Cell Biochemistry and Biophysics

, Volume 53, Issue 2, pp 53–64 | Cite as

Integrin and Growth Factor Receptor Alliance in Angiogenesis

  • Payaningal R. Somanath
  • Alieta Ciocea
  • Tatiana V. Byzova
Review Paper

Abstract

A sequence of events in vascular and stromal cells maintained in a highly coordinated manner regulates angiogenesis and tissue remodeling. These processes are mediated by the ability of cells to respond to environmental cues and activate surface integrins. Physiological and pathological processes in vascular biology are dependent on the specificity of important signaling mechanisms that are activated through the association between growth factors, their receptors, integrins, and their specific extracellular matrix ligands. A large body of evidence from in vitro and in vivo models demonstrates the importance of coordination of signals from the extracellular environment that activates specific tyrosine kinase receptors and integrins in order to regulate angiogenic processes in vivo. In addition to complex formation between growth factor receptors and integrins, growth factors and cytokines also directly interact with integrins, depending upon their concentration levels in the environment, and differentially regulate integrin-related processes. Recent studies from a number of laboratories including ours have provided important novel insights into the involvement of many signaling events that improve our existing knowledge on the cross-talk between growth factor receptors and integrins in the regulation of angiogenesis. In this review, our focus will be on updating the recent developments in the field of integrin-growth factor receptor associations and their implications in the vascular processes.

References

  1. 1.
    Folkman, J. (2007). Angiogenesis: An organizing principle for drug discovery? Nature Reviews. Drug Discovery, 6(4), 273–286.PubMedGoogle Scholar
  2. 2.
    Folkman, J. (2006). Angiogenesis. Annual Review of Medicine, 57, 1–18.PubMedGoogle Scholar
  3. 3.
    Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 314(1), 15–23.PubMedGoogle Scholar
  4. 4.
    Davis, G. E., & Senger, D. R. (2005). Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circulation Research, 97(11), 1093–1107.PubMedGoogle Scholar
  5. 5.
    Napione, L., Cascone, I., et al. (2007). Integrins: A flexible platform for endothelial vascular tyrosine kinase receptors. Autoimmunity Reviews, 7(1), 18–22.PubMedGoogle Scholar
  6. 6.
    Rousseau, S., Houle, F., et al. (2000). Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells. Trends in Cardiovascular Medicine, 10(8), 321–327.PubMedGoogle Scholar
  7. 7.
    Plow, E. F., Haas, T. A., et al. (2000). Ligand binding to integrins. The Journal of Biological Chemistry, 275(29), 21785–21788.PubMedGoogle Scholar
  8. 8.
    Byzova, T. V., Goldman, C. K., et al. (2002). Adenovirus encoding vascular endothelial growth factor-D induces tissue-specific vascular patterns in vivo. Blood, 99(12), 4434–4442.PubMedGoogle Scholar
  9. 9.
    Byzova, T. V., Rabbani, R., et al. (1998). Role of integrin alpha(v)beta3 in vascular biology. Thrombosis and Haemostasis, 80(5), 726–734.PubMedGoogle Scholar
  10. 10.
    Cheresh, D. A. (1991). Structure, function and biological properties of integrin alpha v beta 3 on human melanoma cells. Cancer Metastasis Reviews, 10(1), 3–10.PubMedGoogle Scholar
  11. 11.
    Brakenhielm, E. (2007). Substrate matters: Reciprocally stimulatory integrin and VEGF signaling in endothelial cells. Circulation Research, 101(6), 536–538.PubMedGoogle Scholar
  12. 12.
    Mahabeleshwar, G. H., & Byzova, T. V. (2007). Angiogenesis in melanoma. Seminars in Oncology, 34(6), 555–565.PubMedGoogle Scholar
  13. 13.
    Mahabeleshwar, G. H., Chen, J., et al. (2008). Integrin affinity modulation in angiogenesis. Cell Cycle, 7(3), 335–347.PubMedGoogle Scholar
  14. 14.
