Cell Biochemistry and Biophysics

, Volume 54, Issue 1–3, pp 33–46 | Cite as

The R7 RGS Protein Family: Multi-Subunit Regulators of Neuronal G Protein Signaling

  • Garret R. Anderson
  • Ekaterina Posokhova
  • Kirill A. MartemyanovEmail author


G protein-coupled receptor signaling pathways mediate the transmission of signals from the extracellular environment to the generation of cellular responses, a process that is critically important for neurons and neurotransmitter action. The ability to promptly respond to rapidly changing stimulation requires timely inactivation of G proteins, a process controlled by a family of specialized proteins known as regulators of G protein signaling (RGS). The R7 group of RGS proteins (R7 RGS) has received special attention due to their pivotal roles in the regulation of a range of crucial neuronal processes such as vision, motor control, reward behavior, and nociception in mammals. Four proteins in this group, RGS6, RGS7, RGS9, and RGS11, share a common molecular organization of three modules: (i) the catalytic RGS domain, (ii) a GGL domain that recruits Gβ5, an outlying member of the G protein beta subunit family, and (iii) a DEP/DHEX domain that mediates interactions with the membrane anchor proteins R7BP and R9AP. As heterotrimeric complexes, R7 RGS proteins not only associate with and regulate a number of G protein signaling pathway components, but have also been found to form complexes with proteins that are not traditionally associated with G protein signaling. This review summarizes our current understanding of the biology of the R7 RGS complexes including their structure/functional organization, protein–protein interactions, and physiological roles.


G protein signaling RGS proteins Neurons 



We thank Mr. Perry Anderson for his help with illustrations. Studies on R7 RGS proteins in our laboratory are supported by the NIH grants EY018139 and DA 021743. Garret Anderson is a recipient of the Ruth L. Kirschstein National Research Service Award DA024944.


  1. 1.
    Hepler, J. R., & Gilman, A. G. (1992). G proteins. Trends in Biochemical Sciences, 17, 383–387.PubMedCrossRefGoogle Scholar
  2. 2.
    Neer, E. J. (1994). G proteins: critical control points for transmembrane signals. Protein Science, 3, 3–14.PubMedGoogle Scholar
  3. 3.
    Cabrera-Vera, T. M., Vanhauwe, J., Thomas, T. O., Medkova, M., Preininger, A., Mazzoni, M. R., et al. (2003). Insights into G protein structure, function, and regulation. Endocrine Reviews, 24, 765–781.PubMedCrossRefGoogle Scholar
  4. 4.
    Offermanns, S. (2003). G-proteins as transducers in transmembrane signalling. Progress in Biophysics and Molecular Biology, 83, 101–130.PubMedCrossRefGoogle Scholar
  5. 5.
    Gainetdinov, R. R., Premont, R. T., Bohn, L. M., Lefkowitz, R. J., & Caron, M. G. (2004). Desensitization of G protein-coupled receptors and neuronal functions. Annual Review of Neuroscience, 27, 107–144.PubMedCrossRefGoogle Scholar
  6. 6.
    Clapham, D. E., & Neer, E. J. (1997). G protein βγ subunits. Annual Review of Pharmacology and Toxicology, 37, 167–203.PubMedCrossRefGoogle Scholar
  7. 7.
    Bourne, H. R., & Stryer, L. (1992). G proteins: The target sets the tempo. Nature, 358, 541–543.PubMedCrossRefGoogle Scholar
  8. 8.
    Berman, D. M., & Gilman, A. G. (1998). Mammalian RGS proteins: Barbarians at the gate. Journal of Biological Chemistry, 273, 1269–1272.PubMedCrossRefGoogle Scholar
  9. 9.
    Burchett, S. A. (2000). Regulators of G protein signaling: A bestiary of modular protein binding domains. Journal of Neurochemistry, 75, 1335–1351.PubMedCrossRefGoogle Scholar
  10. 10.
    Ross, E. M., & Wilkie, T. M. (2000). GTPase-activating proteins for heterotrimeric G proteins: Regulators of G protein signaling (RGS) and RGS-like proteins. Annual Review of Biochemistry, 69, 795–827.PubMedCrossRefGoogle Scholar
  11. 11.
    Sun, X., Kaltenbronn, K. M., Steinberg, T. H., & Blumer, K. J. (2005). RGS2 is a mediator of nitric oxide action on blood pressure and vasoconstrictor signaling. Molecular Pharmacology, 67, 631–639.PubMedCrossRefGoogle Scholar
  12. 12.
    Rahman, Z., Schwarz, J., Gold, S. J., Zachariou, V., Wein, M. N., Choi, K. H., et al. (2003). RGS9 modulates dopamine signaling in the basal ganglia. Neuron, 38, 941–952.PubMedCrossRefGoogle Scholar
  13. 13.
    Chen, C. K., Burns, M. E., He, W., Wensel, T. G., Baylor, D. A., & Simon, M. I. (2000). Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9–1. Nature, 403, 557–560.PubMedCrossRefGoogle Scholar
  14. 14.
    Xie, Z., Geiger, T. R., Johnson, E. N., Nyborg, J. K., & Druey, K. M. (2008). RGS13 acts as a nuclear repressor of CREB. Molecular Cell, 31, 660–670.PubMedCrossRefGoogle Scholar
  15. 15.
    Cifelli, C., Rose, R. A., Zhang, H., Voigtlaender-Bolz, J., Bolz, S. S., Backx, P. H., et al. (2008). RGS4 regulates parasympathetic signaling and heart rate control in the sinoatrial node. Circulation Research, 103, 527–535.PubMedCrossRefGoogle Scholar
  16. 16.
