Calponin in Non-Muscle Cells

Review Paper

Abstract

Calponin is an actin filament-associated regulatory protein expressed in smooth muscle and non-muscle cells. Calponin is an inhibitor of the actin-activated myosin ATPase. Three isoforms of calponin have been found in the vertebrates. Whereas the role of calponin in regulating smooth muscle contractility has been extensively investigated, the function and regulation of calponin in non-muscle cells is much less understood. Based on recent progresses in the field, this review focuses on the studies of calponin in non-muscle cells, especially its regulation by cytoskeleton tension and function in cell motility. The ongoing research has demonstrated that calponin plays a regulatory role in non-muscle cell motility. Therefore, non-muscle calponin is an attractive target for the control of cell proliferation, migration and phagocytosis, and the treatment of cancer metastasis.

Keywords

Calponin Cytoskeleton Cell motility Migration Proliferation Phagocytosis Cancer metastasis 

References

  1. 1.
    Takahashi, K., Hiwada, K., & Kokubu, T. (1986). Isolation and characterization of a 34,000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochemical and Biophysical Research Communications, 141, 20–26.PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi, K., Hiwada, K., & Kokubu, T. (1988). Vascular smooth muscle calponin A novel troponin T like protein. Hypertension, 11, 620–626.PubMedGoogle Scholar
  3. 3.
    Jin, J. P., Zhang, Z. L., & Bautista, J. A. (2008). Isoform diversity, regulation, and functional adaptation of troponin and calponin. Critical Review in Eukaryotic Gene Expression, 18, 93–124.Google Scholar
  4. 4.
    Strasser, P., Gimona, M., Moessler, H., Herzog, M., & Small, J. V. (1993). Mammalian calponin identification and expression of genetic variants. FEBS Letters, 330, 13–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Applegate, D., Feng, W., Green, R. S., & Taubman, M. B. (1994). Cloning and expression of a novel acidic calponin isoform from rat aortic vascular smooth muscle. Journal of Biological Chemistry, 269, 10683–10690.PubMedGoogle Scholar
  6. 6.
    Jin, J. P., Wu, D., Gao, J., Nigam, R., & Kwong, S. (2003). Expression and purification of the h1 and h2 isoforms of calponin. Protein Expression and Purification, 31, 231–239.PubMedCrossRefGoogle Scholar
  7. 7.
    Winder, S. J., Allen, B. G., Clément-Chomienne, O., & Walsh, M. P. (1998). Regulation of smooth muscle actin–myosin interaction and force by calponin. Acta Physiologica Scandinavica, 164, 415–426.PubMedGoogle Scholar
  8. 8.
    Hossain, M. M., Smith, P. G., Wu, K., & Jin, J. P. (2006). Cytoskeletal tension regulates both expression and degradation of h2-calponin in lung alveolar cells. Biochemistry, 45, 15670–15683.PubMedCrossRefGoogle Scholar
  9. 9.
    Draeger, A., Gimona, M., Stuckert, A., Celis, J. E., & Small, J. V. (1991). Calponin developmental isoforms and a low molecular weight variant. FEBS Letters, 291, 24–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Hossain, M. M., Hwang, D. Y., Huang, Q. Q., Sasaki, Y., & Jin, J. P. (2003). Developmentally regulated expression of calponin isoforms and the effect of h2-calponin on cell proliferation. American Journal of Physiology. Cell Physiology, 284, C156–C167.PubMedGoogle Scholar
  11. 11.
    Hossain, M. M., Crish, J. F., Eckert, R. L., Lin, J. J., & Jin, J. P. (2005). H2-Calponin is regulated by mechanical tension and modifies the function of actin cytoskeleton. Journal of Biological Chemistry, 280, 42442–42453.PubMedCrossRefGoogle Scholar
  12. 12.
    Tang, J., Hu, G., Hanai, J., Yadlapalli, G., Lin, Y., Zhang, B., et al. (2006). A critical role for calponin 2 in vascular development. Journal of Biological Chemistry, 281, 6664–6672.PubMedCrossRefGoogle Scholar
  13. 13.