    Mahabeleshwar, G. H., Feng, W., et al. (2006). Integrin signaling is critical for pathological angiogenesis. Journal of Experimental Medicine, 203(11), 2495–2507.PubMedGoogle Scholar
  15. 15.
    Mahabeleshwar, G. H., Feng, W., et al. (2007). Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circulation Research, 101(6), 570–580.PubMedGoogle Scholar
  16. 16.
    Ogita, H., & Takai, Y. (2008). Cross-talk among integrin, cadherin, and growth factor receptor: Roles of nectin and nectin-like molecule. International Review of Cytology, 265, 1–54.PubMedGoogle Scholar
  17. 17.
    Naik, T. U., Naik, M. U., et al. (2008). Junctional adhesion molecules in angiogenesis. Frontiers in Bioscience: A Journal and Virtual Library, 13, 258–262.Google Scholar
  18. 18.
    Hofer, E., & Schweighofer, B. (2007). Signal transduction induced in endothelial cells by growth factor receptors involved in angiogenesis. Thrombosis and Haemostasis, 97(3), 355–363.PubMedGoogle Scholar
  19. 19.
    Serini, G., Napione, L., et al. (2008). Besides adhesion: New perspectives of integrin functions in angiogenesis. Cardiovascular Research, 78(2), 213–222.PubMedGoogle Scholar
  20. 20.
    Serini, G., Napione, L., et al. (2008). Integrins team up with tyrosine kinase receptors and plexins to control angiogenesis. Current Opinion in Hematology, 15(3), 235–242.PubMedGoogle Scholar
  21. 21.
    Suh, D. Y. (2000). Understanding angiogenesis and its clinical applications. Annals of Clinical and Laboratory Science, 30(3), 227–238.PubMedGoogle Scholar
  22. 22.
    Muller, W. E., & Muller, I. M. (2003). Analysis of the sponge [Porifera] gene repertoire: Implications for the evolution of the metazoan body plan. Progress in Molecular and Subcellular Biology, 37, 1–33.PubMedGoogle Scholar
  23. 23.
    Luo, B. H., Carman, C. V., et al. (2007). Structural basis of integrin regulation and signaling. Annual Review of Immunology, 25, 619–647.PubMedGoogle Scholar
  24. 24.
    Stupack, D. G., & Cheresh, D. A. (2004). Integrins and angiogenesis. Current Topics in Developmental Biology, 64, 207–238.PubMedGoogle Scholar
  25. 25.
    Michel, J. B. (2003). Anoikis in the cardiovascular system: Known and unknown extracellular mediators. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(12), 2146–2154.PubMedGoogle Scholar
  26. 26.
    Bryan, B. A., & D’Amore, P. A. (2007). What tangled webs they weave: Rho-GTPase control of angiogenesis. Cellular and Molecular Life Sciences, 64(16), 2053–2065.PubMedGoogle Scholar
  27. 27.
    Kanda, S., Miyata, Y., et al. (2007). Non-receptor protein-tyrosine kinases as molecular targets for antiangiogenic therapy (Review). International Journal of Molecular Medicine, 20(1), 113–121.PubMedGoogle Scholar
  28. 28.
    Pouyssegur, J., Volmat, V., et al. (2002). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochemical Pharmacology, 64(5–6), 755–763.PubMedGoogle Scholar
  29. 29.
    Somanath, P. R., Razorenova, O. V., et al. (2006). Akt1 in endothelial cell and angiogenesis. Cell Cycle, 5(5), 512–518.PubMedGoogle Scholar
  30. 30.
    Phillips, D. R., Nannizzi-Alaimo, L., et al. (2001). Beta3 tyrosine phosphorylation in alphaIIbbeta3 (platelet membrane GP IIb-IIIa) outside-in integrin signaling. Thrombosis and Haemostasis, 86(1), 246–258.PubMedGoogle Scholar
  31. 31.