    Iankova, I., Chavey, C., Clape, C., Colomer, C., Guerineau, N. C., Grillet, N., et al. (2008). Regulator of G protein signaling-4 controls fatty acid and glucose homeostasis. Endocrinology, 149, 5706–5712.PubMedCrossRefGoogle Scholar
  17. 17.
    Cho, H., Park, C., Hwang, I. Y., Han, S. B., Schimel, D., Despres, D., et al. (2008). Rgs5 targeting leads to chronic low blood pressure and a lean body habitus. Molecular and Cellular Biology, 28, 2590–2597.PubMedCrossRefGoogle Scholar
  18. 18.
    Martin-McCaffrey, L., Willard, F. S., Oliveira-dos-Santos, A. J., Natale, D. R., Snow, B. E., Kimple, R. J., et al. (2004). RGS14 is a mitotic spindle protein essential from the first division of the mammalian zygote. Developmental Cell, 7, 763–769.PubMedCrossRefGoogle Scholar
  19. 19.
    Huang, X., Fu, Y., Charbeneau, R. A., Saunders, T. L., Taylor, D. K., Hankenson, K. D., et al. (2006). Pleiotropic phenotype of a genomic knock-in of an RGS-insensitive G184S Gnai2 allele. Molecular and Cellular Biology, 26, 6870–6879.PubMedCrossRefGoogle Scholar
  20. 20.
    Krispel, C. M., Chen, D., Melling, N., Chen, Y. J., Martemyanov, K. A., Quillinan, N., et al. (2006). RGS expression rate-limits recovery of rod photoresponses. Neuron, 51, 409–416.PubMedCrossRefGoogle Scholar
  21. 21.
    Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiological Reviews, 85, 1159–1204.PubMedCrossRefGoogle Scholar
  22. 22.
    Farfel, Z., Bourne, H. R., & Iiri, T. (1999). The expanding spectrum of G protein diseases. New England Journal of Medicine, 340, 1012–1020.PubMedCrossRefGoogle Scholar
  23. 23.
    Burchett, S. A. (2005). Psychostimulants, madness, memory. and RGS proteins? Neuromolecular Medicine, 7, 101–127.PubMedCrossRefGoogle Scholar
  24. 24.
    Hooks, S. B., Martemyanov, K., & Zachariou, V. (2008). A role of RGS proteins in drug addiction. Biochemical Pharmacology, 75, 76–84.PubMedCrossRefGoogle Scholar
  25. 25.
    Burns, M. E., & Arshavsky, V. Y. (2005). Beyond counting photons: trials and trends in vertebrate visual transduction. Neuron, 48, 387–401.PubMedCrossRefGoogle Scholar
  26. 26.
    Koelle, M. R., & Horvitz, H. R. (1996). EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Cell, 84, 115–125.PubMedCrossRefGoogle Scholar
  27. 27.
    Zachariou, V., Georgescu, D., Sanchez, N., Rahman, Z., DiLeone, R., Berton, O., et al. (2003). Essential role for RGS9 in opiate action. Proceedings of the National Academy of Sciences of the United States of America, 100, 13656–13661.PubMedCrossRefGoogle Scholar
  28. 28.
    Garzon, J., Lopez-Fando, A., & Sanchez-Blazquez, P. (2003). The R7 subfamily of RGS proteins assists tachyphylaxis and acute tolerance at mu-opioid receptors. Neuropsychopharmacology, 28, 1983–1990.PubMedGoogle Scholar
  29. 29.
    Gold, S. J., Ni, Y. G., Dohlman, H. G., & Nestler, E. J. (1997). Regulators of G-protein signaling (RGS) proteins: Region-specific expression of nine subtypes in rat brain. Journal of Neuroscience, 17, 8024–8037.PubMedGoogle Scholar
  30. 30.
    Rose, J. J., Taylor, J. B., Shi, J., Cockett, M. I., Jones, P. G., & Hepler, J. R. (2000). RGS7 is palmitoylated and exists as biochemically distinct forms. Journal of Neurochemistry, 75, 2103–2112.PubMedCrossRefGoogle Scholar
  31. 31.
    He, W., Lu, L. S., Zhang, X., El Hodiri, H. M., Chen, C. K., Slep, K. C., et al. (2000). Modules in the photoreceptor RGS9-1.Gβ5L GTPase-accelerating protein complex control effector coupling, GTPase acceleration, protein folding, and stability. Journal of Biological Chemistry, 275, 37093–37100.PubMedCrossRefGoogle Scholar
  32. 32.
    Skiba, N. P., Martemyanov, K. A., Elfenbein, A., Hopp, J. A., Bohm, A., Simonds, W. F., et al. (2001). RGS9-Gβ5 substrate selectivity in photoreceptors—Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex. Journal of Biological Chemistry, 276, 37365–37372.PubMedCrossRefGoogle Scholar
  33. 33.
    Hooks, S. B., Waldo, G. L., Corbitt, J., Bodor, E. T., Krumins, A. M., & Harden, T. K. (2003). RGS6, RGS7, RGS9, and RGS11 stimulate GTPase activity of Gi family G-proteins with differential selectivity and maximal activity. Journal of Biological Chemistry, 278, 10087–10093.PubMedCrossRefGoogle Scholar
  34. 34.
    Witherow, D. S., Wang, Q., Levay, K., Cabrera, J. L., Chen, J., Willars, G. B., et al. (2000). Complexes of the G protein subunit Gβ5 with the regulators of G protein signaling RGS7 and RGS9—Characterization in native tissues and in transfected cells. Journal of Biological Chemistry, 275, 24872–24880.PubMedCrossRefGoogle Scholar
  35. 35.
    Wall, M. A., Coleman, D. E., Lee, E., Iniguez-Lluhi, J. A., Posner, B. A., Gilman, A. G., et al. (1995). The structure of the G protein heterotrimer Giβ1γ2. Cell, 83, 1047–1058.PubMedCrossRefGoogle Scholar
  36. 36.
