Cell Biochemistry and Biophysics

, Volume 51, Issue 1, pp 9–19 | Cite as

The Protein-Binding Potential of C2H2 Zinc Finger Domains

  • Kathryn J. Brayer
  • Sanjeev Kulshreshtha
  • David J. Segal
Original Paper


There are over 10,000 C2H2-type zinc finger (ZF) domains distributed among more than 1,000 ZF proteins in the human genome. These domains are frequently observed to be involved in sequence-specific DNA binding, and uncharacterized domains are typically assumed to facilitate DNA interactions. However, some ZFs also facilitate binding to proteins or RNA. Over 100 Cys2-His2 (C2H2) ZF-protein interactions have been described. We initially attempted a bioinformatics analysis to identify sequence features that would predict a DNA- or protein-binding function. These efforts were complicated by several issues, including uncertainties about the full functional capabilities of the ZFs. We therefore applied an unbiased approach to directly examine the potential for ZFs to facilitate DNA or protein interactions. The human OLF-1/EBF associated zinc finger (OAZ) protein was used as a model. The human O/E-1-associated zinc finger protein (hOAZ) contains 30 ZFs in 6 clusters, some of which have been previously indicated in DNA or protein interactions. DNA binding was assessed using a target site selection (CAST) assay, and protein binding was assessed using a yeast two-hybrid assay. We observed that clusters known to bind DNA could facilitate specific protein interactions, but clusters known to bind protein did not facilitate specific DNA interactions. Our primary conclusion is that DNA binding is a more restricted function of ZFs, and that their potential for mediating protein interactions is likely greater. These results suggest that the role of C2H2 ZF domains in protein interactions has probably been underestimated. The implication of these findings for the prediction of ZF function is discussed.


Transcription factors Protein-DNA interactions Protein chemistry Structural biology Functional annotations 