    Somanath, P. R., Kandel, E. S., et al. (2007). Akt1 signaling regulates integrin activation, matrix recognition, and fibronectin assembly. The Journal of Biological Chemistry, 282(31), 22964–22976.PubMedGoogle Scholar
  32. 32.
    Borges, E., Jan, Y., et al. (2000). Platelet-derived growth factor receptor beta and vascular endothelial growth factor receptor 2 bind to the beta 3 integrin through its extracellular domain. The Journal of Biological Chemistry, 275(51), 39867–39873.PubMedGoogle Scholar
  33. 33.
    Cybulsky, A. V., McTavish, A. J., et al. (1994). Extracellular matrix modulates epidermal growth factor receptor activation in rat glomerular epithelial cells. The Journal of Clinical Investigation, 94(1), 68–78.PubMedGoogle Scholar
  34. 34.
    Soldi, R., Mitola, S., et al. (1999). Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. The EMBO Journal, 18(4), 882–892.PubMedGoogle Scholar
  35. 35.
    Clemmons, D. R., Horvitz, G., et al. (1999). Synthetic alphaVbeta3 antagonists inhibit insulin-like growth factor-I-stimulated smooth muscle cell migration and replication. Endocrinology, 140(10), 4616–4621.PubMedGoogle Scholar
  36. 36.
    Jones, P. L., Crack, J., et al. (1997). Regulation of tenascin-C, a vascular smooth muscle cell survival factor that interacts with the alpha v beta 3 integrin to promote epidermal growth factor receptor phosphorylation and growth. The Journal of Cell Biology, 139(1), 279–293.PubMedGoogle Scholar
  37. 37.
    Maile, L. A., Badley-Clarke, J., et al. (2001). Structural analysis of the role of the beta 3 subunit of the alpha V beta 3 integrin in IGF-I signaling. Journal of Cell Science, 114(Pt 7), 1417–1425.PubMedGoogle Scholar
  38. 38.
    Brooks, P. C., Klemke, R. L., et al. (1997). Insulin-like growth factor receptor cooperates with integrin alpha v beta 5 to promote tumor cell dissemination in vivo. The Journal of Clinical Investigation, 99(6), 1390–1398.PubMedGoogle Scholar
  39. 39.
    Nicholson, W. C., Ge, Z., et al. (1999). Insulin-like growth factor (IGF)-I, IGF-I receptor, and IGF binding protein-3 messenger ribonucleic acids and protein in corpora lutea from prostaglandin F(2alpha)-treated gilts. Biology of Reproduction, 61(6), 1527–1534.PubMedGoogle Scholar
  40. 40.
    Schneller, M., Vuori, K., et al. (1997). Alphavbeta3 integrin associates with activated insulin and PDGFbeta receptors and potentiates the biological activity of PDGF. The EMBO Journal, 16(18), 5600–5607.PubMedGoogle Scholar
  41. 41.
    Serini, G., Valdembri, D., et al. (2006). Integrins and angiogenesis: A sticky business. Experimental Cell Research, 312(5), 651–658.PubMedGoogle Scholar
  42. 42.
    Vuori, K., & Ruoslahti, E. (1994). Association of insulin receptor substrate-1 with integrins. Science, 266(5190), 1576–1578.PubMedGoogle Scholar
  43. 43.
    Doerr, M. E., & Jones, J. I. (1996). The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells. The Journal of Biological Chemistry, 271(5), 2443–2447.PubMedGoogle Scholar
  44. 44.
    Falcioni, R., Antonini, A., et al. (1997). Alpha 6 beta 4 and alpha 6 beta 1 integrins associate with ErbB-2 in human carcinoma cell lines. Experimental Cell Research, 236(1), 76–85.PubMedGoogle Scholar
  45. 45.
    Folgiero, V., Avetrani, P., et al. (2008). Induction of ErbB-3 expression by alpha6beta4 integrin contributes to tamoxifen resistance in ERbeta1-negative breast carcinomas. PLoS ONE, 3(2), e1592.PubMedGoogle Scholar
  46. 46.