    McEntaffer, R. L., Natochin, M., & Artemyev, N. O. (1999). Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effect or molecule. Biochemistry, 38, 4931–4937.PubMedCrossRefGoogle Scholar
  37. 37.
    Snow, B. E., Krumins, A. M., Brothers, G. M., Lee, S. F., Wall, M. A., Chung, S., et al. (1998). A G protein gamma subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proceedings of the National Academy of Sciences of the United States of America, 95, 13307–13312.PubMedCrossRefGoogle Scholar
  38. 38.
    Posner, B. A., Gilman, A. G., & Harris, B. A. (1999). Regulators of G protein signaling 6 and 7—Purification of complexes with Gβ5 and assessment of their effects on G protein-mediated signaling pathways. Journal of Biological Chemistry, 274, 31087–31093.PubMedCrossRefGoogle Scholar
  39. 39.
    Martemyanov, K. A., & Arshavsky, V. Y. (2004). Kinetic approaches to study the function of RGS9 isoforms. Methods in Enzymology, 390, 196–209.PubMedCrossRefGoogle Scholar
  40. 40.
    Soundararajan, M., Willard, F. S., Kimple, A. J., Turnbull, A. P., Ball, L. J., Schoch, G. A., et al. (2008). Structural diversity in the RGS domain and its interaction with heterotrimeric G protein alpha-subunits. Proceedings of the National Academy of Sciences of the United States of America, 105, 6457–6462.PubMedCrossRefGoogle Scholar
  41. 41.
    Slep, K. C., Kercher, M. A., He, W., Cowan, C. W., Wensel, T. G., & Sigler, P. B. (2001). Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 A. Nature, 409, 1071–1077.Google Scholar
  42. 42.
    De Alba, E., De Vries, L., Farquhar, M. G., & Tjandra, N. (1999). Solution structure of human GAIP (Galpha interacting protein): A regulator of G protein signaling. Journal of Molecular Biology, 291, 927–939.PubMedCrossRefGoogle Scholar
  43. 43.
    Moy, F. J., Chanda, P. K., Cockett, M. I., Edris, W., Jones, P. G., Mason, K., et al. (2000). NMR structure of free RGS4 reveals an induced conformational change upon binding Galpha. Biochemistry, 39, 7063–7073.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen, Z., Wells, C. D., Sternweis, P. C., & Sprang, S. R. (2001). Structure of the rgRGS domain of p115RhoGEF. Nature Structural Biology, 8, 805–809.PubMedCrossRefGoogle Scholar
  45. 45.
    Cabrera, J. L., De Freitas, F., Satpaev, D. K., & Slepak, V. Z. (1998). Identification of the Gβ5-RGS7 protein complex in the retina. Biochemical and Biophysical Research Communications, 249, 898–902.PubMedCrossRefGoogle Scholar
  46. 46.
    Makino, E. R., Handy, J. W., Li, T. S., & Arshavsky, V. Y. (1999). The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein β subunit. Proceedings of the National Academy of Sciences of the United States of America, 96, 1947–1952.PubMedCrossRefGoogle Scholar
  47. 47.
    Cheever, M. L., Snyder, J. T., Gershburg, S., Siderovski, D. P., Harden, T. K., & Sondek, J. (2008). Crystal structure of the multifunctional Gbeta5-RGS9 complex. Nature Structural & Molecular Biology, 15, 155–162.CrossRefGoogle Scholar
  48. 48.
    Ponting, C. P., & Bork, P. (1996). Pleckstrin’s repeat performance: a novel domain in G-protein signaling? Trends in Biochemical Sciences, 21, 245–246.Google Scholar
  49. 49.
    Anderson, G. R., Semenov, A., Song, J. H., & Martemyanov, K. A. (2007). The membrane anchor R7BP controls the proteolytic stability of the striatal specific RGS protein, RGS9-2. Journal of Biological Chemistry, 282, 4772–4781.PubMedCrossRefGoogle Scholar
  50. 50.
    Chatterjee, T. K., Liu, Z. Y., & Fisher, R. A. (2003). Human RGS6 gene structure, complex alternative splicing, and role of N terminus and G protein gamma-subunit-like (GGL) domain in subcellular localization of RGS6 splice variants. Journal of Biological Chemistry, 278, 30261–30271.PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang, K., Howes, K. A., He, W., Bronson, J. D., Pettenati, M. J., Chen, C. K., et al. (1999). Structure, alternative splicing, and expression of the human RGS9 gene. Gene, 240, 23–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Granneman, J. G., Zhai, Y., Zhu, Z., Bannon, M. J., Burchett, S. A., Schmidt, C. J., et al. (1998). Molecular characterization of human and rat RGS 9L, a novel splice variant enriched in dopamine target regions, and chromosomal localization of the RGS 9 gene. Molecular Pharmacology, 54, 687–694.PubMedGoogle Scholar
  53. 53.
    Rahman, Z., Gold, S. J., Potenza, M. N., Cowan, C. W., Ni, Y. G., He, W., et al. (1999). Cloning and characterization of RGS9-2: A striatal-enriched alternatively spliced product of the RGS9 gene. Journal of Neuroscience, 19, 2016–2026.PubMedGoogle Scholar
  54. 54.
    Giudice, A., Gould, J. A., Freeman, K. B., Rastan, S., Hertzog, P., Kola, I., et al. (2001). Identification and characterization of alternatively spliced murine Rgs11 isoforms: Genomic structure and gene analysis. Cytogenetics and Cell Genetics, 94, 216–224.PubMedCrossRefGoogle Scholar
  55. 55.