    Huang, Q. Q., Hossain, M. M., Parai, K., Wu, K., Pope, R., & Jin, J. P. (2008). Role of h2-calponin in regulating macrophage motility and phagocytosis. Journal of Biological Chemistry, [Epub ahead of print].Google Scholar
  14. 14.
    Rami, G., Caillard, O., Medina, I., Pellegrino, C., Fattoum, A., Ben-Ari, Y., et al. (2006). Change in the shape and density of dendritic spines caused by overexpression of acidic calponin in cultured hippocampal neurons. Hippocampus, 16, 183–197.PubMedCrossRefGoogle Scholar
  15. 15.
    Gerthoffer, W. T., & Pohl, J. (1994). Caldesmon and calponin phosphorylation in regulation of smooth muscle contraction. Canadian Journal of Physiology and Pharmacology, 72, 1410–1414.PubMedGoogle Scholar
  16. 16.
    Takahashi, K., Yoshimoto, R., Fuchibe, K., Fujishige, A., Mitsui-Saito, M., Hori, M., et al. (2000). Regulation of shortening velocity by calponin in intact contracting smooth muscles. Biochemical and Biophysical Research Communications, 279, 150–157.PubMedCrossRefGoogle Scholar
  17. 17.
    Matthew, J. D., Khromov, A. S., McDuffie, M. J., Somlyo, A. V., Somlyo, A. P., Taniguchi, S., et al. (2000). Contractile properties and proteins of smooth muscles of a calponin knockout mouse. Journal of Physiology, 529(3), 811–824.PubMedCrossRefGoogle Scholar
  18. 18.
    Nigam, R., Triggle, C. R., & Jin, J. P. (1998). H1- and h2-calponins are not essential for norepinephrine- or sodium fluoride-induced contraction of rat aortic smooth muscle. Journal of Muscle Research and Cell Motility, 19, 695–703.PubMedCrossRefGoogle Scholar
  19. 19.
    Facemire, C., Brozovich, F. V., & Jin, J. P. (2000). The maximal velocity of vascular smooth muscle shortening is independent of the expression of calponin. Journal of Muscle Research and Cell Motility, 21, 367–373.PubMedCrossRefGoogle Scholar
  20. 20.
    Youming, D., Bin, W., Weixing, W., Binghua, W., Ruoyu, L., & Bangchang, C. (2006). The effect of h(1) calponin expression on gallstone formation in pregnancy. Saudi Medical Journal, 27, 1661–1666.PubMedGoogle Scholar
  21. 21.
    Wang, X., Wu, K., Zhang, Z., Lan, M., Jin, J., & Fan, D. (2001). The effect of calponin and caldesmon in regulation of the gastrointestinal motility during pathophysiological adaptation. Zhonghua Nei Ke Za Zhi (Chinese Journal of Medicine), 40, 459–462.Google Scholar
  22. 22.
    Yoshimoto, R., Hori, M., Ozaki, H., & Karaki, H. (2000). Proteolysis of acidic calponin by mu-calpain. Journal of Biochemistry (Tokyo), 128, 1045–1049.Google Scholar
  23. 23.
    Winder, S. J., & Walsh, M. P. (1990). Smooth muscle calponin Inhibition of actomyosin MgATPase and regulation by phosphorylation. Journal of Biological Chemistry, 265, 10148–10155.PubMedGoogle Scholar
  24. 24.
    Makuch, R., Birukov, K., Shirinsky, V., & Dabrowska, R. (1991). Functional interrelationship between calponin and caldesmon. Biochemical Journal, 280, 33–38.PubMedGoogle Scholar
  25. 25.
    Leinweber, B., Tang, J. X., Stafford, W. F., & Chalovich, J. M. (1999). Calponin interaction with alpha-actinin: Evidence for a structural role for calponin. Biophysical Journal, 77, 3208–3217.PubMedCrossRefGoogle Scholar
  26. 26.
    Childs, T. J., Watson, M. H., Novy, R. E., Lin, J. J., & Mak, A. S. (1992). Calponin and tropomyosin interactions. Biochimica et Biophysica Acta, 1121, 41–46.PubMedGoogle Scholar
  27. 27.