    Holmes, D. I., & Zachary, I. (2005). The vascular endothelial growth factor (VEGF) family: Angiogenic factors in health and disease. Genome Biology, 6(2), 209.PubMedGoogle Scholar
  47. 47.
    Lee, C. B., & Socinski, M. A. (2007). Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer: A review of recent clinical trials. Reviews on Recent Clinical Trials, 2(2), 117–120.PubMedGoogle Scholar
  48. 48.
    Soker, S., Takashima, S., et al. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92(6), 735–745.PubMedGoogle Scholar
  49. 49.
    Fong, G. H., Rossant, J., et al. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376(6535), 66–70.PubMedGoogle Scholar
  50. 50.
    Shalaby, F., Rossant, J., et al. (1995). Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 376(6535), 62–66.PubMedGoogle Scholar
  51. 51.
    Nishi, J., Minamino, T., et al. (2008). Vascular endothelial growth factor receptor-1 regulates postnatal angiogenesis through inhibition of the excessive activation of Akt. Circulation Research, 103(3), 261–268.PubMedGoogle Scholar
  52. 52.
    Sato, Y., Kanno, S., et al. (2000). Properties of two VEGF receptors, Flt-1 and KDR, in signal transduction. Annals of the New York Academy of Sciences, 902, 201–205; discussion 205–207.Google Scholar
  53. 53.
    Petrova, T. V., Makinen, T., et al. (1999). Signaling via vascular endothelial growth factor receptors. Experimental Cell Research, 253(1), 117–130.PubMedGoogle Scholar
  54. 54.
    Seetharam, L., Gotoh, N., et al. (1995). A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene, 10(1), 135–147.PubMedGoogle Scholar
  55. 55.
    Takahashi, T., Yamaguchi, S., et al. (2001). A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. The EMBO Journal, 20(11), 2768–2778.PubMedGoogle Scholar
  56. 56.
    Ribatti, D. (2008). The discovery of the placental growth factor and its role in angiogenesis: A historical review. Angiogenesis, 11(3), 215–221.PubMedGoogle Scholar
  57. 57.
    Odorisio, T., Cianfarani, F., et al. (2006). The placenta growth factor in skin angiogenesis. Journal of Dermatological Science, 41(1), 11–19.PubMedGoogle Scholar
  58. 58.
    Xu, L., Cochran, D. M., et al. (2006). Placenta growth factor overexpression inhibits tumor growth, angiogenesis, and metastasis by depleting vascular endothelial growth factor homodimers in orthotopic mouse models. Cancer Research, 66(8), 3971–3977.PubMedGoogle Scholar
  59. 59.
    Byzova, T. V., Goldman, C. K., et al. (2000). A mechanism for modulation of cellular responses to VEGF: Activation of the integrins. Molecular Cell, 6(4), 851–860.PubMedGoogle Scholar
  60. 60.
    Mitola, S., Brenchio, B., et al. (2006). Type I collagen limits VEGFR-2 signaling by a SHP2 protein-tyrosine phosphatase-dependent mechanism 1. Circulation Research, 98(1), 45–54.PubMedGoogle Scholar
  61. 61.
    De, S., Razorenova, O., et al. (2005). VEGF-integrin interplay controls tumor growth and vascularization. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7589–7594.PubMedGoogle Scholar
  62. 62.
    Qi, J. H., & Claesson-Welsh, L. (2001). VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Experimental Cell Research, 263(1), 173–182.PubMedGoogle Scholar
  63. 63.
    Trusolino, L., Cavassa, S., et al. (2000). HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. The FASEB Journal, 14(11), 1629–1640.PubMedGoogle Scholar
  64. 64.
    Inbal, A., & Dardik, R. (2006). Role of coagulation factor XIII (FXIII) in angiogenesis and tissue repair. Pathophysiology of Haemostasis and Thrombosis, 35(1–2), 162–165.PubMedGoogle Scholar
  65. 65.