    Chatterjee, T. K., & Fisher, R. A. (2003). Mild heat and proteotoxic stress promote unique subcellular trafficking and nucleolar accumulation of RGS6 and other RGS proteins—role of the RGS domain in stress-induced trafficking of RGS proteins. Journal of Biological Chemistry, 278, 30272–30282.PubMedCrossRefGoogle Scholar
  56. 56.
    Thomas, E. A., Danielson, P. E., & Sutcliffe, J. G. (1998). RGS9: A regulator of G-protein signalling with specific expression in rat and mouse striatum. Journal of Neuroscience Research, 52, 118–124.PubMedCrossRefGoogle Scholar
  57. 57.
    Arshavsky, V. Y., Dumke, C. L., Zhu, Y., Artemyev, N. O., Skiba, N. P., Hamm, H. E., et al. (1994). Regulation of transducin GTPase activity in bovine rod outer segments. Journal of Biological Chemistry, 269, 19882–19887.PubMedGoogle Scholar
  58. 58.
    Angleson, J. K., & Wensel, T. G. (1994). Enhancement of rod outer segment GTPase accelerating protein activity by the inhibitory subunit of cGMP phosphodiesterase. Journal of Biological Chemistry, 269, 16290–16296.PubMedGoogle Scholar
  59. 59.
    Otto-Bruc, A., Antonny, B., & Vuong, T. M. (1994). Modulation of the GTPase activity of transducin. Kinetic studies of reconstituted systems. Biochemistry, 33, 15215–15222.PubMedCrossRefGoogle Scholar
  60. 60.
    Skiba, N. P., Hopp, J. A., & Arshavsky, V. Y. (2000). The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein. Journal of Biological Chemistry, 275, 32716–32720.PubMedCrossRefGoogle Scholar
  61. 61.
    Martemyanov, K. A., Hopp, J. A., & Arshavsky, V. Y. (2003). Specificity of G protein-RGS protein recognition is regulated by affinity adapters. Neuron, 38, 857–862.PubMedCrossRefGoogle Scholar
  62. 62.
    Watson, A. J., Katz, A., & Simon, M. I. (1994). A fifth member of the mammalian G-protein β-subunit family. Expression in brain and activation of the β2 isotype of phospholipase C. Journal of Biological Chemistry, 269, 22150–22156.PubMedGoogle Scholar
  63. 63.
    Zhang, J. H., & Simonds, W. F. (2000). Copurification of brain G-protein β5 with RGS6 and RGS7. Journal of Neuroscience 20: RC59-NIL13.Google Scholar
  64. 64.
    Yoshikawa, D. M., Hatwar, M., & Smrcka, A. V. (2000). G protein β5 subunit interactions with α subunits and effectors. Biochemistry, 39, 11340–11347.PubMedCrossRefGoogle Scholar
  65. 65.
    Lindorfer, M. A., Myung, C. S., Savino, Y., Yasuda, H., Khazan, R., & Garrison, J. C. (1998). Differential activity of the G protein β5gamma2 subunit at receptors and effectors. Journal of Biological Chemistry, 273, 34429–34436.PubMedCrossRefGoogle Scholar
  66. 66.
    Mirshahi, T., Mittal, V., Zhang, H., Linder, M. E., & Logothetis, D. E. (2002). Distinct sites on G protein βγ subunits regulate different effector functions. Journal of Biological Chemistry, 277, 36345–36350.PubMedCrossRefGoogle Scholar
  67. 67.
    Zhou, J. Y., Siderovski, D. P., & Miller, R. J. (2000). Selective regulation of N-type Ca channels by different combinations of G-protein βγ subunits and RGS proteins. Journal of Neuroscience, 20, 7143–7148.PubMedGoogle Scholar
  68. 68.
    Maier, U., Babich, A., Macrez, N., Leopoldt, D., Gierschik, P., Illenberger, D., et al. (2000). Gbeta 5gamma 2 is a highly selective activator of phospholipid-dependent enzymes. Journal of Biological Chemistry, 275, 13746–13754.PubMedCrossRefGoogle Scholar
  69. 69.
    Fletcher, J. E., Lindorfer, M. A., De Filippo, J. M., Yasuda, H., Guilmard, M., & Garrison, J. C. (1998). The G protein beta5 subunit interacts selectively with the Gq alpha subunit. Journal of Biological Chemistry, 273, 636–644.PubMedCrossRefGoogle Scholar
  70. 70.
    Watson, A. J., Aragay, A. M., Slepak, V. Z., & Simon, M. I. (1996). A novel form of the G protein β subunit Gβ5 is specifically expressed in the vertebrate retina. Journal of Biological Chemistry, 271, 28154–28160.PubMedCrossRefGoogle Scholar
  71. 71.
    Jones, M. B., & Garrison, J. C. (1999). Instability of the G-protein β5 Subunit in detergent. Analytical Biochemistry, 268, 126–133.PubMedCrossRefGoogle Scholar
  72. 72.
    Sondek, J., & Siderovski, D. P. (2001). Ggamma-like (GGL) domains: New frontiers in G-protein signaling and beta-propeller scaffolding. Biochemical Pharmacology, 61, 1329–1337.PubMedCrossRefGoogle Scholar
  73. 73.
    Snow, B. E., Betts, L., Mangion, J., Sondek, J., & Siderovski, D. P. (1999). Fidelity of G protein β-subunit association by the G protein gamma-subunit-like domains of RGS6, RGS7, and RGS11. Proceedings of the National Academy of Sciences of the United States of America, 96, 6489–6494.PubMedCrossRefGoogle Scholar
  74. 74.
    Yost, E. A., Mervine, S. M., Sabo, J. L., Hynes, T. R., & Berlot, C. H. (2007). Live cell analysis of G protein beta5 complex formation, function, and targeting. Molecular Pharmacology, 72, 812–825.PubMedCrossRefGoogle Scholar
  75. 75.
