmune diabetes. Proceedings of the National Academy of Science of the United States of America, 104, 19085–19090.CrossRefGoogle Scholar
  136. 136.
    al-Sarireh, B., & Eremin, O. (2000). Tumour-associated macrophages (TAMs): Disordered function, immune suppression and progressive tumour growth. Journal of the Royal College of Surgeons of Edinburg, 45, 1–16.Google Scholar
  137. 137.
    Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174, 4880–4891.Google Scholar
  138. 138.
    Mantovani, A., Locati, M., Vecchi, A., Sozzani, S., & Allavena, P. (2001). Decoy receptors: A strategy to regulate inflammatory cytokines and chemokines. Trends in Immunology, 22, 328–336.PubMedCrossRefGoogle Scholar
  139. 139.
    Mantovani, A., Sica, A., Sozzani, S., Allavena, P., et al. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.PubMedCrossRefGoogle Scholar
  140. 140.
    Noel, W., Raes, G., Hassanzadeh Ghassabeh, G., De Baetselier, P., et al. (2004). Alternatively activated macrophages during parasite infections. Trends in Parasitology, 20, 126–133.PubMedCrossRefGoogle Scholar
  141. 141.
    Willment, J. A., Lin, H. H., Reid, D. M., Taylor, P. R., et al. (2003). Dectin-1 expression and function are enhanced on alternatively activated GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. Journal of Immunology, 171, 4569–4573.Google Scholar
  142. 142.
    Nardin, A., & Abastado, J. P. (2008). Macrophages and cancer. Frontiers in Bioscience, 13, 3494–3505.PubMedCrossRefGoogle Scholar
  143. 143.
    Massi, D., Marconi, C., Franchi, A., Bianchini, F., et al. (2007). Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: Evidence from human and experimental tumors. Human Pathology, 38, 1516–1525.PubMedCrossRefGoogle Scholar
  144. 144.
    Ochoa, A. C., Zea, A. H., Hernandez, C., & Rodriguez, P. C. (2007). Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clinical Cancer Research, 13, 721s–726s.PubMedCrossRefGoogle Scholar
  145. 145.
    Accioly, M. T., Pacheco, P., Maya-Monteiro, C. M., Carrossini, N., et al. (2008). Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Research, 68, 1732–1740.PubMedCrossRefGoogle Scholar
  146. 146.
    Cahlin, C., Lonnroth, C., Arvidsson, A., Nordgren, S., & Lundholm, K. (2008). Growth associated proteins in tumor cells and stroma related to disease progression of colon cancer accounting for tumor tissue PGE2 content. International Journal of Oncology, 32, 909–918.PubMedGoogle Scholar
  147. 147.
    Liang, X., Wu, L., Wang, Q., Hand, T., et al. (2007). Function of COX-2 and prostaglandins in neurological diseases. Journal of Molecular Neuroscience, 33, 94–99.PubMedCrossRefGoogle Scholar
  148. 148.
    Zisman, T. L., & Rubin, D. T. (2008). Colorectal cancer and dysplasia in inflammatory bowel disease. World Journal of Gastroenterology, 14, 2662–2669.PubMedCrossRefGoogle Scholar
  149. 149.
    Isik, A., Koca, S. S., Ustundag, B., & Selek, S. (2007). Decreased total antioxidant response and increased oxidative stress in Behcet’s disease. Tohoku Journal of Experimental Medicine, 212, 133–141.PubMedCrossRefGoogle Scholar
  150. 150.
    Mytar, B., Siedlar, M., Woloszyn, M., Ruggiero, L., et al. (1999). Induction of reactive oxygen intermediates in human monocytes by tumor cells and their role in spontaneous cytotoxicity. British Journal of Cancer, 79, 737–743.PubMedCrossRefGoogle Scholar
  151. 151.
    Busi, J. V., Mohr, S., & Grant, M. B. (2008). Hyperglycemia-induced reactive oxygen species toxicity to endothelial cells is dependent on paracrine mediators. Diabetes, 57, 1952–1965.CrossRefGoogle Scholar
  152. 152.
    Johnson, F., & Giulivi, C. (2005). Superoxide dismutases and their impact upon human health. Molecular Aspects of Medicine, 26, 340–352.PubMedCrossRefGoogle Scholar
  153. 153.