    Dardik, R., & Inbal, A. (2006). Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): Proposed mechanism for modulation of endothelial cell response to VEGF. Experimental Cell Research, 312(16), 2973–2982.PubMedGoogle Scholar
  66. 66.
    Wang, J. F., Zhang, X. F., et al. (2001). Stimulation of beta 1 integrin induces tyrosine phosphorylation of vascular endothelial growth factor receptor-3 and modulates cell migration. The Journal of Biological Chemistry, 276(45), 41950–41957.PubMedGoogle Scholar
  67. 67.
    Zhang, X., Groopman, J. E., et al. (2005). Extracellular matrix regulates endothelial functions through interaction of VEGFR-3 and integrin alpha5beta1. Journal of Cellular Physiology, 202(1), 205–214.PubMedGoogle Scholar
  68. 68.
    Yang, J. T., Rayburn, H., et al. (1993). Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development, 119(4), 1093–1105.PubMedGoogle Scholar
  69. 69.
    Sheppard, D. (2000). In vivo functions of integrins: Lessons from null mutations in mice. Matrix Biology: Journal of the International Society for Matrix Biology, 19(3), 203–209.Google Scholar
  70. 70.
    Bader, B. L., Rayburn, H., et al. (1998). Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell, 95(4), 507–519.PubMedGoogle Scholar
  71. 71.
    Reynolds, L. E., Wyder, L., et al. (2002). Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins. Nature Medicine, 8(1), 27–34.PubMedGoogle Scholar
  72. 72.
    Su, G., Hodnett, M., et al. (2007). Integrin alphavbeta5 regulates lung vascular permeability and pulmonary endothelial barrier function. American Journal of Respiratory Cell and Molecular Biology, 36(3), 377–386.PubMedGoogle Scholar
  73. 73.
    Johnson, F. M., & Gallick, G. E. (2007). SRC family nonreceptor tyrosine kinases as molecular targets for cancer therapy. Anti-cancer Agents in Medicinal Chemistry, 7(6), 651–659.PubMedGoogle Scholar
  74. 74.
    Kefalas, P., Brown, T. R., et al. (1995). Signalling by the p60c-src family of protein-tyrosine kinases. International Journal of Biochemistry and Cell Biology, 27(6), 551–563.PubMedGoogle Scholar
  75. 75.
    Basson, M. D. (2008). An intracellular signal pathway that regulates cancer cell adhesion in response to extracellular forces. Cancer Research, 68(1), 2–4.PubMedGoogle Scholar
  76. 76.
    Koppikar, P., Choi, S. H., et al. (2008). Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 14(13), 4284–4291.Google Scholar
  77. 77.
    Coluccia, A. M., Cirulli, T., et al. (2008). Validation of PDGFRbeta and c-Src tyrosine kinases as tumor/vessel targets in patients with multiple myeloma: Preclinical efficacy of the novel, orally available inhibitor dasatinib. Blood, 112(4), 1346–1356.PubMedGoogle Scholar
  78. 78.
    Eliceiri, B. P., Paul, R., et al. (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular Cell, 4(6), 915–924.PubMedGoogle Scholar
  79. 79.
    Schwartzberg, P. L., Xing, L., et al. (1997). Rescue of osteoclast function by transgenic expression of kinase-deficient Src in src-/- mutant mice. Genes and Development, 11(21), 2835–2844.PubMedGoogle Scholar
  80. 80.
    Soriano, P., Montgomery, C., et al. (1991). Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 64(4), 693–702.PubMedGoogle Scholar
  81. 81.
    Lowell, C. A., & Soriano, P. (1996). Knockouts of Src-family kinases: Stiff bones, wimpy T cells, and bad memories. Genes and Development, 10(15), 1845–1857.PubMedGoogle Scholar
  82. 82.
    Klinghoffer, R. A., Sachsenmaier, C., et al. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. The EMBO Journal, 18(9), 2459–2471.PubMedGoogle Scholar
  83. 83.
    Salmivirta, K., Talts, J. F., et al. (2002). Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Experimental Cell Research, 279(2), 188–201.PubMedGoogle Scholar
  84. 84.
    Klemke, R. L., Yebra, M., et al. (1994). Receptor tyrosine kinase signaling required for integrin alpha v beta 5-directed cell motility but not adhesion on vitronectin. The Journal of Cell Biology, 127(3), 859–866.PubMedGoogle Scholar
  85. 85.
    Eliceiri, B. P., Klemke, R., et al. (1998). Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. The Journal of Cell Biology, 140(5), 1255–1263.PubMedGoogle Scholar
  86. 86.
    Sahni, A., & Francis, C. W. (2004). Stimulation of endothelial cell proliferation by FGF-2 in the presence of fibrinogen requires alphavbeta3. Blood, 104(12), 3635–3641.PubMedGoogle Scholar
  87. 87.
    Toledo, M. S., Suzuki, E., et al. (2005). Effect of ganglioside and tetraspanins in microdomains on interaction of integrins with fibroblast growth factor receptor. The Journal of Biological Chemistry, 280(16), 16227–16234.PubMedGoogle Scholar
  88. 88.
    Yancopoulos, G. D., Davis, S., et al. (2000). Vascular-specific growth factors and blood vessel formation. Nature, 407(6801), 242–248.PubMedGoogle Scholar
  89. 89.
    Fiedler, U., & Augustin, H. G. (2006). Angiopoietins: A link between angiogenesis and inflammation. Trends in Immunology, 27(12), 552–558.PubMedGoogle Scholar
  90. 90.
    Minshall, R. D., & Malik, A. B. (2006). Transport across the endothelium: Regulation of endothelial permeability. Handbook of Experimental Pharmacology, 176(Pt 1), 107–144.PubMedGoogle Scholar
  91. 91.
    Tsigkos, S., Zhou, Z., et al. (2006). Regulation of Ang2 release by PTEN/PI3-kinase/Akt in lung microvascular endothelial cells. Journal of Cellular Physiology, 207(2), 506–511.PubMedGoogle Scholar
  92. 92.
    Roviezzo, F., Tsigkos, S., et al. (2005). Angiopoietin-2 causes inflammation in vivo by promoting vascular leakage. Journal of Pharmacology and Experimental Therapeutics, 314(2), 738–744.PubMedGoogle Scholar
  93. 93.
    Cascone, I., Napione, L., et al. (2005). Stable interaction between alpha5beta1 integrin and Tie2 tyrosine kinase receptor regulates endothelial cell response to Ang-1. The Journal of Cell Biology, 170(6), 993–1004.PubMedGoogle Scholar
  94. 94.
    Thamilselvan, V., Craig, D. H., et al. (2007). FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3 K/Akt pathway. The FASEB Journal, 21(8), 1730–1741.PubMedGoogle Scholar
  95. 95.
    Eliceiri, B. P., Puente, X. S., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. The Journal of Cell Biology, 157(1), 149–160.PubMedGoogle Scholar
  96. 96.
    Lesko, E., & Majka, M. (2008). The biological role of HGF-MET axis in tumor growth and development of metastasis. Frontiers in Bioscience: A Journal and Virtual Library, 13, 1271–1280.Google Scholar
  97. 97.
    Comoglio, P. M., Giordano, S., et al. (2008). Drug development of MET inhibitors: Targeting oncogene addiction and expedience. Nature Reviews. Drug Discovery, 7(6), 504–516.PubMedGoogle Scholar
  98. 98.
    Bell, L. N., Cai, L., et al. (2008). A central role for hepatocyte growth factor in adipose tissue angiogenesis. American Journal of Physiology. Endocrinology and Metabolism, 294(2), E336–E344.PubMedGoogle Scholar
  99. 99.
    Rahman, S., Patel, Y., et al. (2005). Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biology, 6(1), 8.PubMedGoogle Scholar
  100. 100.
    Chung, J., Yoon, S. O., et al. (2004). The Met receptor and alpha 6 beta 4 integrin can function independently to promote carcinoma invasion. The Journal of Biological Chemistry, 279(31), 32287–32293.PubMedGoogle Scholar
  101. 101.
    Nikolopoulos, S. N., Blaikie, P., et al. (2004). Integrin beta4 signaling promotes tumor angiogenesis. Cancer Cell, 6(5), 471–483.PubMedGoogle Scholar
  102. 102.
    Kawasaki, T., Kitsukawa, T., et al. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Development, 126(21), 4895–4902.PubMedGoogle Scholar
  103. 103.
    Kruger, R. P., Aurandt, J., et al. (2005). Semaphorins command cells to move. Nature Reviews. Molecular Cell Biology, 6(10), 789–800.PubMedGoogle Scholar
  104. 104.
    Soker, S., Miao, H. Q., et al. (2002). VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. Journal of Cellular Biochemistry, 85(2), 357–368.PubMedGoogle Scholar
  105. 105.
    Serini, G., Valdembri, D., et al. (2003). Class 3 semaphorins control vascular morphogenesis by inhibiting integrin function. Nature, 424(6947), 391–397.PubMedGoogle Scholar
  106. 106.
    Deutsch, U. (2004). Semaphorins guide PerPlexeD endothelial cells. Developmental Cell, 7(1), 1–2.PubMedGoogle Scholar
  107. 107.
    Guttmann-Raviv, N., Shraga-Heled, N., et al. (2007). Semaphorin-3A and semaphorin-3F work together to repel endothelial cells and to inhibit their survival by induction of apoptosis. The Journal of Biological Chemistry, 282(36), 26294–26305.PubMedGoogle Scholar
  108. 108.
    Geretti, E., Shimizu, A., et al. (2008). Neuropilin structure governs VEGF and semaphorin binding and regulates angiogenesis. Angiogenesis, 11(1), 31–39.PubMedGoogle Scholar
  109. 109.
    Banu, N., Teichman, J., et al. (2006). Semaphorin 3C regulates endothelial cell function by increasing integrin activity. The FASEB Journal, 20(12), 2150–2152.PubMedGoogle Scholar
  110. 110.
    Kinbara, K., Goldfinger, L. E., et al. (2003). Ras GTPases: Integrins’ friends or foes? Nature Reviews. Molecular Cell Biology, 4(10), 767–776.PubMedGoogle Scholar
  111. 111.
    Oinuma, I., Ishikawa, Y., et al. (2004). The Semaphorin 4D receptor Plexin-B1 is a GTPase activating protein for R-Ras. Science, 305(5685), 862–865.PubMedGoogle Scholar
  112. 112.
    Dallas, S. L., Sivakumar, P., et al. (2005). Fibronectin regulates latent transforming growth factor-beta (TGF beta) by controlling matrix assembly of latent TGF beta-binding protein-1. The Journal of Biological Chemistry, 280(19), 18871–18880.PubMedGoogle Scholar
  113. 113.
    Vlahakis, N. E., Young, B. A., et al. (2007). Integrin alpha9beta1 directly binds to vascular endothelial growth factor (VEGF)-A and contributes to VEGF-A-induced angiogenesis. The Journal of Biological Chemistry, 282(20), 15187–15196.PubMedGoogle Scholar
  114. 114.
    Vlahakis, N. E., Young, B. A., et al. (2005). The lymphangiogenic vascular endothelial growth factors VEGF-C and -D are ligands for the integrin alpha9beta1. The Journal of Biological Chemistry, 280(6), 4544–4552.PubMedGoogle Scholar
  115. 115.
    Kajiya, K., Hirakawa, S., et al. (2005). Hepatocyte growth factor promotes lymphatic vessel formation and function. The EMBO Journal, 24(16), 2885–2895.PubMedGoogle Scholar
  116. 116.
    Mori, S., Wu, C. Y., et al. (2008). Direct binding of integrin alphavbeta3 to FGF1 plays a role in FGF1 signaling. The Journal of Biological Chemistry, 283(26), 18066–18075.PubMedGoogle Scholar
  117. 117.
    Shim, W. S., Ho, I. A., et al. (2007). Angiopoietin: A TIE(d) balance in tumor angiogenesis. Molecular Cancer Research, 5(7), 655–665.PubMedGoogle Scholar
  118. 118.
    Carlson, T. R., Feng, Y., et al. (2001). Direct cell adhesion to the angiopoietins mediated by integrins. The Journal of Biological Chemistry, 276(28), 26516–26525.PubMedGoogle Scholar
  119. 119.
    Dallabrida, S. M., Ismail, N., et al. (2005). Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circulation Research, 96(4), e8–e24.PubMedGoogle Scholar
  120. 120.
    Hu, B., Jarzynka, M. J., et al. (2006). Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway. Cancer Research, 66(2), 775–783.PubMedGoogle Scholar
  121. 121.
    Dallabrida, S. M., Ismail, N. S., et al. (2008). Integrin binding angiopoietin-1 monomers reduce cardiac hypertrophy. The FASEB Journal, 22(8), 3010–3023.PubMedGoogle Scholar
  122. 122.
    Imanishi, Y., Hu, B., et al. (2007). Angiopoietin-2 stimulates breast cancer metastasis through the alpha(5)beta(1) integrin-mediated pathway. Cancer Research, 67(9), 4254–4263.PubMedGoogle Scholar
  123. 123.
    Kalluri, R. (2003). Basement membranes: Structure, assembly and role in tumour angiogenesis. Nature Reviews Cancer, 3(6), 422–433.PubMedGoogle Scholar
  124. 124.
    Shiojima, I., & Walsh, K. (2002). Role of Akt signaling in vascular homeostasis and angiogenesis. Circulation Research, 90(12), 1243–1250.PubMedGoogle Scholar
  125. 125.
    Wickstrom, S. A., Alitalo, K., et al. (2004). An endostatin-derived peptide interacts with integrins and regulates actin cytoskeleton and migration of endothelial cells. The Journal of Biological Chemistry, 279(19), 20178–20185.PubMedGoogle Scholar
  126. 126.
    Rehn, M., Veikkola, T., et al. (2001). Interaction of endostatin with integrins implicated in angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 98(3), 1024–1029.PubMedGoogle Scholar
  127. 127.
    Maeshima, Y., Sudhakar, A., et al. (2002). Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science, 295(5552), 140–143.PubMedGoogle Scholar
  128. 128.
    Sudhakar, A., Sugimoto, H., et al. (2003). Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4766–4771.PubMedGoogle Scholar
  129. 129.
    Sudhakar, A., Nyberg, P., et al. (2005). Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. The Journal of Clinical Investigation, 115(10), 2801–2810.PubMedGoogle Scholar
  130. 130.
    Magnon, C., Galaup, A., et al. (2005). Canstatin acts on endothelial and tumor cells via mitochondrial damage initiated through interaction with alphavbeta3 and alphavbeta5 integrins. Cancer Research, 65(10), 4353–4361.PubMedGoogle Scholar
  131. 131.
    Wahl, M. L., Kenan, D. J., et al. (2005). Angiostatin’s molecular mechanism: Aspects of specificity and regulation elucidated. Journal of Cellular Biochemistry, 96(2), 242–261.PubMedGoogle Scholar
  132. 132.
    Gutheil, J. C., Campbell, T. N., et al. (2000). Targeted antiangiogenic therapy for cancer using Vitaxin: A humanized monoclonal antibody to the integrin alphavbeta3. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 6(8), 3056–3061.Google Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Payaningal R. Somanath
    • 1
  • Alieta Ciocea
    • 1
  • Tatiana V. Byzova
    • 1
  1. 1.Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research InstituteThe Cleveland ClinicClevelandUSA

Personalised recommendations