    Martemyanov, K. A., Yoo, P. J., Skiba, N. P., & Arshavsky, V. Y. (2005). R7BP, a novel neuronal protein interacting with RGS proteins of the R7 family. Journal of Biological Chemistry, 280, 5133–5136.PubMedCrossRefGoogle Scholar
  76. 76.
    Kovoor, A., Chen, C. K., He, W., Wensel, T. G., Simon, M. I., & Lester, H. A. (2000). Co-expression of Gβ5 enhances the function of two Ggamma subunit-like domain-containing regulators of G protein signaling proteins. Journal of Biological Chemistry, 275, 3397–3402.PubMedCrossRefGoogle Scholar
  77. 77.
    Chen, C. K., Eversole-Cire, P., Zhang, H. K., Mancino, V., Chen, Y. J., He, W., et al. (2003). Instability of GGL domain-containing RGS proteins in mice lacking the G protein β-subunit Gβ5. Proceedings of the National Academy of Sciences of the United States of America, 100, 6604–6609.PubMedCrossRefGoogle Scholar
  78. 78.
    Schwindinger, W. F., Giger, K. E., Betz, K. S., Stauffer, A. M., Sunderlin, E. M., Sim-Selley, L. J., et al. (2004). Mice with deficiency of G protein gamma3 are lean and have seizures. Molecular and Cellular Biology, 24, 7758–7768.PubMedCrossRefGoogle Scholar
  79. 79.
    Lobanova, E. S., Finkelstein, S., Herrmann, R., Chen, Y. M., Kessler, C., Michaud, N. A., et al. (2008). Transducin gamma-subunit sets expression levels of alpha- and beta-subunits and is crucial for rod viability. Journal of Neuroscience, 28, 3510–3520.PubMedCrossRefGoogle Scholar
  80. 80.
    Narayanan, V., Sandiford, S. L., Wang, Q., Keren-Raifman, T., Levay, K., & Slepak, V. Z. (2007). Intramolecular interaction between the DEP domain of RGS7 and the Gbeta5 subunit. Biochemistry, 46, 6859–6870.PubMedCrossRefGoogle Scholar
  81. 81.
    Levay, K., Cabrera, J. L., Satpaev, D. K., & Slepak, V. Z. (1999). Gβ5 prevents the RGS7-Gαo interaction through binding to a distinct Ggamma-like domain found in RGS7 and other RGS proteins. Proceedings of the National Academy of Sciences of the United States of America, 96, 2503–2507.PubMedCrossRefGoogle Scholar
  82. 82.
    Karan, S., Zhang, H., Li, S., Frederick, J. M., & Baehr, W. (2008). A model for transport of membrane-associated phototransduction polypeptides in rod and cone photoreceptor inner segments. Vision Research, 48, 442–452.PubMedCrossRefGoogle Scholar
  83. 83.
    Deretic, D. (2006). A role for rhodopsin in a signal transduction cascade that regulates membrane trafficking and photoreceptor polarity. Vision Research, 46, 4427–4433.PubMedCrossRefGoogle Scholar
  84. 84.
    Calvert, P. D., Strissel, K. J., Schiesser, W. E., Jr. Pugh, E. N., & Arshavsky, V. Y. (2006). Light-driven translocation of signaling proteins in vertebrate photoreceptors. Trends in Cell Biology, 16, 560–568.PubMedCrossRefGoogle Scholar
  85. 85.
    Arshavsky, V. Y., Lamb, T. D., & Pugh, E. N., Jr. (2002). G proteins and phototransduction. Annual Review Physiology, 64, 153–187.Google Scholar
  86. 86.
    He, W., Cowan, C. W., & Wensel, T. G. (1998). RGS9, a GTPase accelerator for phototransduction.Neuron 20, 95–102.Google Scholar
  87. 87.
    Martemyanov, K. A., Lishko, P. V., Calero, N., Keresztes, G., Sokolov, M., Strissel, K. J., et al. (2003). The DEP domain determines subcellular targeting of the GTPase activating protein RGS9 in vivo. Journal of Neuroscience, 23, 10175–10181.PubMedGoogle Scholar
  88. 88.
    Lishko, P. V., Martemyanov, K. A., Hopp, J. A., & Arshavsky, V. Y. (2002). Specific binding of RGS9-Gβ5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity. Journal of Biological Chemistry, 277, 24376–24381.PubMedCrossRefGoogle Scholar
  89. 89.
    Hu, G., & Wensel, T. G. (2002). R9AP, a membrane anchor for the photoreceptor GTPase accelerating protein, RGS9-1. Proceedings of the National Academy of Sciences of the United States of America, 99, 9755–9760.PubMedCrossRefGoogle Scholar
  90. 90.
    Anderson, G. R., Lujan, R., Semenov, A., Pravetoni, M., Posokhova, E. N., Song, J. H., et al. (2007). Expression and localization of RGS9-2/Gβ5/R7BP complex in vivo is set by dynamic control of its constitutive degradation by cellular cysteine proteases. Journal of Neuroscience, 27, 14117–14127.PubMedCrossRefGoogle Scholar
  91. 91.
    Drenan, R. M., Doupnik, C. A., Boyle, M. P., Muglia, L. J., Huettner, J. E., Linder, M. E., et al. (2005). Palmitoylation regulates plasma membrane-nuclear shuttling of R7BP, a novel membrane anchor for the RGS7 family. Journal of Cell Biology, 169, 623–633.PubMedCrossRefGoogle Scholar
  92. 92.
    Keresztes, G., Mutai, H., Hibino, H., Hudspeth, A. J., & Heller, S. (2003). Expression patterns of the RGS9-1 anchoring protein R9AP in the chicken and mouse suggest multiple roles in the nervous system. Molecular and Cellular Neurosciences, 24, 687–695.PubMedCrossRefGoogle Scholar
  93. 93.