  1. 1.
    Krishna, S. S., Majumdar, I., & Grishin, N. V. (2003). Structural classification of zinc fingers: Survey and summary. Nucleic Acids Research, 31, 532–550.PubMedCrossRefGoogle Scholar
  2. 2.
    Matthews, J. M., & Sunde, M. (2002). Zinc fingers—folds for many occasions. IUBMB Life, 54, 351–355.PubMedCrossRefGoogle Scholar
  3. 3.
    Wolfe, S. A., Nekludova, L., & Pabo, C. O. (2000). DNA recognition by Cys2His2 zinc finger proteins. Annual Review of Biophysics and Biomolecular Structure, 29, 183–212.PubMedCrossRefGoogle Scholar
  4. 4.
    Frankel, A. D., Berg, J. M., & Pabo, C. O. (1987). Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proceedings of the National Academy of Sciences of the United States of America, 84, 4841–4845.PubMedCrossRefGoogle Scholar
  5. 5.
    Lee, M. S., Gippert, G. P., Soman, K. V., Case, D. A., & Wright, P. E. (1989). Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science, 245, 635–637.PubMedCrossRefGoogle Scholar
  6. 6.
    Parraga, G., Horvath, S. J., Eisen, A., Taylor, W. E., Hood, L., Young, E. T., & Klevit, R. E. (1988). Zinc-dependent structure of a single-finger domain of yeast ADR1. Science, 241, 1489–1492.PubMedCrossRefGoogle Scholar
  7. 7.
    Pavletich, N. P., & Pabo, C. O. (1991). Zinc finger-DNA recognition: Crystal structure of a Zif268-DNA complex at 2.1 A. Science, 252, 809–817.PubMedCrossRefGoogle Scholar
  8. 8.
    Miller, J., McLachlan, A. D., & Klug, A. (1985). Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes. The EMBO Journal, 4, 1609–1614.PubMedGoogle Scholar
  9. 9.
    Kersey, P., Bower, L., Morris, L., Horne, A., Petryszak, R., Kanz, C., Kanapin, A., Das, U., Michoud, K., Phan, I., Gattiker, A., Kulikova, T., Faruque, N., Duggan, K., McLaren, P., Reimholz, B., Duret, L., Penel, S., Reuter, I., & Apweiler, R. (2005). Integr8 and genome reviews: Integrated views of complete genomes and proteomes. Nucleic Acids Research, 33, D297–D302.PubMedCrossRefGoogle Scholar
  10. 10.
    Mackay, J. P., & Crossley, M. (1998). Zinc fingers are sticking together. Trends in Biochemical Sciences, 23, 1–4.PubMedCrossRefGoogle Scholar
  11. 11.
    Brown, R. S. (2005). Zinc finger proteins: Getting a grip on RNA. Current Opinion in Structural Biology, 15, 94–98.PubMedCrossRefGoogle Scholar
  12. 12.
    Hall, T. M. (2005). Multiple modes of RNA recognition by zinc finger proteins. Current Opinion in Structural Biology, 15, 367–373.PubMedCrossRefGoogle Scholar
  13. 13.
    Lee, B. M., Xu, J., Clarkson, B. K., Martinez-Yamout M. A., Dyson, H. J., Case, D. A., Gottesfeld, J. M., & Wright, P. E. (2006). Induced fit and “lock and key” recognition of 5S RNA by zinc fingers of transcription factor IIIA. Journal of Molecular Biology, 357, 275–291.PubMedCrossRefGoogle Scholar
  14. 14.
    Lu, D., Searles, M. A., & Klug, A. (2003). Crystal structure of a zinc-finger-RNA complex reveals two modes of molecular recognition. Nature, 426, 96–100.PubMedCrossRefGoogle Scholar
  15. 15.
    Brayer, K. J., & Segal, D. J. Keep your fingers off my DNA: protein–protein interactions mediated by C2H2 zinc finger domains. Cell Biochemistry and Biophysics. doi:10.1007/s12013-008-9008-5.
  16. 16.
    Del Rio, S., & Setzer, D. R. (1993). The role of zinc fingers in transcriptional activation by transcription factor IIIA. Proceedings of the National Academy of Sciences of the United States of America, 90, 168–172.PubMedCrossRefGoogle Scholar
  17. 17.
    Fox, A. H., Liew, C., Holmes, M., Kowalski, K., Mackay, J., & Crossley, M. (1999). Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. The EMBO Journal, 18, 2812–2822.PubMedCrossRefGoogle Scholar
  18. 18.
    Friesen, W. J., & Darby, M. K. (1997). Phage display of RNA binding zinc fingers from transcription factor IIIA. The Journal of Biological Chemistry, 272, 10994–10997.PubMedCrossRefGoogle Scholar
  19. 19.
    Honma, Y., Kiyosawa, H., Mori, T., Oguri, A., Nikaido, T., Kanazawa, K., Tojo, M., Takeda, J., Tanno, Y., Yokoya, S., Kawabata, I., Ikeda, H., & Wanaka, A. (1999). Eos: A novel member of the Ikaros gene family expressed predominantly in the developing nervous system. FEBS Letters, 447, 76–80.PubMedCrossRefGoogle Scholar
  20. 20.
    Kelley, C. M., Ikeda, T., Koipally, J., Avitahl, N., Wu, L., Georgopoulos, K., & Morgan, B. A. (1998). Helios, a novel dimerization partner of Ikaros expressed in the earliest hematopoietic progenitors. Current Biology, 8, 508–515.PubMedCrossRefGoogle Scholar
  21. 21.
    Morgan, B., Sun, L., Avitahl, N., Andrikopoulos, K., Ikeda, T., Gonzales, E., Wu, P., Neben, S., & Georgopoulos, K. (1997). Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. The EMBO Journal, 16, 2004–2013.PubMedCrossRefGoogle Scholar
  22. 22.
    Pelham, H. R., & Brown, D. D. (1980). A specific transcription factor that can bind either the 5S RNA gene or 5S RNA. Proceedings of the National Academy of Sciences of the United States of America, 77, 4170–4174.PubMedCrossRefGoogle Scholar
  23. 23.
    Perdomo, J., Holmes, M., Chong, B., & Crossley, M. (2000). Eos and pegasus, two members of the Ikaros family of proteins with distinct DNA binding activities. The Journal of Biological Chemistry, 275, 38347–38354.PubMedCrossRefGoogle Scholar
  24. 24.
    Simpson, R. J., Yi Lee, S.H., Bartle, N., Sum, E. Y., Visvader, J. E., Matthews, J. M., Mackay, J. P., & Crossley, M. (2004). A classic zinc finger from friend of GATA mediates an interaction with the coiled-coil of transforming acidic coiled-coil 3. The Journal of Biological Chemistry, 279, 39789–39797.PubMedCrossRefGoogle Scholar
  25. 25.
    Sun, L., Liu, A., & Georgopoulos, K. (1996). Zinc finger-mediated protein interactions modulate Ikaros activity, a molecular control of lymphocyte development. The EMBO Journal, 15, 5358–5369.PubMedGoogle Scholar
  26. 26.
    Theunissen, O., Rudt, F., & Pieler, T. (1998). Structural determinants in 5S RNA and TFIIIA for 7S RNP formation. European Journal of Biochemistry, 258, 758–767.PubMedCrossRefGoogle Scholar
  27. 27.
    Chapman, N. R., & Perkins, N. D. (2000). Inhibition of the RelA(p65) NF-kappaB subunit by Egr-1. The Journal of Biological Chemistry, 275, 4719–4725.PubMedCrossRefGoogle Scholar
  28. 28.
    Lee, J. S., Galvin, K. M., & Shi, Y. (1993). Evidence for physical interaction between the zinc-finger transcription factors YY1 and Sp1. Proceedings of the National Academy of Sciences of the United States of America, 90, 6145–6149.PubMedCrossRefGoogle Scholar
  29. 29.
    Seto, E., Lewis, B., & Shenk, T. (1993). Interaction between transcription factors Sp1 and YY1. Nature, 365, 462–464.PubMedCrossRefGoogle Scholar
  30. 30.
    Laity, J. H., Dyson, H. J., & Wright, P. E. (2000). DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. Journal of Molecular Biology, 295, 719–727.PubMedCrossRefGoogle Scholar
  31. 31.
    Ryan, R. F., & Darby, M. K. (1998). The role of zinc finger linkers in p43 and TFIIIA binding to 5S rRNA and DNA. Nucleic Acids Research, 26, 703–709.PubMedCrossRefGoogle Scholar
  32. 32.
    Hata, A., Seoane, J., Lagna, G., Montalvo, E., Hemmati-Brivanlou, A., & Massague, J. (2000). OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell, 100, 229–240.PubMedCrossRefGoogle Scholar
  33. 33.
    Tsai, R. Y., & Reed, R. R. (1998). Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz. Molecular and Cellular Biology, 18, 6447–6456.PubMedGoogle Scholar
  34. 34.
    Segal, D. J., Beerli, R. R., Blancafort, P., Dreier, B., Effertz, K., Huber, A., Koksch, B., Lund, C. V., Magnenat, L., Valente, D., & Barbas, C. F. 3rd (2003). Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry, 42, 2137–2148.PubMedCrossRefGoogle Scholar
  35. 35.
    Dreier, B., Beerli, R. R., Segal, D. J., Flippin, J. D., & Barbas, C. F. 3rd (2001). Development of zinc finger domains for recognition of the 5′-ANN-3′ family of DNA sequences and their use in the construction of artificial transcription factors. The Journal of Biological Chemistry, 276, 29466–29478.PubMedCrossRefGoogle Scholar
  36. 36.
    Matys, V., Fricke, E., Geffers, R., Gossling, E., Haubrock, M., Hehl, R., Hornischer, K., Karas, D., Kel, A. E., Kel-Margoulis, O.V., Kloos, D. U., Land, S., Lewicki-Potapov, B., Michael, H., Munch, R., Reuter, I., Rotert, S., Saxel, H., Scheer, M., Thiele, S., & Wingender, E. (2003). TRANSFAC: Transcriptional regulation, from patterns to profiles. Nucleic Acids Research, 31, 374–378.PubMedCrossRefGoogle Scholar
  37. 37.
    Alfarano, C., Andrade, C. E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K., Burgess, E., Buzadzija, K., Cavero, R., D’Abreo, C., Donaldson, I., Dorairajoo, D., Dumontier, M. J., Dumontier, M. R., Earles, V., Farrall, R., Feldman, H., Garderman, E., Gong, Y., Gonzaga, R., Grytsan, V., Gryz, E., Gu, V., Haldorsen, E., Halupa, A., Haw, R., Hrvojic, A., Hurrell, L., Isserlin, R., Jack, F., Juma, F., Khan, A., Kon, T., Konopinsky, S., Le, V., Lee, E., Ling, S., Magidin, M., Moniakis, J., Montojo, J., Moore, S., Muskat, B., Ng, I., Paraiso, J. P., Parker, B., Pintilie, G., Pirone, R., Salama, J. J., Sgro, S., Shan, T., Shu, Y., Siew, J., Skinner, D., Snyder, K., Stasiuk, R., Strumpf, D., Tuekam, B., Tao, S., Wang, Z., White, M., Willis, R., Wolting, C., Wong, S., Wrong, A., Xin, C., Yao, R., Yates, B., Zhang, S., Zheng, K., Pawson, T., Ouellette, B. F., & Hogue, C. W. (2005). The biomolecular interaction network database and related tools 2005 update. Nucleic Acids Research, 33, D418–D424.PubMedCrossRefGoogle Scholar
  38. 38.
    Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T. K., Gronborg, M., Ibarrola, N., Deshpande, N., Shanker, K., Shivashankar, H. N., Rashmi, B. P., Ramya, M. A., Zhao, Z., Chandrika, K. N., Padma, N., Harsha, H. C., Yatish, A. J., Kavitha, M. P., Menezes, M., Choudhury, D. R., Suresh, S., Ghosh, N., Saravana, R., Chandran, S., Krishna, S., Joy, M., Anand, S. K., Madavan, V., Joseph, A., Wong, G. W., Schiemann, W. P., Constantinescu, S. N., Huang, L., Khosravi-Far, R., Steen, H., Tewari, M., Ghaffari, S., Blobe, G. C., Dang, C. V., Garcia, J. G., Pevsner, J., Jensen, O. N., Roepstorff, P., Deshpande, K. S., Chinnaiyan, A. M., Hamosh, A., Chakravarti, A., & Pandey, A. (2003). Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Research, 13, 2363–2371.PubMedCrossRefGoogle Scholar
  39. 39.
    Chatr-aryamontri, A., Ceol, A., Palazzi, L. M., Nardelli, G., Schneider, M. V., Castagnoli, L., & Cesareni, G. (2007). MINT: The Molecular INTeraction database. Nucleic Acids Research, 35, 72–74.CrossRefGoogle Scholar
  40. 40.
    Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14, 755–763.PubMedCrossRefGoogle Scholar
  41. 41.
    Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Research, 31, 3497–3500.PubMedCrossRefGoogle Scholar
  42. 42.
    Fairall, L., Harrison, S. D., Travers, A. A., & Rhodes, D. (1992). Sequence-specific DNA binding by a two zinc-finger peptide from the drosophila melanogaster tramtrack protein. Journal of Molecular Biology, 226, 349–366.PubMedCrossRefGoogle Scholar
  43. 43.
    Tsai, R. Y., & Reed, R. R. (1997). Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: Implications for olfactory neuronal development. The Journal of Neuroscience, 17, 4159–4169.PubMedGoogle Scholar
  44. 44.
    Jones, S., & Thornton, J. M. (1996). Principles of protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 93, 13–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Stites, W. E. (1997). Protein–protein interactions: Interface structure, binding thermodynamics, and mutational analysis. Chemical Review, 97, 1233–1250.CrossRefGoogle Scholar
  46. 46.
    Velculescu, V. E., Madden, S. L., Zhang, L., Lash, A. E., Yu, J., Rago, C., Lal, A., Wang, C. J., Beaudry, G. A., Ciriello, K. M., Cook, B. P., Dufault, M. R., Ferguson, A. T., Gao, Y., He, T. C., Hermeking, H., Hiraldo, S. K., Hwang, P. M., Lopez, M. A., Luderer, H. F., Mathews, B., Petroziello, J. M., Polyak, K., Zawel, L., Kinzler, K. W., et al. (1999). Analysis of human transcriptomes. Nature Genetics, 23, 387–388.PubMedCrossRefGoogle Scholar
  47. 47.
    Gu, Y., Jin, S., Gao, Y., Weaver, D. T., & Alt, F. W. (1997). Ku70-deficient embryonic stem cells have increased ionizing radiosensitivity, defective DNA end-binding activity, and inability to support V(D)J recombination. Proceedings of the National Academy of Sciences of the United States of America, 94, 8076–8081.PubMedCrossRefGoogle Scholar
  48. 48.
    Nieto, J. M., Madrid, C., Miquelay, E., Parra, J. L., Rodriguez, S., & Juarez, A. (2002). Evidence for direct protein–protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. Journal of Bacteriology, 184, 629–635.PubMedCrossRefGoogle Scholar
  49. 49.
    Jung, D., Choi, Y., & Uesugi, M. (2006). Small organic molecules that modulate gene transcription. Drug Discovery Today, 11, 452–457.PubMedCrossRefGoogle Scholar
  50. 50.
    Arndt, H. D. (2006). Small molecule modulators of transcription. Angewandte Chemie—International Edition in English, 45, 4552–4560.CrossRefGoogle Scholar
  51. 51.
    Collins, T., Stone, J. R., & Williams, A. J. (2001). All in the family: The BTB/POZ, KRAB, and SCAN domains. Molecular and Cellular Biology, 21, 3609–3615.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhou, H. X., & Qin, S. (2007). Interaction-site prediction for protein complexes: A critical assessment. Bioinformatics, 23, 2203–2209.PubMedCrossRefGoogle Scholar
  53. 53.
    W. van Criekinge, Cornelis, S., M. Van De Craen, Vandenabeele, P., Fiers, W., & Beyaert, R. (1999). GAL4 is a substrate for caspases: Implications for two-hybrid screening and other GAL4-based assays. Molecular Cell Biology Research Communications, 1, 158–161.PubMedCrossRefGoogle Scholar
  54. 54.
    Ishiguro, A., Ideta, M., Mikoshiba, K., Chen, D. J., & Aruga, J. (2007). ZIC2-dependent transcriptional regulation is mediated by DNA-dependent protein kinase, poly(ADP-ribose) polymerase, and RNA helicase A. The Journal of Biological Chemistry, 282, 9983–9995.PubMedCrossRefGoogle Scholar
  55. 55.
    Gamsjaeger, R., Liew, C. K., Loughlin, F. E., Crossley, M., & Mackay, J. P. (2007). Sticky fingers: Zinc-fingers as protein-recognition motifs. Trends in Biochemical Sciences, 32, 63–70.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2008

Authors and Affiliations

  • Kathryn J. Brayer
    • 1
  • Sanjeev Kulshreshtha
    • 2
  • David J. Segal
    • 2
  1. 1.Department of Pharmacology and Toxicology, College of PharmacyUniversity of ArizonaTucsonUSA
  2. 2.Genome Center and Department of PharmacologyUniversity of CaliforniaDavisUSA

Personalised recommendations