    Ugur, M., Yildirim, K., Kiziltunc, A., Erdal, A., Karatay, S., & Senel, K. (2004). Correlation between soluble intercellular adhesion molecule 1 level and extracellular superoxide dismutase activity in rheumatoid arthritis: A possible association with disease activity. Scandinavian Journal of Rheumatology, 33, 239–243.PubMedCrossRefGoogle Scholar
  154. 154.
    Afonso, V., Champy, R., Mitrovic, D., Collin, P., & Lomri, A. (2007). Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine, 74, 324–329.PubMedCrossRefGoogle Scholar
  155. 155.
    Haddad, J. J. (2002). Antioxidant and prooxidant mechanisms in the regulation of redox (y)-sensitive transcription factors. Cell Signal, 14, 879–897.PubMedCrossRefGoogle Scholar
  156. 156.
    Valko, M., Morris, H., & Cronin, M. T. (2005). Metals, toxicity and oxidative stress. Current Medicinal Chemistry, 12, 1161–1208.PubMedCrossRefGoogle Scholar
  157. 157.
    Ginaldi, L., Martinis, M. D., Monti, D., & Franceschi, C. (2005). Chronic antigenic load and apoptosis in immunosenescence. Trends in Immunology, 28, 79–84.CrossRefGoogle Scholar
  158. 158.
    Muller, A. J., Sharma, M. D., Chandler, P. R., Duhadaway, J. B., Everhart, M. E., et al. (2008). Chronic inflammation that facilitate tumor progression create local immune suppression by inducing indoleamine 2,3 dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 105, 17073–17078.PubMedCrossRefGoogle Scholar
  159. 159.
    Katoh, M., & Katoh, M. (2007). STAT3-induced WNT5A signaling loop in embryonic stem cells, adult normal tissues, chronic persistent inflammation, rheumatoid arthritis and cancer (Review). International Journal of Molecular Medicine, 19, 273–278.PubMedGoogle Scholar
  160. 160.
    Zhu, X., Gui, J., Dohkan, J., Cheng, L., et al. (2007). Lymphohematopoietic progenitors do not have a synchronized defect with age-related thymic involution. Aging Cell, 6, 663–672.PubMedCrossRefGoogle Scholar
  161. 161.
    Candore, G., Balistreri, C. R., Colonna-Romano, G., Grimaldi, M. P., et al. (2008). Immunosenescence and anti-immunusenescence therapies: The case of probiotics. Rejuvenation Research, 11, 425–432.PubMedCrossRefGoogle Scholar
  162. 162.
    Taupin, P. (2008). Adult neurogenesis, neuroinflammation and therapeutic potential of adult neural stem cells. International Journal of Medicinal Science, 5, 127–132.Google Scholar
  163. 163.
    Wada, H., Masuda, K., Satoh, R., Kakugawa, K., et al. (2008). Adult T-cell progenitors retain myeloid potential. Nature, 452, 768–772.PubMedCrossRefGoogle Scholar
  164. 164.
    Huttunen, M., Naukkarinen, A., Horsmanheimo, M., & Harvima, I. T. (2002). Transient production of stem cell factor in dermal cells but increasing expression of Kit receptor in mast cells during normal wound healing. Archives of Dermatological Research, 294, 324–330.PubMedGoogle Scholar
  165. 165.
    Nikolich-Zugich, J. (2008). Ageing and life-long maintenance of T-cell subsets in the face of latent persistence infections. Nature Reviews Immunology, 8, 512–522.PubMedCrossRefGoogle Scholar
  166. 166.
    Kuilman, T., Michaloglou, C., Vredeveld, L. C., Douma, S., et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell, 133, 1019–1031.PubMedCrossRefGoogle Scholar
  167. 167.
    Snanoudi, R., Beaudreuil, S., Arzouk, N., de Preneuf, H., et al. (2005). Immunological strategies targeting B cells in organ grafting. Transplantation, 79, S33–S36.CrossRefGoogle Scholar
  168. 168.
    Yung, R. L., & Julius, A. (2008). Epigenetics, aging, and autoimmunity. Autoimmunity, 41, 329–335.PubMedCrossRefGoogle Scholar
  169. 169.
    Shames, D. S., Minna, J. D., & Gazdar, A. F. (2007). DNA methylation in health, disease, and cancer. Current Molecular Medicine, 7, 85–102.PubMedCrossRefGoogle Scholar
  170. 170.