    Harbury, P. A. (1998). Springs and zippers: Coiled coils in SNARE-mediated membrane fusion. Structure, 6, 1487–1491.PubMedCrossRefGoogle Scholar
  94. 94.
    Chen, Y. A., & Scheller, R. H. (2001). SNARE-mediated membrane fusion. Nature Reviews Molecular Cell Biology, 2, 98–106.PubMedCrossRefGoogle Scholar
  95. 95.
    Burchett, S. A., Flanary, P., Aston, C., Jiang, L., Young, K. H., Uetz, P., et al. (2002). Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae. Journal of Biological Chemistry, 277, 22156–22167.PubMedCrossRefGoogle Scholar
  96. 96.
    Song, J. H., Waataja, J. J., & Martemyanov, K. A. (2006). Subcellular targeting of RGS9–2 is controlled by multiple molecular determinants on its membrane anchor, R7BP. Journal of Biological Chemistry, 281, 15361–15369.PubMedCrossRefGoogle Scholar
  97. 97.
    Drenan, R. M., Doupnik, C. A., Jayaraman, M., Buchwalter, A. L., Kaltenbronn, K. M., Huettner, J. E., et al. (2006). R7BP augments the function of RGS7/Gbeta5 complexes by a plasma membrane-targeting mechanism. Journal of Biological Chemistry, 281, 28222–28231.PubMedCrossRefGoogle Scholar
  98. 98.
    Grabowska, D., Jayaraman, M., Kaltenbronn, K. M., Sandiford, S. L., Wang, Q., Jenkins, S., et al. (2008). Postnatal induction and localization of R7BP, a membrane-anchoring protein for regulator of G protein signaling 7 family-Gbeta5 complexes in brain. Neuroscience, 151, 969–982.PubMedCrossRefGoogle Scholar
  99. 99.
    Bouhamdan, M., Michelhaugh, S. K., Calin-Jageman, I., Ahern-Djamali, S., & Bannon, M. J. (2004). Brain-specific RGS9-2 is localized to the nucleus via its unique proline-rich domain. Biochimica et Biophysica Acta, 1691, 141–150.PubMedGoogle Scholar
  100. 100.
    Zhang, J. H., Barr, V. A., Mo, Y. Y., Rojkova, A. M., Liu, S. H., & Simonds, W. F. (2001). Nuclear localization of G protein β5 and regulator of G protein signaling 7 in neurons and brain. Journal of Biological Chemistry, 276, 10284–10289.PubMedCrossRefGoogle Scholar
  101. 101.
    Hu, G., Zhang, Z., & Wensel, T. G. (2003). Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP. Journal of Biological Chemistry, 278, 14550–14554.PubMedCrossRefGoogle Scholar
  102. 102.
    Baker, S. A., Martemyanov, K. A., Shavkunov, A. S., & Arshavsky, V. Y. (2006). Kinetic mechanism of RGS9-1 potentiation by R9AP. Biochemistry, 45, 10690–10697.PubMedCrossRefGoogle Scholar
  103. 103.
    Baker, S. A., Haeri, M., Yoo, P., Gospe, S. M., III, Skiba, N. P., Knox, B. E., et al. (2008). The outer segment serves as a default destination for the trafficking of membrane proteins in photoreceptors. Journal of Cell Biology, 183, 485–498.PubMedCrossRefGoogle Scholar
  104. 104.
    Cao, Y., Song, H., Okawa, H., Sampath, A. P., Sokolov, M., & Martemyanov, K. A. (2008). Targeting of RGS7/Gbeta5 to the dendritic tips of ON-bipolar cells is independent of its association with membrane anchor R7BP. Journal of Neuroscience, 28, 10443–10449.PubMedCrossRefGoogle Scholar
  105. 105.
    Keresztes, G., Martemyanov, K. A., Krispel, C. M., Mutai, H., Yoo, P. J., Maison, S. F., et al. Absence of the RGS9/Gβ5 GTPase-activating complex in photoreceptors of the R9AP knockout mouse. Journal of Biological Chemistry, 279, 1581–1584.Google Scholar
  106. 106.
    Martemyanov, K. A., Krispel, C. M., Lishko, P. V., Burns, M. E., & Arshavsky, V. Y. (2008). Functional comparison of RGS9 splice isoforms in a living cell. Proceedings of the National Academy of Sciences of the United States of America, 105, 20988–20993.PubMedCrossRefGoogle Scholar
  107. 107.
    Garzon, J., Rodriguez-Munoz, M., Lopez-Fando, A., & Sanchez-Blazquez, P. (2005). Activation of mu-opioid receptors transfers control of Galpha subunits to the regulator of G-protein signaling RGS9-2: Role in receptor desensitization. Journal of Biological Chemistry, 280, 8951–8960.PubMedCrossRefGoogle Scholar
  108. 108.
    Psifogeorgou, K., Papakosta, P., Russo, S. J., Neve, R. L., Kardassis, D., Gold, S. J., et al. (2007). RGS9-2 is a negative modulator of mu-opioid receptor function. Journal of Neurochemistry, 103, 617–625.PubMedCrossRefGoogle Scholar
  109. 109.
    Kovoor, A., Seyffarth, P., Ebert, J., Barghshoon, S., Chen, C. K., Schwarz, S., et al. (2005). D2 dopamine receptors colocalize regulator of G-protein signaling 9-2 (RGS9–2) via the RGS9 DEP domain, and RGS9 knock-out mice develop dyskinesias associated with dopamine pathways. Journal of Neuroscience, 25, 2157–2165.PubMedCrossRefGoogle Scholar
  110. 110.