    Lin, Y., Ye, L. H., Ishikawa, R., Fujita, K., & Kohama, K. (1993). Stimulatory effect of calponin on myosin ATPase activity. Journal of Biochemistry (Tokyo), 113, 643–645.Google Scholar
  28. 28.
    Szymanski, P. T., & Tao, T. (1993). Interaction between calponin and smooth muscle myosin. FEBS Letters, 334, 379–382.PubMedGoogle Scholar
  29. 29.
    Szymanski, P. T., & Goyal, R. K. (1999). Calponin binds to the 20-kilodalton regulatory light chain of myosin. Biochemistry, 38, 3778–3784.PubMedCrossRefGoogle Scholar
  30. 30.
    Mabuchi, K., Li, B., Ip, W., & Tao, T. (1997). Association of calponin with desmin intermediate filaments. Journal of Biological Chemistry, 272, 22662–22666.PubMedCrossRefGoogle Scholar
  31. 31.
    Wang, P., & Gusev, N. B. (1996). Interaction of smooth muscle calponin and desmin. FEBS Letters, 392, 255–258.PubMedCrossRefGoogle Scholar
  32. 32.
    Fujii, T., & Koizumi, Y. (1999). Identification of the binding region of basic calponin on alpha and beta tubulins. Journal of Biochemistry (Tokyo), 125, 869–875.Google Scholar
  33. 33.
    Graceffa, P., Adam, L. P., & Morgan, K. G. (1996). Strong interaction between caldesmon and calponin. Journal of Biological Chemistry, 271, 30336–30339.PubMedCrossRefGoogle Scholar
  34. 34.
    Wills, F. L., McCubbin, W. D., & Kay, C. M. (1994). Smooth muscle calponin-caltropin interaction: Effect on biological activity and stability of calponin. Biochemistry, 33, 5562–5569.PubMedCrossRefGoogle Scholar
  35. 35.
    Ferjani, I., Fattoum, A., Maciver, S. K., Benistant, C., Chahinian, A., Manai, M., et al. (2006). A direct interaction with calponin inhibits the actin-nucleating activity of gelsolin. Biochemical Journal, 396, 461–468.PubMedCrossRefGoogle Scholar
  36. 36.
    Bogatcheva, N. V., & Gusev, N. B. (1995). Interaction of smooth muscle calponin with phospholipids. FEBS Letters, 371, 123–126.PubMedCrossRefGoogle Scholar
  37. 37.
    Mino, T., Yuasa, U., Nakamura, F., Naka, M., & Tanaka, T. (1998). Two distinct actin-binding sites of smooth muscle calponin. European Journal of Biochemistry, 251, 262–268.PubMedCrossRefGoogle Scholar
  38. 38.
    Abe, M., Takahashi, K., & Hiwada, K. (1990). Effect of calponin on actin-activated myosin ATPase activity. Journal of Biochemistry (Tokyo), 108, 835–838.Google Scholar
  39. 39.
    Horiuchi, K. Y., & Chacko, S. (1991). The mechanism for the inhibition of actin-activated ATPase of smooth muscle heavy meromyosin by calponin. Biochemical and Biophysical Research Communications, 176, 1487–1493.PubMedCrossRefGoogle Scholar
  40. 40.
    Winder, S. J., Walsh, M. P., Vasulka, C., & Johnson, J. D. (1993). Calponin-calmodulin interaction: properties and effects on smooth and skeletal muscle actin binding and actomyosin ATPases. Biochemistry, 32, 13327–13333.PubMedCrossRefGoogle Scholar
  41. 41.
    Shirinsky, V. P., Biryukov, K. G., Hettasch, J. M., & Sellers, J. R. (1992). Inhibition of the relative movement of actin and myosin by caldesmon and calponin. Journal of Biological Chemistry, 267, 15886–15892.PubMedGoogle Scholar
  42. 42.
    Haeberle, J. R. (1994). Calponin decreases the rate of cross-bridge cycling and increases maximum force production by smooth muscle myosin in an in vitro motility assay. Journal of Biological Chemistry, 269, 12424–12431.PubMedGoogle Scholar
  43. 43.