    Martin, G. M. (2007). The genetics and epigenetics of altered proliferative homeostasis in ageing and cancer. Mechanisms of Ageing and Development, 128, 9–12.PubMedCrossRefGoogle Scholar
  171. 171.
    Duff, G. W. (2007). Influence of genetics on disease susceptibility and progression. Nutrition Reviews, 65, S177–S181.PubMedCrossRefGoogle Scholar
  172. 172.
    Ushijima, T., & Okochi-Takada, E. (2005). Aberrant methylation in cancer cells: Where do they come from. Cancer Science, 96, 206–211.PubMedCrossRefGoogle Scholar
  173. 173.
    Sedivy, J. M., Banumathy, G., & Adams, P. D. (2008). Aging by epigenetics—A consequence of chromatin damage? Experimental Cell Research, 314, 1909–1917.PubMedCrossRefGoogle Scholar
  174. 174.
    Maekawa, M., & Watanabe, Y. (2007). Epigenetics: Relations to disease and laboratory findings. Current Medicinal Chemistry, 14, 2642–2653.PubMedCrossRefGoogle Scholar
  175. 175.
    Deng, Y., Chan, S. S., & Chang, S. (2008). Telomere dysfunction and tumour suppression: The senescence connection. Nature Reviews Cancer, 8, 450–458.PubMedCrossRefGoogle Scholar
  176. 176.
    Aubert, G., & Lansdorp, P. M. (2008). Telomeres and aging. Physiological Reviews, 88, 557–579.PubMedCrossRefGoogle Scholar
  177. 177.
    Azzalin, C. M., & Lingner, J. (2008). Telomeres: The silence is broken. Cell Cycle, 7, 1161–1165.PubMedGoogle Scholar
  178. 178.
    Ju, Z., & Rudolph, K. L. (2006). Telomeres and telomerase in stem cells during aging and disease. Genome Dynamics, 1, 84–103.PubMedCrossRefGoogle Scholar
  179. 179.
    Cong, Y., & Shay, J. W. (2008). Actions of human telomerase beyond telomeres. Cell Research, 18, 725–732.PubMedCrossRefGoogle Scholar
  180. 180.
    Han, J., & Sun, P. (2007). The pathways to tumor suppression via route p38. Trends in Biochemical Sciences, 32, 364–371.PubMedCrossRefGoogle Scholar
  181. 181.
    Song, Z., Ju, Z., & Rudolph, K. L. (2009). Cell intrinsic and extrinsic mechanisms of stem cell aging depend on telomere status. Experimental Gerontology, 44, 75–82.PubMedCrossRefGoogle Scholar
  182. 182.
    Osborne, C., Wilson, P., & Tripathy, D. (2004). Oncogenes and tumor suppressor genes in breast cancer: Potential diagnostic and therapeutic applications. Oncologist, 9, 361–377.PubMedCrossRefGoogle Scholar
  183. 183.
    Hince, M., Sakkal, S., Vlahos, K., Dudakov, J., et al. (2008). The role of sex steroids and gonadectomy in the control of thymic involution. Cellular Immunology, 252, 122–138.PubMedCrossRefGoogle Scholar
  184. 184.
    Leowattana, W. (2001). DHEA(S): The fountain of youth. Journal of Medicinal Association of Thailand, 84(2), 5605–5612.Google Scholar
  185. 185.
    Bosland, M. C. (2006). Sex steroids and prostate carcinogenesis: Integrated, multifactorial working hypothesis. Annals of the New York Academy of Sciences, 1089, 168–176.PubMedCrossRefGoogle Scholar
  186. 186.
    Risbridger, G. P., Ellem, S. J., & McPherson, S. J. (2007). Estrogen action on the prostate gland: A critical mix of endocrine and paracrine signaling. Journal of Molecular Endocrinology, 39, 183–188.PubMedCrossRefGoogle Scholar
  187. 187.
    Mikkola, T. S., & Clarkson, T. B. (2002). Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovascular Research, 53, 605–619.PubMedCrossRefGoogle Scholar
  188. 188.
    Schwartz, A. G., & Pashko, L. L. (2004). Dehydroepiandosterone, glucose-6-phosphate dehydrogenase, and longevity. Ageing Research Review, 3, 171–187.CrossRefGoogle Scholar
  189. 189.
    Schumacher, M., Guennoun, R., Stein, D. G., & De Nicola, A. F. (2007). Progestrone: Therapeutic opportunities for neuroprotection and myelin repair. Pharmacology & Therapeutics, 116, 77–106.CrossRefGoogle Scholar
  190. 190.
    Godsland, I. F., & Johnston, D. G. (2008). Co-association between insulin sensitivity and measures of liver function, subclinical inflammation, and hematology. Metabolism, 57, 1190–1197.PubMedCrossRefGoogle Scholar
  191. 191.
    Harvima, I. T., Lappalainen, K., Hirvonen, M.-R., Matto, M., et al. (2004). Heparin modulate the growth and adherence and augments the growth-inhibitory action of TNF-a on cultured human keratinocytes. Journal of Cellular Biochemistry, 92, 372–386.PubMedCrossRefGoogle Scholar
  192. 192.
    Oto, J., Suzue, A., Inui, D., Fukuta, Y., et al. (2008). Plasma proinflammatory and anti-inflammatory cytokine and catecholamines as predictors of neurological outcome in acute stroke patients. Journal of Anesthesia, 22, 207–212.PubMedCrossRefGoogle Scholar
  193. 193.
    Bajenoff, M., Glaichenhaus, N., & Germain, R. N. (2008). Fibroblastic reticular cells guide T lymphocyte entry into and migration within the splenic T cell zone. Journal of Immunology, 181, 3947–3954.Google Scholar
  194. 194.
    Fischetti, F., & Tedesco, F. (2006). Cross-talk between the complement system and endothelial cells in physiologic conditions and in vascular diseases. Autoimmunity, 39, 417–428.PubMedCrossRefGoogle Scholar
  195. 195.
    Li, W., Shen, S., Khatami, M., & Rockey, J. H. (1984). Stimulation of retinal capillary pericyte protein and collagen synthesis in culture by high glucose concentration. Diabetes, 33, 785–789.PubMedCrossRefGoogle Scholar
  196. 196.
    Khatami, M. (1988). Na+-Linked active transport of ascorbate into cultured bovine retinal pigment epithelial cells: Heterologous inhibition by glucose. Membrane Biochemistry, 7, 115–130.CrossRefGoogle Scholar
  197. 197.
    Li, W., Shen, S., Robertson, G., Khatami, M., & Rockey, J. H. (1984). Increased solubility of newly synthesized collagen in retinal capillary pericyte cultures by nonenzymatic glycosylation. Ophthalmic Research, 16, 315–321.PubMedGoogle Scholar
  198. 198.
    Li, W., Chan, L. S., Khatami, M., & Rockey, J. H. (1986). Non-competitive inhibition of myo-inositol transport in cultured bovine retinal capillary pericytes by glucose and reversal by sorbinil. Biochimica et Biophysica Acta, 857, 198–208.PubMedCrossRefGoogle Scholar
  199. 199.
    Khatami, M., & Rockey, J. H. (1988). Regulation of uptake of inositol by glucose in cultured retinal pigment epithelial cells. Biochemistry and Cell Biology, 66, 951–957.PubMedGoogle Scholar
  200. 200.
    Helleboid, L., Khatami, M., Wei, Z.-G., & Rockey, J. H. (1991). Histamine and prostacyclin: Primary and secondary release in allergic conjunctivitis. Investigative Ophthalmology and Visual Science, 32, 2281–2289.PubMedGoogle Scholar
  201. 201.
    Poulsen, R. C., & Kruger, M. C. (2006). Detrimental effect of eicosapentaenoic acid supplementation on bone following ovariectomy in rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 75, 419–427.CrossRefGoogle Scholar
  202. 202.
    Duque, G. (2008). Bone and fat connection in aging bone. Current Opinion in Rheumatology, 20, 429–434.PubMedCrossRefGoogle Scholar
  203. 203.
    Plourde, M., Jew, S., Cunnane, S. C., & Jones, P. J. (2008). Conjugated linoleic acids: Why the discrepancy between animal and human studies? Nutrition Reviews, 66, 415–421.PubMedCrossRefGoogle Scholar
  204. 204.
    Basu, S. (2008). F2-isoprostanes in human health and diseases: From molecular mechanisms to clinical implications. Antioxidants Redox Signaling, 10, 1405–1434.PubMedCrossRefGoogle Scholar
  205. 205.
    Tuder, R. M., Yun, J. H., & Graham, B. B. (2008). Cigarette smoke triggers code red: p21CIP1/WAF1/SDI1 switches on danger responses in the lung. American Journal of Respiratory Cell and Molecular Biology, 39, 1–6.PubMedCrossRefGoogle Scholar
  206. 206.
    Zell, J. A., Ignatenko, N. A., Yerushalmi, H. F., Ziogas, A., et al. (2007). Risk and risk reduction involving arginine intake and meat consumption in colorectal tumorigenesis and survival. International Journal of Cancer, 120, 459–468.CrossRefGoogle Scholar
  207. 207.
    Popovic, P. J., Zeh, H. J., 3rd, & Ochoa, J. B. (2007). Arginine and immunity. Journal of Nutrition, 137, 1681S–1686S.PubMedGoogle Scholar
  208. 208.
    Tate, D. J. Jr., Vonderhaar, D. J., Caldas, Y. A., Metover, T., et al. (2008). Effect of arginase II on L-arginine depletion and cell growth in murine cell lines of renal cell carcinoma. Journal of Hematology and Oncology, 1, 1–14.CrossRefGoogle Scholar
  209. 209.
    Tsilidids, K. K., Branchini, C., Guallar, E., Helzlsouer, K. J., et al. (2008). C-reactive protein and colorectal cancer risk: A systematic review of prospective studies. International Journal of Cancer, 123, 1133–1140.CrossRefGoogle Scholar
  210. 210.
    Takanami, I., Takeuchi, K., & Naruke, M. (2000). Mast cell density is associated with angiogenesis and poor prognosis in pulmonary adenocarcinoma. Cancer, 88, 2686–2692.PubMedCrossRefGoogle Scholar
  211. 211.
    Zitvogel, L., Apetoh, L., Ghiringhelli, F., & Kroemer, G. (2008). Immunological aspects of cancer chemotherapy. Nature Reviews Immunology, 8, 59–73.PubMedCrossRefGoogle Scholar
  212. 212.
    Swann, J. B., Vesely, M. D., Silva, A., Sharkey, J., et al. (2008). Demonstration of inflammation-induced cancer and cancer immunoediting during primary tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 105, 652–658.PubMedCrossRefGoogle Scholar
  213. 213.
    Peggs, K. S., Quezada, S. A., Korman, A. J., & Allison, J. P. (2006). Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Current Opinion in Immunology, 18, 206–213.PubMedCrossRefGoogle Scholar
  214. 214.
    Karran, P., & Attard, N. (2008). Thiopurine in current medical practice: Molecular mechanisms and contributions to therapy-related cancer. Nature Reviews Cancer, 8, 24–36.PubMedCrossRefGoogle Scholar
  215. 215.
    Boon, T., Coulie, P. G., Van den Eynde, B. J., & van der Bruggen, P. (2006). Human T cell responses against melanoma. Annual Review of Immunology, 24, 175–208.PubMedCrossRefGoogle Scholar
  216. 216.
    Smyth, M. J., Godfrey, D. I., & Trapani, J. A. (2001). A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunology, 2, 293–299.PubMedCrossRefGoogle Scholar
  217. 217.
    Low, P. S., Henne, W. A., & Doorneweerd, D. D. (2008). Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of Chemical Research, 41, 120–129.PubMedCrossRefGoogle Scholar
  218. 218.
    Peggs, K. S. (2006). Reconstitution of adaptive and innate immunity following allogeneic hematopoietic stem cell transplantation in humans. Cytotherapy, 8, 427–436.PubMedCrossRefGoogle Scholar
  219. 219.
    Ehrlich, P. (1909). Uber den jetzigen Stand der Karzinomforschung. Nederlands Tijdschrift voor Geneeskunde, 5, 273–290.Google Scholar
  220. 220.
    Burnet, M. (1957). Cancer; a biologic approach. I. The processes of control. British Medical Journal, 1, 779–786.PubMedCrossRefGoogle Scholar
  221. 221.
    Thomas, L. (1959). Reactions to homologous tissue antigens in relation to hypersensitivity. In H. S. Lawrence (Ed.), Cellular and humoral aspects of the hypersensitive states (pp. 529–532). New York: Hoeber-Harper.Google Scholar
  222. 222.
    Burnet, F. M. (1971). Immunological surveillance in neoplasia. Transplantation Reviews, 7, 3–25.PubMedGoogle Scholar
  223. 223.
    Stanely, M. A., Pett, M. R., & Coleman, N. (2007). HPV: From infection to cancer. Biochemical Society Transactions, 35, 1456–1460.CrossRefGoogle Scholar
  224. 224.
    Eissa, S., Ahmed, M. I., Said, H., Zaghlool, A., & El-Ahmady, O. (2004). Cell cycle regulation in bladder cancer: Relationship to schistosomiasis. IUBMB Life, 56, 557–564.PubMedCrossRefGoogle Scholar
  225. 225.
    Khatami, M., Donnelly, J. J., Haldar, J. P., & Rockey, J. H. (1989). Massive follicular lymphoid hyperplasia in experimental chronic recurrent allergic conjunctivitis. Archives of Ophthalmology, 107, 433–438.PubMedGoogle Scholar
  226. 226.
    Khatami, M., Donnelly, J. J., John, T., & Rockey, J. H. (1984). Vernal conjunctivitis Model studies in guinea pigs immunized topically with fluoresceinyl ovalbumin. Archives of Ophthalmology, 102, 1683–1688.PubMedGoogle Scholar
  227. 227.
    Khatami, M., Donnelly, J. J., & Rockey, J. H. (1985). Induction and down-regulation of conjunctival type-1 hypersensitivity reactions in guinea pigs sensitized topically with fluoresceinyl ovalbumin. Ophthalmic Research, 17, 139–147.PubMedGoogle Scholar
  228. 228.
    Suldan, Z., Khatami, M., Wei, Z.-G., Donnelly, J. J., et al. (1988). Induction of conjunctival lymphoid hyperplasia by phorbol ester and antigen. FASEB Abstracts, 2, 51.Google Scholar
  229. 229.
    Haldar, J. P., Khatami, M., Donnelly, J. J., & Rockey, J. H. (1988). Experimental allergic conjunctivitis. Production of different isotypes of antibody by conjunctival-associated lymphoid tissue in culture. Regional Immunology, 1, 92–99.PubMedGoogle Scholar
  230. 230.
    Rockey, J. H., Donnelly, J. J., John, T., Khatami, M., et al. (1985). IgE antibodies in ocular immunopathology. In G. R. O’ Conner, & J. W. Chandler (Eds.), Advances in immunology and immunopathology of the eye (pp. 199–202). Masson Publishing.Google Scholar
  231. 231.
    Haldar, J. P., Khatami, M., Lok, J. B., Rockey, J. H., & Donnelly, J. J. (1990). Experimental ocular onchocerciasis. Local and systemic antibody and cell mediated immune response. Tropical Medicine and Parasitology, 41, 234–240.PubMedGoogle Scholar
  232. 232.
    Helleboid, L., Khatami, M., & Rockey, J. H. (1991). Thromboxane and neurotransmitters in Type 1 conjunctival reactions. Investigative Ophthalmology and Visual Science, 32(SUPPL), 679.Google Scholar
  233. 233.
    Donnelly, J. J., Sakla, A. A., Hill, D. E., Lok, J. B., et al. (1987). Effect of diethylcarbamazine citrate and anti-inflammatory drugs on experimental onchocercal punctate keratitis. Ophthalmic Research, 19, 129–134.PubMedCrossRefGoogle Scholar
  234. 234.
    Hansen, A., Gosemann, M., Pruss, A., et al. (2004). Abnormalities in peripheral B cell memory of patients with primary Sjogren’s syndrome. Arthritis and Rheumatism, 50, 1897–1908.PubMedCrossRefGoogle Scholar
  235. 235.
    Leiper, K., Campbell, B. J., Jenkinson, M. D., Milton, J., et al. (2001). Interaction between bacterial peptides, neutrophils and goblet cells: A possible mechanism for neutrophil recruitment and goblet cell depletion in colitis. Clinical Science (London), 101, 395–402.Google Scholar
  236. 236.
    Henson, D. E., & Alborez-Saavedra, J. (Eds.). (2001). In Pathology of incipient neoplasia, 3rd edition. Oxford: Oxford University Press.Google Scholar
  237. 237.
    Khatami, M. (1999). Mediators of chronic inflammation as risk/susceptibility factors for early detection of cancer in an adult population. NCI/NIH documents.Google Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  1. 1.The National Cancer Institute, The National Institutes of HealthBethesdaUSA

Personalised recommendations