    Sandiford, S., & Slepak, V. (2009). G5-RGS7 selectively inhibits muscarinic M3 receptor signaling via the interaction between the third intracellular loop of the receptor and the DEP domain of RGS7. Biochemistry, 48, 2282–2289.CrossRefPubMedGoogle Scholar
  111. 111.
    Ballon, D. R., Flanary, P. L., Gladue, D. P., Konopka, J. B., Dohlman, H. G., & Thorner, J. (2006). DEP-domain-mediated regulation of GPCR signaling responses. Cell, 126, 1079–1093.PubMedCrossRefGoogle Scholar
  112. 112.
    Chen, J. G., Willard, F. S., Huang, J., Liang, J. S., Chasse, S. A., Jones, A. M., et al. (2003). A seven-transmembrane RGS protein that modulates plant cell proliferation. Science, 301, 1728–1731.PubMedCrossRefGoogle Scholar
  113. 113.
    Charlton, J. J., Allen, P. B., Psifogeorgou, K., Chakravarty, S., Gomes, I., Neve, R. L., et al. (2008). Multiple actions of spinophilin regulate mu opioid receptor function. Neuron, 58, 238–247.PubMedCrossRefGoogle Scholar
  114. 114.
    Liu, Z., & Fisher, R. A. (2004). RGS6 interacts with DMAP1 and DNMT1 and inhibits DMAP1 transcriptional repressor activity. Journal of Biological Chemistry, 279, 14120–14128.PubMedCrossRefGoogle Scholar
  115. 115.
    Rojkova, A. M., Woodard, G. E., Huang, T. C., Combs, C. A., Zhang, J. H., & Simonds, W. F. (2003). Ggamma subunit-selective G protein beta 5 mutant defines regulators of G protein signaling protein binding requirement for nuclear localization. Journal of Biological Chemistry, 278, 12507–12512.PubMedCrossRefGoogle Scholar
  116. 116.
    Liu, Z. Y., Chatterjee, T. K., & Fisher, R. A. (2002). RGS6 interacts with SCG10 and promotes neuronal differentiation—role of the G gamma subunit-like (GGL) domain of RGS6. Journal of Biological Chemistry, 277, 37832–37839.PubMedCrossRefGoogle Scholar
  117. 117.
    Bouhamdan, M., Yan, H. D., Yan, X. H., Bannon, M. J., & Andrade, R. (2006). Brain-specific regulator of G-protein signaling 9-2 selectively interacts with alpha-actinin-2 to regulate calcium-dependent inactivation of NMDA receptors. Journal of Neuroscience, 26, 2522–2530.PubMedCrossRefGoogle Scholar
  118. 118.
    Hunt, R. A., Edris, W., Chanda, P. K., Nieuwenhuijsen, B., & Young, K. H. (2003). Snapin interacts with the N-terminus of regulator of G protein signaling 7. Biochemical and Biophysical Research Communications, 303, 594–599.PubMedCrossRefGoogle Scholar
  119. 119.
    Kim, E., Arnould, T., Sellin, L., Benzing, T., Comella, N., Kocher, O., et al. (1999). Interaction between RGS7 and polycystin. Proceedings of the National Academy of Sciences of the United States of America, 96, 6371–6376.PubMedCrossRefGoogle Scholar
  120. 120.
    Benzing, T., Kttgen, M., Johnson, M., Schermer, B., Zentgraf, H., Walz, G., et al. (2002). Interaction of 14-3-3 protein with regulator of G protein signaling 7 is dynamically regulated by tumor necrosis factor-α. Journal of Biological Chemistry, 277, 32954–32962.PubMedCrossRefGoogle Scholar
  121. 121.
    Luo, D. G., Xue, T., & Yau, K. W. (2008). How vision begins: an odyssey. Proceedings of the National Academy of Sciences of the United States of America, 105, 9855–9862.PubMedCrossRefGoogle Scholar
  122. 122.
    Pugh, E. N., Jr. (2006). RGS expression level precisely regulates the duration of rod photoresponses. Neuron, 51, 391–393.PubMedCrossRefGoogle Scholar
  123. 123.
    Lyubarsky, A. L., Naarendorp, F., Zhang, X., Wensel, T., Simon, M. I., & Pugh, E. N., Jr. (2001). RGS9-1 is required for normal inactivation of mouse cone phototransduction. Molecular Vision, 7, 71–78.PubMedGoogle Scholar
  124. 124.
    Krispel, C. M., Chen, C. K., Simon, M. I., & Burns, M. E. (2003). Prolonged photoresponses and defective adaptation in rods of Gβ5-/- mice. Journal of Neuroscience, 23, 6965–6971.PubMedGoogle Scholar
  125. 125.
    Nishiguchi, K. M., Sandberg, M. A., Kooijman, A. C., Martemyanov, K. A., Pott, J. W., Hagstrom, S. A., et al. (2004). Defects in RGS9 or its anchor protein R9AP in patients with slow photoreceptor deactivation. Nature, 427, 75–78.PubMedCrossRefGoogle Scholar
  126. 126.
    Cheng, J. Y., Luu, C. D., Yong, V. H., Mathur, R., Aung, T., & Vithana, E. N. (2007). Bradyopsia in an Asian man. Archives of Ophthalmology, 125, 1138–1140.PubMedCrossRefGoogle Scholar
  127. 127.
    Hartong, D. T., Pott, J. W., & Kooijman, A. C. (2007). Six patients with bradyopsia (slow vision): Clinical features and course of the disease. Ophthalmology, 114, 2323–2331.PubMedCrossRefGoogle Scholar
  128. 128.
    Garzon, J., Rodriguez-Diaz, M., Lopez-Fando, A., & Sanchez-Blazquez, P. (2001). RGS9 proteins facilitate acute tolerance to mu-opioid effects. European Journal of Neuroscience, 13, 801–811.PubMedCrossRefGoogle Scholar
  129. 129.