    Itoh, T., Suzuki, S., Suzuki, A., Nakamura, F., Naka, M., & Tanaka, T. (1994). Effects of exogenously applied calponin on Ca(2+)-regulated force in skinned smooth muscle of the rabbit mesenteric artery. Pflugers Archiv, 427, 301–308.PubMedCrossRefGoogle Scholar
  44. 44.
    Jaworowski, A., Anderson, K. I., Arner, A., Engstrom, M., Gimona, M., Strasser, P., et al. (1995). Calponin reduces shortening velocity in skinned taenia coli smooth muscle fibres. FEBS Letters, 365, 167–171.PubMedCrossRefGoogle Scholar
  45. 45.
    Allen, B. G., & Walsh, M. P. (1994). The biochemical basis of the regulation of smooth-muscle contraction. Trends in Biochemical Sciences, 19, 362–368.PubMedCrossRefGoogle Scholar
  46. 46.
    Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J., & Winder, S. J. (2002). Functional plasticity of CH domains. FEBS Letters, 513, 98–106.PubMedCrossRefGoogle Scholar
  47. 47.
    Leinweber, B. D., Leavis, P. C., Grabarek, Z., Wang, C. L., & Morgan, K. G. (1999). Extracellular regulated kinase (ERK) interaction with actin and the calponin homology (CH) domain of actin-binding proteins. Biochemical Journal, 344, 117–123.PubMedCrossRefGoogle Scholar
  48. 48.
    Horowitz, A., Clement-Chomienne, O., Walsh, M. P., & Morgan, K. G. (1996). Epsilon-isoenzyme of protein kinase C induces a Ca(2+)-independent contraction in vascular smooth muscle. American Journal of Physiology, 271, C589–C594.PubMedGoogle Scholar
  49. 49.
    Leinweber, B., Parissenti, A. M., Gallant, C., Gangopadhyay, S. S., Kirwan-Rhude, A., Leavis, P. C., et al. (2000). Regulation of protein kinase C by the cytoskeletal protein calponin. Journal of Biological Chemistry, 275, 40329–40336.PubMedCrossRefGoogle Scholar
  50. 50.
    Menice, C. B., Hulvershorn, J., Adam, L. P., Wang, C. A., & Morgan, K. G. (1997). Calponin and mitogenactivated protein kinase signaling in differentiated vascular smooth muscle. Journal of Biological Chemistry, 272, 25157–25161.PubMedCrossRefGoogle Scholar
  51. 51.
    Winder, S. J., Pato, M. D., & Walsh, M. P. (1992). Purification and characterization of calponin phosphatase from smooth muscle. Effect of dephosphorylation on calponin function. Biochemical Journal, 286, 197–203.PubMedGoogle Scholar
  52. 52.
    Ichikawa, K., Ito, M., Okubo, S., Konishi, T., Nakano, T., Mino, T., et al. (1993). Calponin phosphatase from smooth muscle: A possible role of type 1 protein phosphatase in smooth muscle relaxation. Biochemical and Biophysical Research Communications, 193, 827–833.PubMedCrossRefGoogle Scholar
  53. 53.
    Nagumo, H., Seto, M., Sakurada, K., Walsh, M. P., & Sasaki, Y. (1998). HA1077, a protein kinase inhibitor, inhibits calponin phosphorylation on Ser175 in porcine coronary artery. European Journal of Pharmacology, 360, 257–264.PubMedCrossRefGoogle Scholar
  54. 54.
    Kaneko, T., Amano, M., Maeda, A., Goto, H., Takahashi, K., Ito, M., et al. (2000). Identification of calponin as a novel substrate of Rho-kinase. Biochemical and Biophysical Research Communications, 273, 110–116.PubMedCrossRefGoogle Scholar
  55. 55.
    Tang, D. C., Kang, H. M., Jin, J. P., Fraser, E. D., & Walsh, M. P. (1996). Structure–function relations of smooth muscle calponin. The critical role of serine 175. Journal of Biological Chemistry, 271, 8605–8611.PubMedCrossRefGoogle Scholar
  56. 56.
    Jin, J. P., Walsh, M. P., Sutherland, C., & Chen, W. (2000). A role for serine-175 in modulating the molecular conformation of calponin. Biochemical Journal, 350, 579–588.PubMedCrossRefGoogle Scholar
  57. 57.
    Nakamura, F., Mino, T., Yamamoto, J., Naka, M., & Tanaka, T. (1993). Identification of the regulatory site in smooth muscle calponin that is phosphorylated by protein kinase C. Journal of Biological Chemistry, 268, 6194–6201.PubMedGoogle Scholar
  58. 58.
    Gimona, M., Sparrow, M. P., Strasser, P., Herzog, M., & Small, J. V. (1992). Calponin and SM 22 isoforms in avian and mammalian smooth muscle. Absence of phosphorylation in vivo. European Journal of Biochemistry, 205, 1067–1075.PubMedCrossRefGoogle Scholar
  59. 59.
    North, A. J., Gimona, M., Cross, R. A., & Small, J. V. (1994). Calponin is localised in both the contractile apparatus and the cytoskeleton of smooth muscle cells. Journal of Cell Science, 107, 437–444.PubMedGoogle Scholar
  60. 60.
    Dykes, A. C., & Wright, G. L. (2007). Down-regulation of calponin destabilizes actin cytoskeletal structure in A7r5 cells. Canadian Journal of Physiology and Pharmacology, 85, 225–232.PubMedCrossRefGoogle Scholar
  61. 61.
    Je, H. D., Gangopadhyay, S. S., Ashworth, T. D., & Morgan, K. G. (2001). Calponin is required for agonist induced signal transduction—evidence from an antisense approach in ferret smooth muscle. Journal of Physiology, 537, 567–577.PubMedCrossRefGoogle Scholar
  62. 62.
    Jiang, Z., Grange, R. W., Walsh, M. P., & Kamm, K. E. (1997). Adenovirus-mediated transfer of the smooth muscle cell calponin gene inhibits proliferation of smooth muscle cells and fibroblasts. FEBS Letters, 413, 441–445.PubMedCrossRefGoogle Scholar
  63. 63.
    Yoshikawa, H., Taniguchi, S. I., Yamamura, H., Mori, S., Sugimoto, M., Miyado, K., et al. (1998). Mice lacking smooth muscle calponin display increased bone formation that is associated with enhancement of bone morphogenetic protein responses. Genes Cells, 3, 685–695.PubMedCrossRefGoogle Scholar
  64. 64.
    Wen, K. K., Kuang, B., & Rubenstein, P. A. (2000). Tropomyosin-dependent filament formation by a polymerization-defective mutant yeast actin (V266G, L267G). Journal of Biological Chemistry, 275, 40594–40600.PubMedCrossRefGoogle Scholar
  65. 65.
    Warren, K. S., Lin, J. L., Wamboldt, D. D., & Lin, J. J. (1994). Overexpression of human fibroblast caldesmon fragment containing actin-, Ca++/calmodulin-, and tropomyosin-binding domains stabilizes endogenous tropomyosin and microfilaments. Journal of Cell Biology, 125, 359–368.PubMedCrossRefGoogle Scholar
  66. 66.
    Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.PubMedCrossRefGoogle Scholar
  67. 67.
    Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A., & Sellers, J. R. (2004). Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry, 279, 35557–35563.PubMedCrossRefGoogle Scholar
  68. 68.
    Griffin, M. A., Sen, S., Sweeney, H. L., & Discher, D. E. (2004). Adhesion-contractile balance in myocyte differentiation. Journal of Cell Science, 117, 5855–5863.PubMedCrossRefGoogle Scholar
  69. 69.
    Eckes, B., & Krieg, T. (2004). Regulation of connective tissue homeostasis in the skin by mechanical forces. Clinical and Experimental Rheumatology, 22, S73–S76.PubMedGoogle Scholar
  70. 70.
    Liu, H., Bo, S., Huang, Q. Q., Eksarko, P., & Pope, R. M. (2008). Transcriptional diversity during monocyte to macrophage differentiation. Immunology Letters, 117, 70–80.PubMedCrossRefGoogle Scholar
  71. 71.
    Morioka, T., Koyama, H., Yamamura, H., Tanaka, S., Fukumoto, S., Emoto, M., et al. (2003). Role of H1-calponin in pancreatic AR42 J cell differentiation into insulin-producing cells. Diabetes, 52, 760–766.PubMedCrossRefGoogle Scholar
  72. 72.
    Sugenoya, Y., Yoshimura, A., Yamamura, H., Inui, K., Morita, H., Yamabe, H., et al. (2002). Smooth-muscle calponin in mesangial cells: Regulation of expression and a role in suppressing glomerulonephritis. Journal of the American Society of Nephrology, 13, 322–331.PubMedGoogle Scholar
  73. 73.
    Bannai, M., Yoshimoto, R., Mitsui-Saito, M., Hori, M., Nishihara, M., Takahashi, K., et al. (2003). Increased locomotor activity, increased food and water intake and decreased PVN neurons in H1 calponin gene-deficient mice. Journal of Veterinary Medical Science, 65, 153–155.PubMedCrossRefGoogle Scholar
  74. 74.
    Horiuchi, A., Nikaido, T., Ya-Li, Z., Ito, K., Orii, A., & Fujii, S. (1999). Heparin inhibits proliferation of myometrial and leiomyomal smooth muscle cells through the induction of alpha-smooth muscle actin, calponin h1 and p27. Molecular Human Reproduction, 5, 139–145.PubMedCrossRefGoogle Scholar
  75. 75.
    Untergasser, G., Gander, R., Lilg, C., Lepperdinger, G., Plas, E., & Berger, P. (2005). Profiling molecular targets of TGF-beta1 in prostate fibroblast-to-myofibroblast transdifferentiation. Mechanisms of Ageing and Development, 126, 59–69.PubMedCrossRefGoogle Scholar
  76. 76.
    Miwa, Y., Sasaguri, T., Inoue, H., Taba, Y., Ishida, A., & Abumiya, T. (2000). 15-Deoxy-delta(12, 14)-prostaglandin J(2) induces G(1) arrest and differentiation marker expression in vascular smooth muscle cells. Molecular Pharmacology, 58, 837–844.PubMedGoogle Scholar
  77. 77.
    Laury-Kleintop, L. D., Tresini, M., & Hammond, O. (2005). Compartmentalization of hnRNP-K during cell cycle progression and its interaction with calponin. Journal of Cellular Biochemistry, 95, 1042–1056.PubMedCrossRefGoogle Scholar
  78. 78.
    Fukui, Y., Masuda, H., Takagi, M., Takahashi, K., & Kiyokane, K. (1997). The presence of h2-calponin in human keratinocyte. Journal of Dermatological Science, 14, 29–36.PubMedCrossRefGoogle Scholar
  79. 79.
    Trabelsi-Terzidis, H., Fattoum, A., Represa, A., Dessi, F., Ben-Ari, Y., & der Terrossian, E. (1995). Expression of an acidic isoform of calponin in rat brain: Western blots on one- or two-dimensional gels and immunolocalization in cultured cells. Biochemical Journal, 306, 211–215.PubMedGoogle Scholar
  80. 80.
    Agassandian, C., Plantier, M., Fattoum, A., Represa, A., & der Terrossian, E. (2000). Subcellular distribution of calponin and caldesmon in rat hippocampus. Brain Research, 887, 444–449.PubMedCrossRefGoogle Scholar
  81. 81.
    Ferhat, L., Charton, G., Represa, A., Ben-Ari, Y., der Terrossian, E., & Khrestchatisky, M. (1996). Acidic calponin cloned from neural cells is differentially expressed during rat brain development. European Journal of Neuroscience, 8, 1501–1509.PubMedCrossRefGoogle Scholar
  82. 82.
    Plantier, M., Fattoum, A., Menn, B., Ben-Ari, Y., Der Terrossian, E., & Represa, A. (1999). Acidic calponin immunoreactivity in postnatal rat brain and cultures: Subcellular localization in growth cones, under the plasma membrane and along actin and glial filaments. European Journal of Neuroscience, 11, 2801–2812.PubMedCrossRefGoogle Scholar
  83. 83.
    Ferhat, L., Esclapez, M., Represa, A., Fattoum, A., Shirao, T., & Ben-Ari, Y. (2003). Increased levels of acidic calponin during dendritic spine plasticity after pilocarpine-induced seizures. Hippocampus, 13, 845–858.PubMedCrossRefGoogle Scholar
  84. 84.
    Callegari, E. A., Ferguson-Gottschall, S., & Gibori, G. (2005). PGF2alpha induced differential expression of genes involved in turnover of extracellular matrix in rat decidual cells. Reproductive Biology and Endocrinology, 3, 3.PubMedCrossRefGoogle Scholar
  85. 85.
    Islam, A. H., Ehara, T., Kato, H., Hayama, M., Kobayashi, S., Igawa, Y., et al. (2004). Calponin h1 expression in renal tumor vessels: Correlations with multiple pathological factors of renal cell carcinoma. Journal of Urology, 171, 1319–1323.PubMedCrossRefGoogle Scholar
  86. 86.
    Islam, A. H., Ehara, T., Kato, H., Hayama, M., & Nishizawa, O. (2004). Loss of calponin h1 in renal angiomyolipoma correlates with aggressive clinical behavior. Urology, 64, 468–473.PubMedCrossRefGoogle Scholar
  87. 87.
    Yanagisawa, Y., Takeoka, M., Ehara, T., Itano, N., Miyagawa, S., & Taniguchi, S. (2008). Reduction of Calponin h1 expression in human colon cancer blood vessels. European Journal of Surgical Oncology, 34, 531–537.PubMedCrossRefGoogle Scholar
  88. 88.
    Koganehira, Y., Takeoka, M., Ehara, T., Sasaki, K., Murata, H., Saida, T., et al. (2003). Reduced expression of actin-binding proteins, h-caldesmon and calponin h1, in the vascular smooth muscle inside melanoma lesions: An adverse prognostic factor for malignant melanoma. British Journal of Dermatology, 148, 971–980.PubMedCrossRefGoogle Scholar
  89. 89.
    Yamamura, H., Hirano, N., Koyama, H., Nishizawa, Y., & Takahashi, K. (2007). Loss of smooth muscle calponin results in impaired blood vessel maturation in the tumor-host microenvironment. Cancer Science, 98, 757–763.PubMedCrossRefGoogle Scholar
  90. 90.
    Taniguchi, S., Takeoka, M., Ehara, T., Hashimoto, S., Shibuki, H., Yoshimura, N., et al. (2001). Structural fragility of blood vessels and peritoneum in calponin h1-deficient mice, resulting in an increase in hematogenous metastasis and peritoneal dissemination of malignant tumor cells. Cancer Research, 61, 7627–7634.PubMedGoogle Scholar
  91. 91.
    Yamamura, H., Yoshikawa, H., Tatsuta, M., Akedo, H., & Takahashi, K. (1998). Expression of the smooth muscle calponin gene in human osteosarcoma and its possible association with prognosis. International Journal of Cancer, 79, 245–250.CrossRefGoogle Scholar
  92. 92.
    Horiuchi, A., Nikaido, T., Ito, K., Zhai, Y., Orii, A., Taniguchi, S., et al. (1998). Reduced expression of calponin h1 in leiomyosarcoma of the uterus. Laboratory Investigation, 78, 839–846.PubMedGoogle Scholar
  93. 93.
    Sasaki, Y., Yamamura, H., Kawakami, Y., Yamada, T., Hiratsuka, M., Kameyama, M., et al. (2002). Expression of smooth muscle calponin in tumor vessels of human hepatocellular carcinoma and its possible association with prognosis. Cancer, 94, 1777–1786.PubMedCrossRefGoogle Scholar
  94. 94.
    Hasegawa, M., Moritani, S., Murakumo, Y., Sato, T., Hagiwara, S., Suzuki, C., et al. (2008). CD109 expression in basal-like breast carcinoma. Pathology International, 58, 288–294.PubMedCrossRefGoogle Scholar
  95. 95.
    Uzquiano, M. C., Prieto, V. G., Nash, J. W., Ivan, D. S., Gong, Y., Lazar, A. J., et al. (2008). Metastatic basal cell carcinoma exhibits reduced actin expression. Modern Pathology, 21, 540–543.PubMedCrossRefGoogle Scholar
  96. 96.
    Meehan, K. L., Holland, J. W., & Dawkins, H. J. (2002). Proteomic analysis of normal and malignant prostate tissue to identify novel proteins lost in cancer. Prostate, 50, 54–63.PubMedCrossRefGoogle Scholar
  97. 97.
    Tuxhorn, J. A., Ayala, G. E., Smith, M. J., Smith, V. C., Dang, T. D., & Rowley, D. R. (2002). Reactive stroma in human prostate cancer: Induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res, 8, 2912–2923.PubMedGoogle Scholar
  98. 98.
    Tschoep, K., Kohlmann, A., Schlemmer, M., Haferlach, T., & Issels, R. D. (2007). Gene expression profiling in sarcomas. Critical Reviews in Oncology/hematology, 63, 111–124.PubMedCrossRefGoogle Scholar
  99. 99.
    Yamamura, H., Yoshikawa, H., & Takahashi, K. (2003). Aberrant methylation and silencing of the calponin gene in human sarcoma cells. Anticancer Research, 23, 107–114.PubMedGoogle Scholar
  100. 100.
    Horiuchi, A., Nikaido, T., Taniguchi, S., & Fujii, S. (1999). Possible role of calponin h1 as a tumor suppressor in human uterine leiomyosarcoma. Journal of the National Cancer Institute, 91, 790–796.PubMedCrossRefGoogle Scholar
  101. 101.
    Takeoka, M., Ehara, T., Sagara, J., Hashimoto, S., & Taniguchi, S. (2002). Calponin h1 induced a flattened morphology and suppressed the growth of human fibrosarcoma HT1080 cells. European Journal of Cancer, 38, 436–442.PubMedCrossRefGoogle Scholar
  102. 102.
    Kaneko, M., Takeoka, M., Oguchi, M., Koganehira, Y., Murata, H., Ehara, T., et al. (2002). Calponin h1 suppresses tumor growth of Src-induced transformed 3Y1 cells in association with a decrease in angiogenesis. Japanese Journal of Cancer Research, 93, 935–943.PubMedGoogle Scholar
  103. 103.
    Liu, C. G., Zhang, L., Jiang, Y., Chatterjee, D., Croce, C. M., Huebner, K., et al. (2005). Modulation of gene expression in precancerous rat esophagus by dietary zinc deficit and replenishment. Cancer Research, 65, 7790–7799.PubMedGoogle Scholar
  104. 104.
    Ogura, T., Kobayashi, H., Ueoka, Y., Okugawa, K., Kato, K., Hirakawa, T., et al. (2006). Adenovirus-mediated calponin h1 gene therapy directed against peritoneal dissemination of ovarian cancer: Bifunctional therapeutic effects on peritoneal cell layer and cancer cells. Clinical Cancer Research, 12, 5216–5223.PubMedCrossRefGoogle Scholar
  105. 105.
    Bakin, A. V., Safina, A., Rinehart, C., Daroqui, C., Darbary, H., & Helfman, D. M. (2004). A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Molecular Biology of the Cell, 15(10), 4682–4694.PubMedCrossRefGoogle Scholar
  106. 106.
    Hossain, M. M., Wang, X., Bergan, R., & Jin, J. P. (2008). H2-calponin regulates the motility of prostate cancer cells. Biophysical Journal, 94, 637a–638a.Google Scholar
  107. 107.
    Gaedtke, L., Thoenes, L., Culmsee, C., Mayer, B., & Wagner, E. (2007). Proteomic analysis reveals differences in protein expression in spheroid versus monolayer cultures of low-passage colon carcinoma cells. Journal of Proteome Research, 6, 4111–4118.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  1. 1.Section of Molecular Cardiology, Evanston Northwestern HealthcareNorthwestern University Feinberg School of MedicineEvanstonUSA
  2. 2.Institute of Digestive DiseasesXijing HospitalXi’anChina

Personalised recommendations