    Kim, K. J., Moriyama, K., Han, K. R., Sharma, M., Han, X., Xie, G. X., et al. (2005). Differential expression of the regulator of G protein signaling RGS9 protein in nociceptive pathways of different age rats. Brain Research. Developmental Brain Research, 160, 28–39.PubMedCrossRefGoogle Scholar
  130. 130.
    Seeman, P., Ko, F., Jack, E., Greenstein, R., & Dean, B. (2007). Consistent with dopamine supersensitivity, RGS9 expression is diminished in the amphetamine-treated animal model of schizophrenia and in postmortem schizophrenia brain. Synapse, 61, 303–309.PubMedCrossRefGoogle Scholar
  131. 131.
    Blundell, J., Hoang, C. V., Potts, B., Gold, S. J., & Powell, C. M. (2008). Motor coordination deficits in mice lacking RGS9. Brain Research, 1190, 78–85.PubMedCrossRefGoogle Scholar
  132. 132.
    Gold, S. J., Hoang, C. V., Potts, B. W., Porras, G., Pioli, E., Kim, K. W., et al. (2007). RGS9-2 negatively modulates L-3, 4-dihydroxyphenylalanine-induced dyskinesia in experimental Parkinson’s disease. Journal of Neuroscience, 27, 14338–14348.PubMedCrossRefGoogle Scholar
  133. 133.
    Cabrera-Vera, T. M., Hernandez, S., Earls, L. R., Medkova, M., Sundgren-Andersson, A. K., Surmeier, D. J., et al. (2004). RGS9-2 modulates D2 dopamine receptor-mediated Ca2+ channel inhibition in rat striatal cholinergic interneurons. Proceedings of the National Academy of Sciences of the United States of America, 101, 16339–16344.PubMedCrossRefGoogle Scholar
  134. 134.
    Tekumalla, P. K., Calon, F., Rahman, Z., Birdi, S., Rajput, A. H., Hornykiewicz, O., et al. (2001). Elevated levels of DeltaFosB and RGS9 in striatum in Parkinson’s disease. Biological Psychiatry, 50, 813–816.PubMedCrossRefGoogle Scholar
  135. 135.
    Burchett, S. A., Volk, M. L., Bannon, M. J., & Granneman, J. G. (1998). Regulators of G protein signaling: rapid changes in mRNA abundance in response to amphetamine. Journal of Neurochemistry, 70, 2216–2219.PubMedGoogle Scholar
  136. 136.
    Burns, M. E., & Wensel, T. G. (2003). From molecules to behavior: New clues for RGS function in the striatum. Neuron, 38, 853–856.PubMedCrossRefGoogle Scholar
  137. 137.
    Sanchez-Blazquez, P., Rodriguez-Diaz, M., Lopez-Fando, A., Rodriguez-Munoz, M., & Garzon, J. (2003). The GBeta5 subunit that associates with the R7 subfamily of RGS proteins regulates mu-opioid effects. Neuropharmacology, 45, 82–95.PubMedCrossRefGoogle Scholar
  138. 138.
    Jedema, H. P., Gold, S. J., Gonzalez-Burgos, G., Sved, A. F., Tobe, B. J., Wensel, T., et al. (2008). Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. European Journal of Neuroscience, 27, 2433–2443.PubMedCrossRefGoogle Scholar
  139. 139.
    Singh, R. K., Shi, J., Zemaitaitis, B. W., & Muma, N. A. (2007). Olanzapine increases RGS7 protein expression via stimulation of the Janus tyrosine kinase-signal transducer and activator of transcription signaling cascade. Journal of Pharmacology and Experimental Therapeutics, 322, 133–140.PubMedCrossRefGoogle Scholar
  140. 140.
    Shelat, P. B., Coulibaly, A. P., Wang, Q., Sun, A. Y., Sun, G. Y., & Simonyi, A. (2006). Ischemia-induced increase in RGS7 mRNA expression in gerbil hippocampus. Neuroscience Letters, 403, 157–161.PubMedCrossRefGoogle Scholar
  141. 141.
    Lopez-Fando, A., Rodriguez-Munoz, M., Sanchez-Blazquez, P., & Garzon, J. (2005). Expression of neural RGS-R7 and Gbeta5 proteins in response to acute and chronic morphine. Neuropsychopharmacology, 30, 99–110.PubMedCrossRefGoogle Scholar
  142. 142.
    Witherow, D. S., Tovey, S. C., Wang, Q., Willars, G. B., & Slepak, V. Z. (2003). G beta 5.RGS7 inhibits G alpha q-mediated signaling via a direct protein-protein interaction. Journal of Biological Chemistry, 278, 21307–21313.PubMedCrossRefGoogle Scholar
  143. 143.
    Shuey, D. J., Betty, M., Jones, P. G., Khawaja, X. Z., & Cockett, M. I. (1998). RGS7 attenuates signal transduction through the Gαq family of heterotrimeric G proteins in mammalian cells. Journal of Neurochemistry, 70, 1964–1972.PubMedCrossRefGoogle Scholar
  144. 144.
    Rao, A., Dallman, R., Henderson, S., & Chen, C. K. (2007). Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. Journal of Neuroscience, 27, 14199–14204.PubMedCrossRefGoogle Scholar
  145. 145.
    Seno, K., Kishigami, A., Ihara, S., Maeda, T., Bondarenko, V. A., Nishizawa,Y., et al. (1998). A possible role of RGS9 in phototransduction - A bridge between the cGMP-phosphodiesterase system and the guanylyl cyclase system. Journal of Biological Chemistry, 273(35), 22169–22172.Google Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Garret R. Anderson
    • 1
  • Ekaterina Posokhova
    • 1
  • Kirill A. Martemyanov
    • 1
    Email author
  1. 1.Department of PharmacologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations