Advertisement

Cell Biochemistry and Biophysics

, Volume 50, Issue 2, pp 79–109 | Cite as

Composition-driven Surface Domain Structuring Mediated by Sphingolipids and Membrane-active Proteins

Above the Nano- but under the Micro-scale: Mesoscopic Biochemical/Structural Cross-talk in Biomembranes
  • Bruno Maggio
  • Graciela A. Borioli
  • Maximiliano Del Boca
  • Luisina De Tullio
  • María L. Fanani
  • Rafael G. Oliveira
  • Carla M. Rosetti
  • Natalia Wilke
Review Paper

Abstract

Biomembranes contain a wide variety of lipids and proteins within an essentially two-dimensional structure. The coexistence of such a large number of molecular species causes local tensions that frequently relax into a phase or compositional immiscibility along the lateral and transverse planes of the interface. As a consequence, a substantial microheterogeneity of the surface topography develops and that depends not only on the lipid–protein composition, but also on the lateral and transverse tensions generated as a consequence of molecular interactions. The presence of proteins, and immiscibility among lipids, constitute major perturbing factors for the membrane sculpturing both in terms of its surface topography and dynamics. In this work, we will summarize some recent evidences for the involvement of membrane-associated, both extrinsic and amphitropic, proteins as well as membrane-active phosphohydrolytic enzymes and sphingolipids in driving lateral segregation of phase domains thus determining long-range surface topography.

Keywords

Gangliosides Glycosphingolipid-enriched domains Membrane topology Epifluorescence microscopy Brewster angle microscopy Phospholipases Sphingomyelinase Transcription factors c-Fos c-Jun Myelin Electrostatic field Phase-segregated domains 

Abbreviations

GSLs

Glycosphingolipids

Cer

N-acylsphingosine (ceramide)

GalCer

Galβ1-1′Cer

Suphatide

HSO3-3Galβ1-1′Cer

GluCer

Glcβ1-1′Cer

Gg4Cer (asialo-GM1)

Galβ1-3GalNAcβ1-4Galβ1-4Glcβ1-1′Cer

GM1 (II3NeuAc-CgOse4Cer)

Galβ1-3GalNAcβ1-4Gal(3-2αNeuAc)β1-4Glcβ1-1′Cer

PC

Phosphatidylcholine

dpPC

Dipalmitoylphosphatidylcholine

doPC

Dioleoylphosphatidylcholine

dsPC

Distearoylphosphatidylcholine

dmPC

Dimyristoylphosphatidylcholine

dlPC

Dilauroylphosphatidylcholine

doPG

Dioleoylphosphatidylglycerol

dpPE

Dipalmitoylphosphatidylethanolamine

PIP2

Phosphatidylinositol bisphosphate

Ch

Cholesterol

SM

Sphingomyelin

NBD-PE

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2-1,3-bensoxadiazol-4-yl)

Rh-PE

1,2-Dipalmitoyl-sn-phosphoethanolamine-N-[lyssamine rhodamine B sulfonyl]

DI

1,1′-Didodecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate

HI

Hexagonal I (micellar) phase

HII

Hexagonal II (inverse micellar) phase

PLA2

Phospholipase A2

PLC

Phospholipase C

SMase

Sphingomyelinase

MBP

Myelin basic protein

PLP

Folch’s proteolipid

MARCKS

Myristoylated alanine-rich C-kinase substrate

Tm

Transition temperature

IR

Infrared spectroscopy

EPR

Electron paramagnetic resonance

BAM

Brewster angle microscopy.

Notes

Acknowledgments

This work was supported by: SECyT-UNC, CONICET and FONCyT (Argentina); B.M., G.A.B, M.L.F., R.G.O. and N.W. are Career Investigators of CONICET; M.D.B. and C.M.R. are Doctoral Fellows of CONICET; and L.D. is a Doctoral Fellow of FONCYT. R. G. O. thanks The Alexander von Humboldt Foundation for a Research Fellowship.

References

  1. 1.
    Roberts, G. (1990). Langmuir-Blodgett films. NY: Plenum Press.Google Scholar
  2. 2.
    Gorter, E., & Grendel F. (1925). On bimolecular layers of lipoids on the chromocytes of the blood. Journal of Experimental Medicine, 41, 439–443.PubMedGoogle Scholar
  3. 3.
    Cevc, G., & Marsh D. (1987). Phospholipid bilayers. New York: Wiley-Interscience Publication.Google Scholar
  4. 4.
    Israelachvili, J. N., Marcelja, S., & Horn, R. G. (1980). Physical principles of membrane organization. Quarterly Reviews of Biophysics, 13, 121–200.PubMedGoogle Scholar
  5. 5.
    Phillips, M. C. (1972). The physical state of phospholipid and cholesterol in monolayers, bilayers, membranes. In J. F. Danielli, M. D. Rosenberg, & D. A. Cadenhead (Eds.), Progress in surface and membrane science (pp. 139–221). New York: Academic Press.Google Scholar
  6. 6.
    Maggio, B., Cumar, F. A., & Caputto, R. (1981). Molecular behaviour of glycosphingolipids in interfaces. Possible participation in some properties of nerve membranes. Biochimica et Biophysica Acta, 650, 69–87.PubMedGoogle Scholar
  7. 7.
    Maggio, B. (1994). The surface behavior of glycosphingolipids in biomembranes: A new frontier of molecular ecology. Progress in Biophysics and Molecular Biology, 62, 55–117.PubMedGoogle Scholar
  8. 8.
    Maggio, B., Carrer, D. C., Fanani, M. L., Oliveira, R. G., & Rosetti, C. M. (2004). Interfacial behavior of glycosphingolipids and related sphingolipids. Current Opinion in Colloid & Interface Science, 8, 448–458.Google Scholar
  9. 9.
    Maggio, B., Fanani, M. L., Rosetti, C. M., & Wilke, N. (2006). Biophysics of sphingolipids II. Glycosphingolipids: An assortment of multiple structural information transducers at the membrane surface. Biochimica et Biophysica Acta, 1758, 1922–1944.PubMedGoogle Scholar
  10. 10.
    Rilfors, L., & Lindblom, G. (2002). Regulation of lipid composition in biological membranes-biophysical studies of lipids and lipid synthesizing enzymes. Colloids and Surfaces B, Biointerfaces, 26, 112–124.Google Scholar
  11. 11.
    Esch, S. W., Williams, T. D., Biswas, S., Chakrabarty, A., & Levine, S. M. (2003). Sphingolipid profile in the CNS of the twitcher (globoid cell leukodystrophy) mouse: A lipidomics approach. Cellular and Molecular Biology (Noisy-le-Grand), 49, 779–787.Google Scholar
  12. 12.
    Han, X., & Gross, R. W. (2003). Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics. Journal of Lipid Research, 44, 1071–1079.PubMedGoogle Scholar
  13. 13.
    Lee, S. H., Williams, M. V., DuBois, R. N., & Blair, I. A. (2003). Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 17, 2168–2176.PubMedGoogle Scholar
  14. 14.
    Lagarde, M., Geloen, A., Record, M., Vance, D., & Spener, F. (2003). Lipidomics is emerging. Biochimica et Biophysica Acta, 1634, 61.PubMedGoogle Scholar
  15. 15.
    Phillips, M. C., Graham, D. E., & Hauser, H. (1975). Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes. Nature, 254, 154–156.PubMedGoogle Scholar
  16. 16.
    Thuren, T., Virtanen, J. A., & Kinnunen, P. K. (1986). Estimation of the equilibrium lateral pressure in 1-palmitoyl-2-[6(pyren-1-yl)]hexanoyl-glycerophospholipid liposomes. Chemistry and Physics of Lipids, 41, 329–334.PubMedGoogle Scholar
  17. 17.
    Dahim, M., Mizuno, N. K., Li, X., Momsen, W. E., Momsen, M. M., & Brockman, H. L. (2002). Physical and photophysical characterization of a BODIPY phosphatidylcholine as a membrane probe. Biophysical Journal, 83, 1511–1524.PubMedGoogle Scholar
  18. 18.
    Feng, S. (1999). Interpretation of mechanochemical properties of lipid bilayer vesicles from equation of state or pressure-area measurement of the monolayer at the air–water interface or oil–water interface. Langmuir, 15, 998–1010.Google Scholar
  19. 19.
    Marsh, D. (1996). Lateral pressure in membranes. Biochimica et Biophysica Acta, 1286, 183–223.PubMedGoogle Scholar
  20. 20.
    Sackmann, E. (1995). Physical basis of self-organization and function of membranes: Physics of vesicles. In R. Lipowsky & E. Sackmann (Eds.), Structure and dynamics of membranes: From cells to vesicles (pp. 213–298). North-Holland: Elsevier.Google Scholar
  21. 21.
    Fanani, M. L., & Maggio, B. (2000). Kinetic steps for the hydrolysis of sphingomyelin by Bacillus cereus sphingomyelinase in lipid monolayers. Journal of Lipid Research, 41, 1832–1840.PubMedGoogle Scholar
  22. 22.
    Bloom, M., Evans, E., & Mouritsen, O. G. (1991). Physical properties of the fluid lipid-bilayer component of cell membranes: A perspective. Quarterly Reviews of Biophysics, 24, 293–397.PubMedGoogle Scholar
  23. 23.
    McMullen, T. P. W., Lewis, R. N., & McElhaney, R. N. (2004). Cholesterol–phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes. Current Opinion in Colloid & Interface Science, 8, 459–468.Google Scholar
  24. 24.
    Lichtenberg, D., Goni, F. M., & Heerklotz, H. (2005). Detergent-resistant membranes should not be identified with membrane rafts. Trends in Biochemical Sciences, 30, 430–436.PubMedGoogle Scholar
  25. 25.
    Munro, S. (2003). Lipid rafts: Elusive or illusive? Cell, 115, 377–388.PubMedGoogle Scholar
  26. 26.
    Leidy, C., Gousset, K., Ricker, J., Wolkers, W. F., Tsvetkova, N. M., Tablin, F., & Crowe, J. H. (2004). Lipid phase behavior and stabilization of domains in membranes of platelets. Cell Biochemistry and Biophysics, 40, 123–148.PubMedGoogle Scholar
  27. 27.
    Ledeen, R. W., Hakomori, S. I., Yates, A. J., Schneider, J. S., & Yu, R. K. (1998). Sphingolipids as signaling modulators in the nervous system. Annals of the New York Academy of Sciences, 845, 1–401.Google Scholar
  28. 28.
    Hakomori, S. (1990). Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. Journal of Biological Chemistry, 265, 18713–18716.PubMedGoogle Scholar
  29. 29.
    Maggio, B., & Cumar, F. A. (1975). Experimental allergic encephalomyelitis: Dissociation of neurological symptoms from lipid alterations in brain. Nature, 253, 364–365.PubMedGoogle Scholar
  30. 30.
    Cumar, F. A., Brady, R. O., Kolodny, E. H., McFarland, V. W., & Mora, P. T. (1970). Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines. Proceedings of the National Academy of Sciences of the USA, 67, 757–764.PubMedGoogle Scholar
  31. 31.
    Sonnino, S., Prinetti, A., Mauri, L., Chigorno, V., & Tettamanti, G. (2006). Dynamic and structural properties of sphingolipids as driving forces for the formation of membrane domains. Chemical Reviews, 106, 2111–2125.PubMedGoogle Scholar
  32. 32.
    Goni, F. M., & Alonso, A. (2006). Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochimica et Biophysica Acta, 1758, 1902–1921.PubMedGoogle Scholar
  33. 33.
    Maccioni, H. J., Giraudo, C. G., & Daniotti, J. L. (2002). Understanding the stepwise synthesis of glycolipids. Neurochemical Research, 27, 629–636.PubMedGoogle Scholar
  34. 34.
    Yu, R. K., Bieberich, E., Xia, T., & Zeng, G. (2004). Regulation of ganglioside biosynthesis in the nervous system. Journal of Lipid Research, 45, 783–793.PubMedGoogle Scholar
  35. 35.
    Fidelio, G. D., Ariga, T., & Maggio, B. (1991). Molecular parameters of gangliosides in monolayers: Comparative evaluation of suitable purification procedures. Journal of Biochemistry (Tokyo), 110, 12–16.Google Scholar
  36. 36.
    Orthaber, D., & Glatter, O. (1998). Time and temperature dependent aggregation behaviour of the ganglioside GM1 in aqueous solution. Chemistry and Physics of Lipids, 92, 53–62.PubMedGoogle Scholar
  37. 37.
    Sot, J., Goni, F. M., & Alonso, A. (2005). Molecular associations and surface-active properties of short- and long-N-acyl chain ceramides. Biochimica et Biophysica Acta, 1711, 12–19.PubMedGoogle Scholar
  38. 38.
    Sot, J., Aranda, F. J., Collado, M. I., Goni, F. M., & Alonso, A. (2005). Different effects of long- and short-chain ceramides on the gel–fluid and lamellar-hexagonal transitions of phospholipids: A calorimetric, NMR, and X-ray diffraction study. Biophysical Journal, 88, 3368–3380.PubMedGoogle Scholar
  39. 39.
    Maggio, B. (1992). The molecular electrostatics of glycosphingolipids in oriented interfaces. In M. J. Allen, S. F. Cleary, A. E. Sowers, & D. D. Shillady (Eds.), Charge and field effects in biosystems-III (pp. 69–80). Boston: Birkhauser.Google Scholar
  40. 40.
    Perillo, M. A., Polo, A., Guidotti, A., Costa E., & Maggio, B. (1993). Molecular parameters of semisynthetic derivatives of gangliosides and sphingosine in monolayers at the air–water interface. Chemistry and Physics of Lipids, 65, 225–238.PubMedGoogle Scholar
  41. 41.
    Maggio, B., Ariga, T., & Yu, R. K. (1985). Molecular parameters and conformation of globoside and asialo-GM1. Archives of Biochemistry and Biophysics, 241, 14–21.PubMedGoogle Scholar
  42. 42.
    Ando, S., Yu, R. K., Scarsdale, J. N., Kusunoki, S., & Prestegard, J. H. (1989). High resolution proton NMR studies of gangliosides. Structure of two types of GD3 lactones and their reactivity with monoclonal antibody R24. Journal of Biological Chemistry, 264, 3478–3483.PubMedGoogle Scholar
  43. 43.
    Riboni, L., Sonnino, S., Acquotti, D., Malesci, A., Ghidoni, R., Egge, H., Mingrino, S., & Tettamanti, G. (1986). Natural occurrence of ganglioside lactones. Isolation and characterization of GD1b inner ester from adult human brain. Journal of Biological Chemistry, 261, 8514–8519.PubMedGoogle Scholar
  44. 44.
    Maggio, B., Ariga, T., Calderón, R. O., & Yu, R. K. (1997). Ganglioside GD3 and GD3-lactone mediated regulation of the intermolecular organization in mixed monolayers with dipalmitoylphosphatidylcholine. Chemistry and Physics of Lipids, 90, 1–10.PubMedGoogle Scholar
  45. 45.
    Maggio, B., Ariga, T., & Yu, R. K. (1990). Ganglioside GD3 lactones: Polar head group mediated control of the intermolecular organization. Biochemistry, 29, 8729–8734.PubMedGoogle Scholar
  46. 46.
    Maggio, B., Cumar, F. A., & Caputto, R. (1978). Surface behaviour of gangliosides and related glycosphingolipids. Biochemical Journal, 171, 559–565.PubMedGoogle Scholar
  47. 47.
    McDaniel, R. V., Sharp, K., Brooks, D., McLaughlin, A. C., Winiski, A. P., Cafiso, D., & McLaughlin, S. (1986). Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory. Biophysical Journal, 49, 741–752.PubMedGoogle Scholar
  48. 48.
    Majewski, J., Kuhl, T. L., Kjaer, K., & Smith, G. S. (2001). Packing of ganglioside-phospholipid monolayers: An X-ray diffraction and reflectivity study. Biophysical Journal, 81, 2707–2715.PubMedGoogle Scholar
  49. 49.
    Diociaiuti, M., Ruspantini, I., Giordani, C., Bordi, F., & Chistolini, P. (2004). Distribution of GD3 in DPPC monolayers: A thermodynamic and atomic force microscopy combined study. Biophysical Journal, 86, 321–328.PubMedGoogle Scholar
  50. 50.
    Miller, C. E., Majewski, J., Faller, R., Satija, S., & Kuhl, T. L. (2004). Cholera toxin assault on lipid monolayers containing ganglioside GM1. Biophysical Journal, 86, 3700–3708.PubMedGoogle Scholar
  51. 51.
    Roy, D., & Mukhopadhyay, C. (2001). GD1a in phospholipid bilayer: A molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 18, 639–646.Google Scholar
  52. 52.
    Singh, D., Jarrell, H. C., Barber, K. R., & Grant, C. W. (1992). Glycosphingolipids: 2H NMR study of the influence of ceramide fatty acid characteristics on the carbohydrate headgroup in phospholipid bilayers. Biochemistry, 31, 2662–2669.PubMedGoogle Scholar
  53. 53.
    Saxena, K., Duclos, R. I., Zimmermann, P., Schmidt, R. R., & Shipley, G. G. (1999). Structure and properties of totally synthetic galacto- and gluco-cerebrosides. Journal of Lipid Research, 40, 839–849.PubMedGoogle Scholar
  54. 54.
    Boggs, J. M., Koshy, K. M., & Rangaraj, G. (1984). Effect of fatty acid chain length, fatty acid hydroxylation and various cations on phase behavior of synthetic cerebroside sulfate. Chemistry and Physics of Lipids, 36, 65–89.Google Scholar
  55. 55.
    Boggs, J. M. (1987). Lipid intermolecular hydrogen bonding: Influence on structural organization and membrane function. Biochimica et Biophysica Acta, 906, 353–404.PubMedGoogle Scholar
  56. 56.
    Albon, N., & Baret, J. F. (1983). Comparison and correlation between the properties of lipid molecules in crystals, bilayer dispersions in water and monolayers on a water surface. Journal of Colloid and Interface Science, 92, 545–560.Google Scholar
  57. 57.
    Fidelio, G. D., Maggio, B., & Cumar, F. A. (1986). Molecular parameters and physical state of neutral glycosphingolipids and gangliosides in monolayers at different temperatures. Biochimica et Biophysica Acta, 854, 231–239.PubMedGoogle Scholar
  58. 58.
    Seddon, J. M. (1990). Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochimica et Biophysica Acta, 1031, 1–69.PubMedGoogle Scholar
  59. 59.
    Shipley, G. G., Avecilla, L. S., & Small, D. M. (1974). Phase behavior and structure of aqueous dispersions of sphingomyelin. Journal of Lipid Research, 15, 124–131.PubMedGoogle Scholar
  60. 60.
    Sripada, P. K., Maulik, P. R., Hamilton, J. A., & Shipley, G. G. (1987). Partial synthesis and properties of a series of N-acyl sphingomyelins. Journal of Lipid Research, 28, 710–718.PubMedGoogle Scholar
  61. 61.
    Cullis, P. R., & Hope, M. J. (1980). The bilayer stabilizing role of sphingomyelin in the presence of cholesterol: A 31P NMR study. Biochimica et Biophysica Acta, 597, 533–542.PubMedGoogle Scholar
  62. 62.
    Siminovitch, D. J., & Jeffrey, K. R. (1981). Orientational order in the choline headgroup of sphingomyelin: A 14N-NMR study. Biochimica et Biophysica Acta, 645, 270–278.PubMedGoogle Scholar
  63. 63.
    Saez-Cirion, A., Basañez, G., Fidelio, G., Goñi, F. M., Maggio, B., & Alonso, A. (2000). Sphingolipids (galactosylceramide and sulfatide) in lamellar-hexagonal phospholipid phase transitions and in membrane fusion. Langmuir, 16, 8958–8963.Google Scholar
  64. 64.
    Sonnino, S., Cantu, L., Corti, M., Acquotti, D., & Venerando, B. (1994). Aggregative properties of gangliosides in solution. Chemistry and Physics of Lipids, 71, 21–45.PubMedGoogle Scholar
  65. 65.
    Maggio, B. (1985). Geometric and thermodynamic restrictions for the self-assembly of glycosphingolipid-phospholipid systems. Biochimica et Biophysica Acta, 815, 245–258.PubMedGoogle Scholar
  66. 66.
    Maggio, B., Albert, J., & Yu, R. K. (1988). Thermodynamic-geometric correlations for the morphology of self-assembled structures of glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. Biochimica et Biophysica Acta, 945, 145–160.PubMedGoogle Scholar
  67. 67.
    Basanez, G., Fidelio, G. D., Goni, F. M., Maggio, B., & Alonso, A. (1996). Dual inhibitory effect of gangliosides on phospholipase C-promoted fusion of lipidic vesicles. Biochemistry, 35, 7506–7513.PubMedGoogle Scholar
  68. 68.
    Maggio, B., Cumar, F. A., & Caputto, R. (1978). Induction of membrane fusion by polysialogangliosides. FEBS Letters, 90, 149–152.PubMedGoogle Scholar
  69. 69.
    Monferran, C. G., Maggio, B., Roth, G. A., Cumar, F. A., & Caputto, R. (1979). Membrane instability induced by purified myelin components. Its possible relevance to experimental allergic encephalomyelitis. Biochimica et Biophysica Acta, 553, 417–423.PubMedGoogle Scholar
  70. 70.
    Cumar, F. A., Maggio, B., & Caputto, R. (1980). Neurotransmitter movements in nerve endings. Influence of substances that modify the interfacial potential. Biochimica et Biophysica Acta, 597, 174–182.PubMedGoogle Scholar
  71. 71.
    Maggio, B., & Yu, R. K. (1989). Interaction and fusion of unilamellar vesicles containing cerebrosides and sulfatides induced by myelin basic protein. Chemistry and Physics of Lipids, 51, 127–136.PubMedGoogle Scholar
  72. 72.
    Mannock, D. A., Lewis, R. N., Sen, A., & McElhaney, R. N. (1988). The physical properties of glycosyldiacylglycerols. Calorimetric studies of a homologous series of 1,2-di-O-acyl-3-O-(beta-D-glucopyranosyl)-sn-glycerols. Biochemistry, 27, 6852–6859.PubMedGoogle Scholar
  73. 73.
    Wieslander, A., Ulmius, J., Lindblom, G., & Fontell, K. (1978). Water binding and phase structures for different Acholeplasma laidlawii membrane lipids studied by deuteron nuclear magnetic resonance and X-ray diffraction. Biochimica et Biophysica Acta, 512, 241–253.PubMedGoogle Scholar
  74. 74.
    McElhaney, R. N. (1984). The structure and function of the Acholeplasma laidlawii plasma membrane. Biochimica et Biophysica Acta, 779, 1–42.PubMedGoogle Scholar
  75. 75.
    Shipley, G. G., Green, J. P., & Nichols, B. W. (1973). The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides. Biochimica et Biophysica Acta, 311, 531–544.PubMedGoogle Scholar
  76. 76.
    Brentel, I., Selstam, E., & Lindbom, G. (1985). Phase equilibria of mixtures of plant galactolipids: The formation of a bicontinuous cubic phase. Biochimica et Biophysica Acta, 812, 816–826.Google Scholar
  77. 77.
    Gruner, S. M. (1985). Intrinsic curvature hypothesis for biomembrane lipid composition: A role for nonbilayer lipids. Proceedings of the National Academy of Sciences of the USA, 82, 3665–3669.PubMedGoogle Scholar
  78. 78.
    Kulkarni, K., Snyder, D. S., & McIntosh, T. J. (1999). Adhesion between cerebroside bilayers. Biochemistry, 38, 15264–15271.PubMedGoogle Scholar
  79. 79.
    Boggs, J. M., Menikh, A., & Rangaraj, G. (2000). Trans interactions between galactosylceramide and cerebroside sulfate across apposed bilayers. Biophysical Journal, 78, 874–885.PubMedCrossRefGoogle Scholar
  80. 80.
    Bach, D., Sela, B., & Miller, I. R. (1982). Compositional aspects of lipid hydration. Chemistry and Physics of Lipids, 31, 381–394.PubMedGoogle Scholar
  81. 81.
    Bianco, I. D., Fidelio, G. D., & Maggio, B. (1988). Effect of glycerol on the molecular properties of cerebrosides, sulphatides and gangliosides in monolayers. Biochemical Journal, 251, 613–616.PubMedGoogle Scholar
  82. 82.
    Arnulphi, C., Levstein, P. R., Ramia, M. E., Martin, C. A., & Fidelio, G. D. (1997). Ganglioside hydration study by 2H-NMR: Dependence on temperature and water/lipid ratio. Journal of Lipid Research, 38, 1412–1420.PubMedGoogle Scholar
  83. 83.
    Arnulphi, C., Martin, C. A., & Fidelio, G. D. (2003). Mixed lipid aggregates containing gangliosides impose different 2H-NMR dynamical parameters on water environment depending on their lipid composition. Molecular Membrane Biology, 20, 319–327.PubMedGoogle Scholar
  84. 84.
    Hinz, H. J., Kuttenreich, H., Meyer, R., Renner, M., Frund, R., Koynova, R., Boyanov, A. I., & Tenchov, B. G. (1991). Stereochemistry and size of sugar head groups determine structure and phase behavior of glycolipid membranes: Densitometric, calorimetric, and X-ray studies. Biochemistry, 30, 5125–5138.PubMedGoogle Scholar
  85. 85.
    Johnston, D. S., Coppard, E., Parera, G. V., & Chapman, D. (1984). Langmuir film balance study of the interactions between carbohydrates and phospholipid monolayers. Biochemistry, 23, 6912–6919.Google Scholar
  86. 86.
    Maggio, B., Montich, G. G., & Cumar, F. A. (1988). Surface topography of sulfatide and gangliosides in unilamellar vesicles of dipalmitoylphosphatidylcholine. Chemistry and Physics of Lipids, 46, 137–146.PubMedGoogle Scholar
  87. 87.
    Montich, G. G., Bustos, M., Maggio, B., & Cumar, F. A. (1985). Micropolarity of interfaces containing anionic and neutral glycosphingolipids as sensed by Merocyanine 540. Chemistry and Physics of Lipids, 38, 319–326.Google Scholar
  88. 88.
    Bagatolli, L. A., Maggio, B., Aguilar, F., Sotomayor, C. P., & Fidelio, G. D. (1997). Laurdan properties in glycosphingolipid–phospholipid mixtures: A comparative fluorescence and calorimetric study. Biochimica et Biophysica Acta, 1325, 80–90.PubMedGoogle Scholar
  89. 89.
    Maggio, B. (2004). Favorable and unfavorable lateral interactions of ceramide, neutral glycosphingolipids and gangliosides in mixed monolayers. Chemistry and Physics of Lipids, 132, 209–224.PubMedGoogle Scholar
  90. 90.
    Carrer, D. C., & Maggio, B. (2001). Transduction to self-assembly of molecular geometry and local interactions in mixtures of ceramides and ganglioside GM1. Biochimica et Biophysica Acta, 1514, 87–99.PubMedGoogle Scholar
  91. 91.
    Rosetti, C. M., Oliveira, R. G., & Maggio, B. (2003). Reflectance and topography of glycosphingolipid monolayers at the air–water interface. Langmuir, 19, 377–384.Google Scholar
  92. 92.
    Dietrich, C., Bagatolli, L. A., Volovyk, Z. N., Thompson, N. L., Levi, M., Jacobson, K., & Gratton, E. (2001). Lipid rafts reconstituted in model membranes. Biophysical Journal, 80, 1417–1428.PubMedGoogle Scholar
  93. 93.
    Mohwald, H. (1995). Phospholipids monolayers. In R. Lipowsky & E. Sackmann (Eds.), Structure and dynamics of membranes (pp. 161–211). Amsterdam: Elsevier.Google Scholar
  94. 94.
    McConnell, H. M. (1991). Structures and transitions in lipid monolayers at the air–water interface. Annual Review of Physical Chemistry, 42, 171–195.Google Scholar
  95. 95.
    Oliveira, R. G., & Maggio, B. (2000). Epifluorescence microscopy of surface domain microheterogeneity in myelin monolayers at the air–water interface. Neurochemical Research, 25, 77–86.PubMedGoogle Scholar
  96. 96.
    Oliveira, R. G., & Maggio, B. (2002). Compositional domain immiscibility in whole myelin monolayers at the air–water interface and Langmuir-Blodgett films. Biochimica et Biophysica Acta, 1561, 238–250.PubMedGoogle Scholar
  97. 97.
    Rosetti, C. M., Oliveira, R. G., & Maggio, B. (2005). The Folch-Lees proteolipid induces phase coexistence and transverse reorganization of lateral domains in myelin monolayers. Biochimica et Biophysica Acta, 1668, 75–86.PubMedGoogle Scholar
  98. 98.
    Fanani, M. L., Hartel, S., Oliveira, R. G., & Maggio, B. (2002). Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophysical Journal, 83, 3416–3424.PubMedCrossRefGoogle Scholar
  99. 99.
    Jost, P. C., & Griffith, O. H. (1980). The lipid–protein interface in biological membranes. Annals of the New York Academy of Sciences, 348, 391–407.PubMedGoogle Scholar
  100. 100.
    Lee, A. G., Birdsall, N. J., Metcalfe, J. C., Toon, P. A., & Warren, G. B. (1974). Clusters in lipid bilayers and the interpretation of thermal effects in biological membranes. Biochemistry, 13, 3699–3705.PubMedGoogle Scholar
  101. 101.
    Heerklotz, H. (2002). Triton promotes domain formation in lipid raft mixtures. Biophysical Journal, 83, 2693–2701.PubMedGoogle Scholar
  102. 102.
    Heerklotz, H., Szadkowska, H., Anderson, T., & Seelig, J. (2003). The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. Journal of Molecular Biology, 329, 793–799.PubMedGoogle Scholar
  103. 103.
    Sot, J., Collado, M. I., Arrondo, J. L., Alonso, A., & Goñi, F. M. (2002). Triton X-100-resistant bilayers: Effect of lipid composition and relevance to the raft phenomenon. Langmuir, 18, 2828–2835.Google Scholar
  104. 104.
    Kiyokawa, E., Baba, T., Otsuka, N., Makino, A., Ohno, S., & Kobayashi, T. (2005). Spatial and functional heterogeneity of sphingolipid-rich membrane domains. Journal of Biological Chemistry, 280, 24072–24084.PubMedGoogle Scholar
  105. 105.
    Wilson, B. S., Steinberg, S. L., Liederman, K., Pfeiffer, J. R., Surviladze, Z., Zhang, J., Samelson, L. E., Yang, L. H., Kotula, P. G., & Oliver, J. M. (2004). Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Molecular Biology of the Cell, 15, 2580–2592.PubMedGoogle Scholar
  106. 106.
    Heffer-Lauc, M., Lauc, G., Nimrichter, L., Fromholt, S. E., & Schnaar, R. L. (2005). Membrane redistribution of gangliosides and glycosylphosphatidylinositol-anchored proteins in brain tissue sections under conditions of lipid raft isolation. Biochimica et Biophysica Acta, 1686(3), 200–208.PubMedGoogle Scholar
  107. 107.
    Ramstedt, B., & Slotte, J. P. (2006). Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochimica et Biophysica Acta, 1758, 1945–1956.PubMedGoogle Scholar
  108. 108.
    Veatch, S. L., & Keller, S. L. (2005). Seeing spots: Complex phase behavior in simple membranes. Biochimica et Biophysica Acta, 1746, 172–185.PubMedGoogle Scholar
  109. 109.
    Kahya, N., Scherfeld, D., Bacia, K., Poolman, B., & Schwille, P. (2003). Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. Journal of Biological Chemistry, 278, 28109–28115.PubMedGoogle Scholar
  110. 110.
    de Almeida, R. F., Fedorov, A., & Prieto, M. (2003). Sphingomyelin/phosphatidylcholine/cholesterol phase diagram: Boundaries and composition of lipid rafts. Biophysical Journal, 85, 2406–2416.PubMedGoogle Scholar
  111. 111.
    Hsueh, Y. W., Giles, R., Kitson, N., & Thewalt, J. (2002). The effect of ceramide on phosphatidylcholine membranes: A deuterium NMR study. Biophysical Journal, 82, 3089–3095.PubMedGoogle Scholar
  112. 112.
    Carrer, D. C., Schreier, S., Patrito, M., & Maggio, B. (2006). Effects of a short-chain ceramide on bilayer domain formation, thickness, and chain mobility: DMPC and asymmetric ceramide mixtures. Biophysical Journal, 90, 2394–2403.PubMedGoogle Scholar
  113. 113.
    Wang, T. Y., & Silvius, J. R. (2003). Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophysical Journal, 84, 367–378.PubMedGoogle Scholar
  114. 114.
    Slotte, J. P., & Bierman, E. L. (1988). Depletion of plasma-membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts. Biochemical Journal, 250, 653–658.PubMedGoogle Scholar
  115. 115.
    Holopainen, J. M., Subramanian, M., & Kinnunen, P. K. (1998). Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry, 37, 17562–17570.PubMedGoogle Scholar
  116. 116.
    Kolesnick, R. N., Goni, F. M., & Alonso, A. (2000). Compartmentalization of ceramide signaling: Physical foundations and biological effects. Journal of Cellular Physiology, 184, 285–300.PubMedGoogle Scholar
  117. 117.
    Holopainen, J. M., Brockman, H. L., Brown, R. E., & Kinnunen, P. K. (2001). Interfacial interactions of ceramide with dimyristoylphosphatidylcholine: Impact of the N-acyl chain. Biophysical Journal, 80, 765–775.PubMedGoogle Scholar
  118. 118.
    Nybond, S., Bjorkqvist, Y. J., Ramstedt, B., & Slotte, J. P. (2005). Acyl chain length affects ceramide action on sterol/sphingomyelin-rich domains. Biochimica et Biophysica Acta, 1718, 61–66.PubMedGoogle Scholar
  119. 119.
    Huang, H. W., Goldberg, E. M., & Zidovetzki, R. (1998). Ceramides perturb the structure of phosphatidylcholine bilayers and modulate the activity of phospholipase A2. European Biophysics Journal, 27, 361–366.PubMedGoogle Scholar
  120. 120.
    Pincelli, M. M., Levstein P. R., Fidelio G. D., & Gennaro A. M. (2000). Cholesterol-induced alterations of the packing properties of gangliosides: An EPR study. Chemistry and Physics of Lipids, 104, 193–206.PubMedGoogle Scholar
  121. 121.
    Xu, X., Bittman, R., Duportail, G., Heissler, D., Vilcheze, C., & London, E. (2001). Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide. Journal of Biological Chemistry, 276, 33540–33546.PubMedGoogle Scholar
  122. 122.
    Masserini, M., & Ravasi, D. (2001). Role of sphingolipids in the biogenesis of membrane domains. Biochimica et Biophysica Acta, 1532, 149–161.PubMedGoogle Scholar
  123. 123.
    Ruocco, M. J., & Shipley, G. G. (1984). Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes. Biophysical Journal, 46, 695–707.PubMedCrossRefGoogle Scholar
  124. 124.
    Regen, S. L. (2002). Lipid–lipid recognition in fluid bilayers: Solving the cholesterol mystery. Current Opinion in Chemical Biology, 6, 729–735.PubMedGoogle Scholar
  125. 125.
    Mattjus, P., Malewicz, B., Valiyaveettil, J. T., Baumann, W. J., Bittman, R., & Brown, R. E. (2002). Sphingomyelin modulates the transbilayer distribution of galactosylceramide in phospholipid membranes. Journal of Biological Chemistry, 277, 19476–19481.PubMedGoogle Scholar
  126. 126.
    Malewicz, B., Valiyaveettil, J. T., Jacob, K., Byun, H. S., Mattjus, P., Baumann, W. J., Bittman, R., & Brown, R. E. (2005). The 3-hydroxy group and 4,5-trans double bond of sphingomyelin are essential for modulation of galactosylceramide transmembrane asymmetry. Biophysical Journal, 88, 2670–2680.PubMedGoogle Scholar
  127. 127.
    Contreras, F. X., Villar, A. V., Alonso, A., Kolesnick, R. N., & Goni, F. M. (2003). Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. Journal of Biological Chemistry, 278, 37169–37174.PubMedGoogle Scholar
  128. 128.
    Rogasevskaia, T., & Coorssen, J. R. (2006). Sphingomyelin-enriched microdomains define the efficiency of native Ca(2+)-triggered membrane fusion. Journal of Cell Science, 119, 2688–2694.PubMedGoogle Scholar
  129. 129.
    Patra, S. K., Alonso, A., & Goni, F. M. (1998). Detergent solubilisation of phospholipid bilayers in the gel state: The role of polar and hydrophobic forces. Biochimica et Biophysica Acta, 1373, 112–118.PubMedGoogle Scholar
  130. 130.
    Patra, S. K., Alonso, A., Arrondo, J. L., & Goñi, F. M. (1999). Liposomes containing sphingomyelin and cholesterol: Detergent solubilization and infrared spectroscopy studies. Journal of Liposome Research, 9, 247–260.Google Scholar
  131. 131.
    Veiga, M. P., Goni, F. M., Alonso, A., & Marsh, D. (2000). Mixed membranes of sphingolipids and glycerolipids as studied by spin-label ESR spectroscopy. A search for domain formation. Biochemistry, 39, 9876–9883.PubMedGoogle Scholar
  132. 132.
    Veiga, M. P., Arrondo, J. L., Goni, F. M., Alonso, A., & Marsh, D. (2001). Interaction of cholesterol with sphingomyelin in mixed membranes containing phosphatidylcholine, studied by spin-label ESR and IR spectroscopies. A possible stabilization of gel-phase sphingolipid domains by cholesterol. Biochemistry, 40, 2614–2622.PubMedGoogle Scholar
  133. 133.
    Hwang, J., Tamm, L. K., Bohm, C., Ramalingam, T. S., Betzig, E., & Edidin, M. (1995). Nanoscale complexity of phospholipid monolayers investigated by near-field scanning optical microscopy. Science, 270, 610–614.PubMedGoogle Scholar
  134. 134.
    Hammond, A. T., Heberle, F. A., Baumgart, T., Holowka, D., Baird, B., & Feigenson, G. W. (2005). Crosslinking a lipid raft component triggers liquid ordered-liquid disordered phase separation in model plasma membranes. Proceedings of the National Academy of Sciences of the USA, 102, 6320–6325.PubMedGoogle Scholar
  135. 135.
    Peters, M. W., & Grant, C. W. (1984). Freeze-etch study of an unmodified lectin interacting with its receptors in model membranes. Biochimica et Biophysica Acta, 775, 273–282.PubMedGoogle Scholar
  136. 136.
    Thompson, T. E., Allietta, M., Brown, R. E., Johnson, M. L., & Tillack, T. W. (1985). Organization of ganglioside GM1 in phosphatidylcholine bilayers. Biochimica et Biophysica Acta, 817, 229–237.PubMedGoogle Scholar
  137. 137.
    Revesz, T., & Greaves, M. (1975). Ligand-induced redistribution of lymphocyte membrane ganglioside GM1. Nature, 257, 103–106.PubMedGoogle Scholar
  138. 138.
    Goins, B., Masserini, M., Barisas, B. G., & Freire, E. (1986). Lateral diffusion of ganglioside GM1 in phospholipid bilayer membranes. Biophysical Journal, 49, 849–856.PubMedGoogle Scholar
  139. 139.
    Kenworthy, A. K., Petranova, N., & Edidin, M. (2000). High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes. Molecular Biology of the Cell, 11, 1645–1655.PubMedGoogle Scholar
  140. 140.
    Wang, T. Y., & Silvius, J. R. (2000). Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers. Biophysical Journal, 79, 1478–1489.PubMedGoogle Scholar
  141. 141.
    Pagano, R. E., Watanabe, R., Wheatley, C., & Dominguez, M. (2000). Applications of BODIPY-sphingolipid analogs to study lipid traffic and metabolism in cells. Methods in Enzymology, 312, 523–534.PubMedGoogle Scholar
  142. 142.
    Klausner, R. D., & Wolf, D. E. (1980). Selectivity of fluorescent lipid analogues for lipid domains. Biochemistry, 19, 6199–6203.PubMedGoogle Scholar
  143. 143.
    Dahlen, B., & Pascher, I. (1979). Molecular arrangement in sphingolipids. Thermotropic phase behaviour of tetracosanoylphytosphingosine. Chemistry and Physics of Lipids, 24, 119–133.Google Scholar
  144. 144.
    O´Brien, J. S., & Rouser, G. (1964). The fatty acid composition of brain sphingolipids: Sphingomyelin, ceramide, cerebroside and cerebroside sulfate. Journal of Lipid Research, 5, 339–342.Google Scholar
  145. 145.
    DeVries, G. H., & Norton W. T. (1974). The fatty acid composition of sphingolipids from bovine CNS axons and myelin. Journal of Neurochemistry, 22, 251–257.PubMedGoogle Scholar
  146. 146.
    Huang, C., & Mason, J. T. (1986). Structure and properties of mixed-chain phospholipid assemblies. Biochimica et Biophysica Acta, 864, 423–470.PubMedGoogle Scholar
  147. 147.
    Mehlhorn, I. E., Florio, E., Barber, K. R., Lordo, C., & Grant, C. W. (1988). Evidence that trans-bilayer interdigitation of glycosphingolipid long chain fatty acids may be a general phenomenon. Biochimica et Biophysica Acta, 939, 151–159.PubMedGoogle Scholar
  148. 148.
    Boggs, J. M., & Koshy, K. M. (1994). Do the long fatty acid chains of sphingolipids interdigitate across the center bilayer of shorter chain symmetric phospholipids? Biochimica et Biophysica Acta, 1189, 233–241.PubMedGoogle Scholar
  149. 149.
    Nabet, A., Boggs, J. M., & Pezolet, M. (1996). Study by infrared spectroscopy of the interdigitation of C26:0 cerebroside sulfate into phosphatidylcholine bilayers. Biochemistry, 35, 6674–6683.PubMedGoogle Scholar
  150. 150.
    Perillo, M. A., Scarsdale, N. J., Yu, R. K., & Maggio, B. (1994). Modulation by gangliosides of the lamellar-inverted micelle (hexagonal II) phase transition in mixtures containing phosphatidylethanolamine and dioleoylglycerol. Proceedings of the National Academy of Sciences of the USA, 91, 10019–10023.PubMedGoogle Scholar
  151. 151.
    van Gorkom, L. C., Cheetham, J. J., & Epand, R. M. (1995). Ganglioside GD1a generates domains of high curvature in phosphatidylethanolamine liposomes as determined by solid state 31P-NMR spectroscopy. Chemistry and Physics of Lipids, 76, 103–108.PubMedGoogle Scholar
  152. 152.
    Goni, F. M., Contreras, F. X., Montes, L. R., Sot, J., & Alonso, A. (2005). Biophysics (and sociology) of ceramides. Biochemical Society Symposium, 177–188.Google Scholar
  153. 153.
    Siegel, D. P., & Epand, R. M. (1997). The mechanism of lamellar-to-inverted hexagonal phase transitions in phosphatidylethanolamine: Implications for membrane fusion mechanisms. Biophysical Journal, 73, 3089–3111.PubMedGoogle Scholar
  154. 154.
    Maggio, B., & Yu, R. K. (1992). Modulation by glycosphingolipids of membrane–membrane interactions induced by myelin basic protein and melittin. Biochimica et Biophysica Acta, 1112, 105–114.PubMedGoogle Scholar
  155. 155.
    Goins, B., & Freire, E. (1985). Lipid phase separations induced by the association of cholera toxin to phospholipid membranes containing ganglioside GM1. Biochemistry, 24, 1791–1797.PubMedGoogle Scholar
  156. 156.
    Goins, B., & Freire, E. (1988). Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside GM1. Biochemistry, 27, 2046–2052.PubMedGoogle Scholar
  157. 157.
    Dalziel, A. W., Lipka, G., Chowdhry, B. Z., Sturtevant, J. M., & Schafer, D. E. (1984). Effects of ganglioside GM1 on the thermotropic behavior of cholera toxin B subunit. Molecular and Cellular Biochemistry, 63, 83–91.PubMedGoogle Scholar
  158. 158.
    Cumar, F. A., Maggio, B., & Caputto, R. (1982). Ganglioside-cholera toxin interactions: A binding and lipid monolayer study. Molecular and Cellular Biochemistry, 46, 155–160.PubMedGoogle Scholar
  159. 159.
    Schiavo, G., Demel, R., & Montecucco, C. (1991). On the role of polysialoglycosphingolipids as tetanus toxin receptors. A study with lipid monolayers. European Journal of Biochemistry, 199, 705–711.PubMedGoogle Scholar
  160. 160.
    Fishman, P. H. (1982). Role of membrane gangliosides in the binding and action of bacterial toxins. Journal of Membrane Biology, 69, 85–97.PubMedGoogle Scholar
  161. 161.
    Fidelio, G. D., Maggio, B., & Cumar, F. A. (1986). Stability and penetration of soluble and membrane proteins in interfaces. Anales de la Asociacion Química Argentina, 74, 801–813.Google Scholar
  162. 162.
    Epand, R. M., & Moscarello, M. A. (1982). The effects of bovine myelin basic protein on the phase transition properties of sphingomyelin. Biochimica et Biophysica Acta, 685, 230–232.PubMedGoogle Scholar
  163. 163.
    Maggio, B., Ariga, T., Sturtevant, J. M., & Yu, R. K. (1985). Thermotropic behavior of glycosphingolipids in aqueous dispersions. Biochemistry, 24, 1084–1092.PubMedGoogle Scholar
  164. 164.
    Maggio, B., Sturtevant, J. M., & Yu, R. K. (1987). Effect of myelin basic protein on the thermotropic behavior of aqueous dispersions of neutral and anionic glycosphingolipids and their mixtures with dipalmitoylphosphatidylcholine. Journal of Biological Chemistry, 262, 2652–2659.PubMedGoogle Scholar
  165. 165.
    Fidelio, G. D., Maggio, B., & Cumar, F. A. (1982). Interaction of soluble and membrane proteins with monolayers of glycosphingolipids. Biochemical Journal 203, 717–725.PubMedGoogle Scholar
  166. 166.
    Maggio, B., Fidelio, G. D., Cumar, F. A., & Yu, R. K. (1986). Molecular interactions and thermotropic behavior of glycosphingolipids in model membrane systems. Chemistry and Physics of Lipids, 42, 49–63.PubMedGoogle Scholar
  167. 167.
    Papahadjopoulos, D., Moscarello, M., Eylar, E. H., & Isac, T. (1975). Effects of proteins on thermotropic phase transitions of phospholipid membranes. Biochimica et Biophysica Acta, 401, 317–335.PubMedGoogle Scholar
  168. 168.
    Maggio, B., Rosetti, C. M., Borioli, G. A., Fanani, M. L., & Del Boca, M. (2005). Protein-mediated surface structuring in biomembranes. Brazilian Journal of Medical and Biological Research, 38, 1735–1748.PubMedGoogle Scholar
  169. 169.
    Whitmarsh, A. J. (2006). Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochimica et Biophysica Acta, 1773, 1285–1298.PubMedGoogle Scholar
  170. 170.
    Newman, J. R., & Keating, A. E. (2003). Comprehensive identification of human bZIP interactions with coiled-coil arrays. Science, 300, 2097–2101.PubMedGoogle Scholar
  171. 171.
    Vinson, C., Myakishev, M., Acharya, A., Mir, A. A., Moll, J. R., & Bonovich, M. (2002). Classification of human B-ZIP proteins based on dimerization properties. Molecular and Cellular Biology, 22, 6321–6335.PubMedGoogle Scholar
  172. 172.
    Dyson, H. J., & Wright, P. E. (2005). Intrinsically unstructured proteins and their functions. Nature Reviews Molecular Cell Biology, 6, 197–208.PubMedGoogle Scholar
  173. 173.
    Glover, J. N., & Harrison, S. C. (1995). Crystal structure of the heterodimeric bZIP transcription factor c-Fos-c-Jun bound to DNA. Nature, 373, 257–261.PubMedGoogle Scholar
  174. 174.
    Kohler, J. J., & Schepartz, A. (2001). Kinetic studies of Fos.Jun.DNA complex formation: DNA binding prior to dimerization. Biochemistry, 40, 130–142.PubMedGoogle Scholar
  175. 175.
    Kim, Y. S., Kim, S. G., Park, J. E., Park, H. Y., Lim, M. H., Chua, N. H., & Park, C. M. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell, 18, 3132–3144.PubMedGoogle Scholar
  176. 176.
    Gil, G. A., Bussolino, D. F., Portal, M. M., Pecchio, A. A., Renner, M. L., Borioli, G. A., Guido, M. E., & Caputto, B. L. (2004). c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells. Molecular Biology of the Cell, 15, 1881–1894.PubMedGoogle Scholar
  177. 177.
    Borioli, G. A., Caputto, B. L., & Maggio, B. (2001). c-Fos is surface active and interacts differentially with phospholipid monolayers. Biochemical and Biophysical Research Communications 280, 9–13.PubMedGoogle Scholar
  178. 178.
    Santagata, S., Boggon, T. J., Baird, C. L., Gomez, C. A., Zhao, J., Shan, W. S., Myszka, D. G., & Shapiro, L. (2001). G-protein signaling through tubby proteins. Science, 292, 2041–2050.PubMedGoogle Scholar
  179. 179.
    Del Boca, M., Caputto, B. L., Maggio, B., & Borioli, G. A. (2005). c-Jun interacts with phospholipids and c-Fos at the interface. Journal of Colloid and Interface Science, 287, 80–84.PubMedGoogle Scholar
  180. 180.
    Borioli, G. A., Caputto, B. L., & Maggio, B. (2004). Phospholipase activity is modulated by c-Fos through substrate expansion and hyperpolarization. FEBS Letters, 570, 82–86.PubMedGoogle Scholar
  181. 181.
    Borioli, G. A., Caputto, B. L., & Maggio, B. (2005). c-Fos and phosphatidylinositol-4,5-bisphosphate reciprocally reorganize in mixed monolayers. Biochimica et Biophysica Acta, 1668, 41–52.PubMedGoogle Scholar
  182. 182.
    Borioli, G. A., & Maggio, B. (2006). Surface thermodynamics reveals selective structural information storage capacity of c-Fos-phospholipid interactions. Langmuir, 22, 1775–1781.PubMedGoogle Scholar
  183. 183.
    Glaser, M., Wanaski, S., Buser, C. A., Boguslavsky, V., Rashidzada, W., Morris, A., Rebecchi, M., Scarlata, S. F., Runnels, L. W., Prestwich, G. D., Chen, J., Aderem, A., Ahn, J., & McLaughlin, S. (1996). Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. Journal of Biological Chemistry, 271, 26187–26193.PubMedGoogle Scholar
  184. 184.
    Laux, T., Fukami, K., Thelen, M., Golub, T., Frey, D., & Caroni, P. (2000). GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. Journal of Cell Biology, 149, 1455–1472.PubMedGoogle Scholar
  185. 185.
    Sundaram, M., Cook, H. W., & Byers, D. M. (2004). The MARCKS family of phospholipid binding proteins: Regulation of phospholipase D and other cellular components. Biochemistry and Cell Biology, 82, 191–200.PubMedGoogle Scholar
  186. 186.
    Gatlin, J. C., Estrada-Bernal, A., Sanford, S. D., & Pfenninger, K. H. (2006). Myristoylated, alanine-rich C-kinase substrate phosphorylation regulates growth cone adhesion and pathfinding. Molecular Biology of the Cell, 17, 5115–5130.PubMedGoogle Scholar
  187. 187.
    Gambhir, A., Hangyas-Mihalyne, G., Zaitseva, I., Cafiso, D. S., Wang, J., Murray, D., Pentyala, S. N., Smith, S. O., & McLaughlin, S. (2004). Electrostatic sequestration of PIP2 on phospholipid membranes by basic/aromatic regions of proteins. Biophysical Journal, 86, 2188–2207.PubMedGoogle Scholar
  188. 188.
    Victor, K., Jacob, J., & Cafiso, D. S. (1999). Interactions controlling the membrane binding of basic protein domains: Phenylalanine and the attachment of the myristoylated alanine-rich C-kinase substrate protein to interfaces. Biochemistry, 38, 12527–12536.PubMedGoogle Scholar
  189. 189.
    Cho, W., & Stahelin, R. V. (2005). Membrane–protein interactions in cell signaling and membrane trafficking. Annual Review of Biophysics and Biomolecular Structure, 34, 119–151.PubMedGoogle Scholar
  190. 190.
    Elortza, F., Mohammed, S., Bunkenborg, J., Foster, L. J., Nuhse, T. S., Brodbeck, U., Peck, S. C., & Jensen, O. N. (2006). Modification-specific proteomics of plasma membrane proteins: Identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. Journal of Proteome Research, 5, 935–943.PubMedGoogle Scholar
  191. 191.
    Portal, M. M., Ferrero, G. O., & Caputto, B. L. (2006). N-terminal c-Fos tyrosine phosphorylation regulates c-Fos/ER association and c-Fos-dependent phospholipid synthesis activation. Oncogene, 26, 3551–3558.PubMedGoogle Scholar
  192. 192.
    Antonny, B., Beraud-Dufour, S., Chardin, P., & Chabre, M. (1997). N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry, 36, 4675–4684.PubMedGoogle Scholar
  193. 193.
    Cornell, R. B., & Northwood, I. C. (2000). Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends in Biochemical Sciences, 25, 441–447.PubMedGoogle Scholar
  194. 194.
    Escriba, P. V., Ozaita, A., Ribas, C., Miralles, A., Fodor, E., Farkas, T., & Garcia-Sevilla, J. A. (1997). Role of lipid polymorphism in G protein–membrane interactions: Nonlamellar-prone phospholipids and peripheral protein binding to membranes. Proceedings of the National Academy of Sciences of the USA, 94, 11375–11380.PubMedGoogle Scholar
  195. 195.
    Attard, G. S., Templer, R. H., Smith, W. S., Hunt, A. N., & Jackowski, S. (2000). Modulation of CTP:phosphocholine cytidylyltransferase by membrane curvature elastic stress. Proceedings of the National Academy of Sciences of the USA, 97, 9032–9036.PubMedGoogle Scholar
  196. 196.
    Borioli, G. A., Fanani, M. L., Caputto, B. L., & Maggio, B. (2002). c-Fos is a surface pressure-dependent diverter of phospholipase activity. Biochemical and Biophysical Research Communications, 295, 964–969.PubMedGoogle Scholar
  197. 197.
    Bussolino, D. F., Guido, M. E., Gil, G. A., Borioli, G. A., Renner, M. L., Grabois, V. R., Conde, C. B., & Caputto, B. L. (2001). c-Fos associates with the endoplasmic reticulum and activates phospholipid metabolism. FASEB Journal, 15, 556–558.PubMedGoogle Scholar
  198. 198.
    Ivorra, C., Kubicek, M., Gonzalez, J. M., Sanz-Gonzalez, S. M., Alvarez-Barrientos, A., O’Connor, J. E., Burke, B., & Andres, V. (2006). A mechanism of AP-1 suppression through interaction of c-Fos with lamin A/C. Genes & Development, 20, 307–320.Google Scholar
  199. 199.
    Seelig, J., Macdonald, P. M., & Scherer, P. G. (1987). Phospholipid head groups as sensors of electric charge in membranes. Biochemistry, 26, 7535–7541.PubMedGoogle Scholar
  200. 200.
    Benvegnu, D. J., & McConnell, H. M. (1993). Surface dipole densities in lipid monolayers. Journal of Physical Chemistry, 97, 6686–6691.Google Scholar
  201. 201.
    Lee, K. Y., Klingler, J. F., & McConnell, H. M. (1994). Electric field-induced concentration gradients in lipid monolayers. Science, 263, 655–658.PubMedGoogle Scholar
  202. 202.
    Groves, J. T., Boxer, S. G., & McConnell, H. M. (1998). Electric field-induced critical demixing in lipid bilayer membranes. Proceedings of the National Academy of Sciences of the USA, 95, 935–938.PubMedGoogle Scholar
  203. 203.
    Nassoy, P., Birch, W. R., Andelman, D., & Rondelez, F. (1996). Hydrodynamic mapping of two-dimensional electric fields in monolayers. Physical Review Letters, 76, 455–458.PubMedGoogle Scholar
  204. 204.
    Neumann, E., Sowers, A. E., & Jordan, C. A. (1989). Electroporation and electrofusion in cell biology. New York: Plenum Press.Google Scholar
  205. 205.
    Abidor, I. G., & Sowers, A. E. (1992). The coaxial-pore mechanism of cell membrane electrofusion: Theory and experiment. In M. J. Allen, S. F. Cleary, A. E. Sowers, & D. D. Shillady (Eds.), Charge and field effects in biosystems-3 (pp. 375–410). Boston: Birkhauser Press.Google Scholar
  206. 206.
    Despa, S. I. (1992). A model for membrane potential changes during mitogenic simulation of lymphocytes. In M. J. Allen, S. F. Cleary, & A. E. Sowers (Eds.), Charge and field effects in biosystems-4 (pp. 22–38). Virginia: World Scientific.Google Scholar
  207. 207.
    Markov, M. S., Ryoby, J. T., Kauffman, J. J., & Pilla, A. A. (1992). Extremely weak AC and DC magnetic fields significantly affect myosin phosphorylation. In M. J. Allen, S. F. Cleary, A. E. Sowers, & D. D. Shillady (Eds.), Charge and field effects in biosystems-3 (pp. 225–230). Boston: Birkhauser.Google Scholar
  208. 208.
    Stulen, G. (1981). Electric field effects on lipid membrane structure. Biochimica et Biophysica Acta, 640, 621–627.PubMedGoogle Scholar
  209. 209.
    Teissie, J., & Tsong, T. Y. (1981). Electric field induced transient pores in phospholipid bilayer vesicles. Biochemistry, 20, 1548–1554.PubMedGoogle Scholar
  210. 210.
    Lopez, A., Rols, M. P., & Teissie, J. (1988). 31P NMR analysis of membrane phospholipid organization in viable, reversibly electropermeabilized Chinese hamster ovary cells. Biochemistry, 27, 1222–1228.PubMedGoogle Scholar
  211. 211.
    Kwee, S., & Roskmark, P. (1994). Changes in cell proliferation due to environment electromagnetic fields. In M. J. Allen, S. F. Cleary, & A. E. Sowers (Eds.), Charge and field effects in biosystems-4 (pp. 255–259). Singapore: World Scientific Pub. Co.Google Scholar
  212. 212.
    Tsong, T. Y., & Astumian, R. D. (1988). Electroconformational coupling: How membrane-bound ATPase transduces energy from dynamic electric fields. Annual Review of Physiology, 50, 273–290.PubMedGoogle Scholar
  213. 213.
    Thuren, T., Tulkki, A. P., Virtanen, J. A., & Kinnunen, P. K. (1987). Triggering of the activity of phospholipase A2 by an electric field. Biochemistry, 26, 4907–4910.PubMedGoogle Scholar
  214. 214.
    Maggio, B. (1999). Modulation of phospholipase A2 by electrostatic fields and dipole potential of glycosphingolipids in monolayers. Journal of Lipid Research, 40, 930–939.PubMedGoogle Scholar
  215. 215.
    Liu, D. S., Astumian, R. D., & Tsong, T. Y. (1990). Activation of Na+ and K+ pumping modes of (Na,K)-ATPase by an oscillating electric field. Journal of Biological Chemistry, 265, 7260–7267.PubMedGoogle Scholar
  216. 216.
    Graziana, A., Ranjeva, R., & Teissie, J. (1990). External electric fields stimulate the electrogenic calcium/sodium exchange in plant protoplasts. Biochemistry, 29, 8313–8318.PubMedGoogle Scholar
  217. 217.
    Lin, Y., Nielsen, R., Murray, D., Hubbell, W. L., Mailer, C., Robinson, B. H., & Gelb, M. (1998). Docking phospholipase A2 on membranes using electrostatic potential-modulated spin relaxation magnetic resonance. Science, 279, 1925–1929.PubMedGoogle Scholar
  218. 218.
    Muderhwa, J. M., & Brockman, H. L. (1992). Lateral lipid distribution is a major regulator of lipase activity. Implications for lipid-mediated signal transduction. Journal of Biological Chemistry, 267, 24184–24192.PubMedGoogle Scholar
  219. 219.
    Wang, M. M., Olsher, M., Sugar, I. P., & Chong, P. L. (2004). Cholesterol superlattice modulates the activity of cholesterol oxidase in lipid membranes. Biochemistry, 43, 2159–2166.PubMedGoogle Scholar
  220. 220.
    Klinger J. F., & McConnell, H. M. (1993). Field-gradient electrophoresis of lipid domains. Journal of Physical Chemistry, 97, 2962–2966.Google Scholar
  221. 221.
    Heckl W. M., Miller, A., & Möhwald, H. (1988). Electric-field-induced domain movement in phospholipid monolayers. Thin Solid Films, 159, 125–132.Google Scholar
  222. 222.
    Szabo, I., Adams, C., & Gulbins, E. (2004). Ion channels and membrane rafts in apoptosis. Pflugers Archiv, 448, 304–312.PubMedGoogle Scholar
  223. 223.
    Moczydlowski, E., Alvarez, O., Vergara, C., & Latorre, R. (1985). Effect of phospholipid surface charge on the conductance and gating of a Ca2+-activated K+ channel in planar lipid bilayers. Journal of Membrane Biology, 83, 273–282.PubMedGoogle Scholar
  224. 224.
    Park, J. B., Kim, H. J., Ryu, P. D., & Moczydlowski, E. (2003). Effect of phosphatidylserine on unitary conductance and Ba2+ block of the BK Ca2+-activated K+ channel: Re-examination of the surface charge hypothesis. Journal of General Physiology, 121, 375–397.PubMedGoogle Scholar
  225. 225.
    Miller, A., Helm, C., & Mohwald, H. (1987). The colloid nature of phospholipid monolayer. Journal de Physique , 48, 693–701.Google Scholar
  226. 226.
    Wilke, N., Dassie, S. A., Leiva, E. P., & Maggio, B. (2006). Externally applied electric fields on immiscible lipid monolayers: Repulsion between condensed domains precludes domain migration. Langmuir, 22, 9664–9670.PubMedGoogle Scholar
  227. 227.
    Hughes, D., Pailthorpe, B., & White, L. (1981). The translational and rotational drag on a cylinder moving in a membrane. Journal of Fluid Mechanics, 110, 349–372.Google Scholar
  228. 228.
    Mi, L., & Sui, S. (1996). Effects of an externally applied electric field on the static redistribution of monolayer domains. Langmuir, 12, 3743–3746.Google Scholar
  229. 229.
    Andelman D., Brochard, F., & Joanny, J. F. (1987). Phase transition in langmuir monolayers of polar molecules. Journal of Chemical Physics, 86, 3673–3681.Google Scholar
  230. 230.
    Wilke, N., & Maggio, B. (2006). Effect of externally applied electrostatic fields on the surface topography of ceramide-enriched domains in mixed monolayers with sphingomyelin. Biophysical Chemistry, 122, 36–42.PubMedGoogle Scholar
  231. 231.
    Perillo, M. A., Guidotti, A., Costa, E., Yu, R. K., & Maggio, B. (1994). Modulation of phospholipases A2 and C activities against dilauroylphosphorylcholine in mixed monolayers with semisynthetic derivatives of ganglioside and sphingosine. Molecular Membrane Biology, 11, 119–126.PubMedGoogle Scholar
  232. 232.
    Scott, D. L., White, S. P., Otwinowski, Z., Yuan, W., Gelb, M. H., & Sigler, P. B. (1990). Interfacial catalysis: The mechanism of phospholipase A2. Science, 250, 1541–1546.PubMedGoogle Scholar
  233. 233.
    Wilke, N., Baruzzi, A. M., & Maggio, B. (2001). Sphingolipid monolayers in the air–water interface and electrochemical behavior of the films transferred onto glassy carbon electrodes. Langmuir, 17, 3980–3986.Google Scholar
  234. 234.
    Wilke, N., Baruzzi, A. M., Maggio, B., Perez, M. A., & Teijelo, M. L. (2005). Properties of galactocerebroside layers transferred to glassy carbon electrodes: Effect of an applied electric field. Colloids and Surfaces B, Biointerfaces, 41, 223–231.PubMedGoogle Scholar
  235. 235.
    Jain, M. K., & Berg, O. G. (1989). The kinetics of interfacial catalysis by phospholipase A2 and regulation of interfacial activation: Hopping versus scooting. Biochimica et Biophysica Acta, 1002, 127–156.PubMedGoogle Scholar
  236. 236.
    Arni, R. K., & Ward, R. J. (1996). Phospholipase A2—a structural review. Toxicon, 34, 827–841.PubMedGoogle Scholar
  237. 237.
    Aloulou, A., Rodriguez, J. A., Fernandez, S., van Oosterhout, D., Puccinelli, D., & Carriere, F. (2006). Exploring the specific features of interfacial enzymology based on lipase studies. Biochimica et Biophysica Acta, 1761, 995–1013.PubMedGoogle Scholar
  238. 238.
    Janmey, P. A., & Kinnunen, P. K. (2006). Biophysical properties of lipids and dynamic membranes. Trends in Cell Biology, 16, 538–546.PubMedGoogle Scholar
  239. 239.
    Maggio, B., Fanani, M. L., & Oliveira, R. G. (2002). Biochemical and structural information transduction at the mesoscopic level in biointerfaces containing sphingolipids. Neurochemical Research, 27, 547–557.PubMedGoogle Scholar
  240. 240.
    Fanani, M. L., Topham, M. K., Walsh, J. P., & Epand, R. M. (2004). Lipid modulation of the activity of diacylglycerol kinase alpha- and zeta-isoforms: Activation by phosphatidylethanolamine and cholesterol. Biochemistry, 43, 14767–14777.PubMedGoogle Scholar
  241. 241.
    Ahyayauch, H., Villar, A. V., Alonso, A., & Goni, F. M. (2005). Modulation of PI-specific phospholipase C by membrane curvature and molecular order. Biochemistry, 44, 11592–11600.PubMedGoogle Scholar
  242. 242.
    Boguslavsky, V., Rebecchi, M., Morris, A. J., Jhon, D. Y., Rhee, S. G., & McLaughlin, S. (1994). Effect of monolayer surface pressure on the activities of phosphoinositide-specific phospholipase C-beta 1, -gamma 1, and -delta 1. Biochemistry, 33, 3032–3037.PubMedGoogle Scholar
  243. 243.
    Fanani, M. L., & Maggio, B. (1997). Mutual modulation of sphingomyelinase and phospholipase A2 activities against mixed lipid monolayers by their lipid intermediates and glycosphingolipids. Molecular Membrane Biology, 14, 25–29.PubMedCrossRefGoogle Scholar
  244. 244.
    Kinnunen, P. K., Koiv, A., Lehtonen, J. Y. A., Rytomaa, M., & Mustonen, P. (1994). Lipid dynamic and peripheral interactions of proteins with membranes surfaces. Chemistry and Physics of Lipids, 73, 181–207.PubMedGoogle Scholar
  245. 245.
    Maggio, B. (1996). Control by ganglioside GD1a of phospholipase A2 activity through modulation of the lamellar-hexagonal (HII) phase transition. Molecular Membrane Biology, 13, 109–112.PubMedCrossRefGoogle Scholar
  246. 246.
    Ruiz-Arguello, M. B., Veiga, M. P., Arrondo, J. L., Goni, F. M., & Alonso, A. (2002). Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid. Chemistry and Physics of Lipids, 114, 11–20.PubMedGoogle Scholar
  247. 247.
    Volwerk, J. J., Filthuth, E., Griffith, O. H., & Jain, M. K. (1994). Phosphatidylinositol-specific phospholipase C from Bacillus cereus at the lipid–water interface: Interfacial binding, catalysis, and activation. Biochemistry, 33, 3464–3474.PubMedGoogle Scholar
  248. 248.
    Myers, M., Wortman, C., & Freire, E. (1984). Modulation of neuraminidase activity by the physical state of phospholipid bilayers containing gangliosides Gd1a and Gt1b. Biochemistry, 23, 1442–1448.PubMedGoogle Scholar
  249. 249.
    Masserini, M., Palestini, P., Venerando, B., Fiorilli, A., Acquotti, D., & Tettamanti, G. (1988). Interactions of proteins with ganglioside-enriched microdomains on the membrane: The lateral phase separation of molecular species of GD1a ganglioside, having homogeneous long-chain base composition, is recognized by Vibrio cholerae sialidase. Biochemistry, 27, 7973–7978.PubMedGoogle Scholar
  250. 250.
    Perillo, M. A., Yu, R. K., & Maggio, B. (1994). Modulation of the activity of Clostridium perfringens neuraminidase by the molecular organization of gangliosides in monolayers. Biochimica et Biophysica Acta, 1193, 155–164.PubMedGoogle Scholar
  251. 251.
    Dennis, E. A., Rhee, S. G., Billah, M. M., & Hannun, Y. A. (1991). Role of phospholipase in generating lipid second messengers in signal transduction. FASEB Journal, 5, 2068–2077.PubMedGoogle Scholar
  252. 252.
    Hannun, Y. A., & Luberto, C. (2000). Ceramide in the eukaryotic stress response. Trends in Cell Biology, 10, 73–80.PubMedGoogle Scholar
  253. 253.
    Goni, F. M., & Alonso, A. (2002). Sphingomyelinases: Enzymology and membrane activity. FEBS Letters, 531, 38–46.PubMedGoogle Scholar
  254. 254.
    Clarke, C. J., & Hannun, Y. A. (2006). Neutral sphingomyelinases and nSMase2: Bridging the gaps. Biochimica et Biophysica Acta, 1758, 1893–1901.PubMedGoogle Scholar
  255. 255.
    Cremesti, A. E., Goni, F. M., & Kolesnick, R. (2002). Role of sphingomyelinase and ceramide in modulating rafts: Do biophysical properties determine biologic outcome? FEBS Letters, 531, 47–53.PubMedGoogle Scholar
  256. 256.
    Carrer, D. C., Hartel, S., Monaco, H. L., & Maggio, B. (2003). Ceramide modulates the lipid membrane organization at molecular and supramolecular levels. Chemistry and Physics of Lipids, 122, 147–152.PubMedGoogle Scholar
  257. 257.
    Holopainen, J. M., Medina, O. P., Metso, A. J., & Kinnunen, P. K. (2000). Sphingomyelinase activity associated with human plasma low density lipoprotein. Journal of Biological Chemistry, 275, 16484–16489.PubMedGoogle Scholar
  258. 258.
    Montes, L. R., Ruiz-Arguello, M. B., Goni, F. M., & Alonso, A. (2002). Membrane restructuring via ceramide results in enhanced solute efflux. Journal of Biological Chemistry, 277, 11788–11794.PubMedGoogle Scholar
  259. 259.
    Ruiz-Arguello, M. B., Basanez, G., Goni, F. M., & Alonso, A. (1996). Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. Journal of Biological Chemistry, 271, 26616–26621.PubMedGoogle Scholar
  260. 260.
    Taniguchi, Y., Ohba, T., Miyata, H., & Ohki, K. (2006). Rapid phase change of lipid microdomains in giant vesicles induced by conversion of sphingomyelin to ceramide. Biochimica et Biophysica Acta, 1758, 145–153.PubMedGoogle Scholar
  261. 261.
    Morita, S. Y., Nakano, M., Sakurai, A., Deharu, Y., Vertut-Doi, A., & Handa, T. (2005). Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E. FEBS Letters, 579, 1759–1764.PubMedGoogle Scholar
  262. 262.
    Jungner, M., Ohvo, H., & Slotte, J. P. (1997). Interfacial regulation of bacterial sphingomyelinase activity. Biochimica et Biophysica Acta, 1344, 230–240.PubMedGoogle Scholar
  263. 263.
    Yu, B. Z., Zakim, D., & Jain, M. K. (2002). Processive interfacial catalytic turnover by Bacillus cereus sphingomyelinase on sphingomyelin vesicles. Biochimica et Biophysica Acta, 1583, 122–132.PubMedGoogle Scholar
  264. 264.
    Hartel, S., Fanani, M. L., & Maggio, B. (2005). Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophysical Journal, 88, 287–304.PubMedGoogle Scholar
  265. 265.
    Fanani, M. L., & Maggio, B. (1998). Surface pressure-dependent cross-modulation of sphingomyelinase and phospholipase A2 in monolayers. Lipids, 33, 1079–1087.PubMedGoogle Scholar
  266. 266.
    De Tullio, L., Maggio, B., Hartel, S., Jara, J., & Fanani, M. L. (2007). The initial surface composition and topography modulate sphingomyelinase-driven sphingomyelin to ceramide conversion in lipid monolayers. Cell Biochemistry and Biophysics, 47, 169–177.PubMedGoogle Scholar
  267. 267.
    Apitz-Castro, R., Jain, M. K., & De Haas, G. H. (1982). Origin of the latency phase during the action of phospholipase A2 on unmodified phosphatidylcholine vesicles. Biochimica et Biophysica Acta, 688, 349–356.PubMedGoogle Scholar
  268. 268.
    Burack, W. R., & Biltonen, R. L. (1994). Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chemistry and Physics of Lipids, 73, 209–222.PubMedGoogle Scholar
  269. 269.
    Grainger, D. W., Reichert, A., Ringsdorf, H., & Salesse, C. (1989). An enzyme caught in action: Direct imaging of hydrolytic function and domain formation of phospholipase A2 in phosphatidulcholine monolayers. FEBS Letters, 252, 73–82.Google Scholar
  270. 270.
    Basanez, G., Nieva, J. L., Goni, F. M., & Alonso, A. (1996). Origin of the lag period in the phospholipase C cleavage of phospholipids in membranes. Concomitant vesicle aggregation and enzyme activation. Biochemistry, 35, 15183–15187.PubMedGoogle Scholar
  271. 271.
    Barenholz, Y., & Thompson, T. E. (1999). Sphingomyelin: Biophysical aspects. Chemistry and Physics of Lipids, 102, 29–34.PubMedGoogle Scholar
  272. 272.
    Contreras, F. X., Sot, J., Ruiz-Arguello, M. B., Alonso, A., & Goni, F. M. (2004). Cholesterol modulation of sphingomyelinase activity at physiological temperatures. Chemistry and Physics of Lipids, 130, 127–134.PubMedGoogle Scholar
  273. 273.
    de Almeida, R. F., Loura, L. M., Fedorov, A., & Prieto, M. (2002). Nonequilibrium phenomena in the phase separation of a two-component lipid bilayer. Biophysical Journal, 82, 823–834.PubMedGoogle Scholar
  274. 274.
    Fanani, M. L., Hartel, S., Jara, J., & Maggio, B. (2006). Sphingomyelinase-induced non-equilibrium phenomena in biointerfaces. Madrid: Procedures of VI Ibero-American Congress of Biophysics.Google Scholar
  275. 275.
    de Lima Santos, H., Lopes, M. L., Maggio, B., & Ciancaglini, P. (2005). Na,K-ATPase reconstituted in liposomes: Effects of lipid composition on hydrolytic activity and enzyme orientation. Colloids and Surfaces B, Biointerfaces, 41, 239–248.PubMedGoogle Scholar
  276. 276.
    Huang, H. W., Goldberg, E. M., & Zidovetzki, R. (1999). Ceramides modulate protein kinase C activity and perturb the structure of phosphatidylcholine/phosphatidylserine bilayers. Biophysical Journal, 77, 1489–1497.PubMedGoogle Scholar
  277. 277.
    Sanchez, J. M., Ciklic, I., & Perillo, M. A. (2005). Effect of partitioning equilibria on the activity of beta-galactosidase in heterogeneous media. Biophysical Chemistry, 118, 69–77.PubMedGoogle Scholar
  278. 278.
    Caseli, L., Oliveira, R. G., Masui, D. C., Furriel, R. P., Leone, F. A., Maggio, B., & Zaniquelli, M. E. (2005). Effect of molecular surface packing on the enzymatic activity modulation of an anchored protein on phospholipid Langmuir monolayers. Langmuir, 21, 4090–4095.PubMedGoogle Scholar
  279. 279.
    Verger, R., & Pattus, F. (1976). Spreading of membranes at the air/water interface. Chemistry and Physics of Lipids, 16, 285–291.PubMedGoogle Scholar
  280. 280.
    Schurholz, T., & Schindler, H. (1991). Lipid–protein surface films generated from membrane vesicles: Selfassembly, composition, and film structure. European Biophysics Journal, 20, 71–78.PubMedGoogle Scholar
  281. 281.
    Calderon, R. O., Maggio, B., Neuberger, T. J., & De Vries, G. H. (1993). Surface behavior of axolemma monolayers: Physico-chemical characterization and use as supported planar membranes for cultured Schwann cells. Journal of Neuroscience Research, 34, 206–218.PubMedGoogle Scholar
  282. 282.
    Calderon, R. O., Maggio, B., Neuberger, T. J., & DeVries, G. H. (1995). Modulation of Schwann cell Po glycoprotein and galactocerebroside by the surface organization of axolemma. Journal of Neuroscience Research, 40, 349–358.PubMedGoogle Scholar
  283. 283.
    Kirschner, D. A., Ganser, A. L. & Caspar, D. L. (1984). Diffraction studies of molecular organization and membrane interactions in myelin. In Myelin (pp. 51–95) Anonymous. New York: Plenum Press.Google Scholar
  284. 284.
    Gonzalez-Sastre, F. (1970). The protein composition of isolated myelin. Journal of Neurochemistry 17, 1049–1056.PubMedGoogle Scholar
  285. 285.
    Norton, W. T., & Cammer, W. (1984). Isolation and characterization of myelin. In P. Morell (Ed.), Myelin (pp. 147–195). New York: Plenum Press.Google Scholar
  286. 286.
    Oliveira, R. G., Calderon, R. O., & Maggio, B. (1998). Surface behavior of myelin monolayers. Biochimica et Biophysica Acta, 1370, 127–137.PubMedGoogle Scholar
  287. 287.
    Trurnit, H. J. (1960). A theory and method for spreading of protein monolayers. Journal of Colloid Science, 15, 1–13.Google Scholar
  288. 288.
    Ginsberg, L., & Gershfeld, N. L. (1991). Membrane bilayer instability and the pathogenesis of disorders of myelin. Neuroscience Letters, 130, 133–136.PubMedGoogle Scholar
  289. 289.
    Oliveira, R. G., & Maggio, B. (2003). Surface behavior, microheterogeneity and adsorption equilibrium of myelin at the air–water interface. Chemistry and Physics of Lipids, 122, 171–176.PubMedGoogle Scholar
  290. 290.
    von Tscharner, V., & McConnell, H. M. (1981). An alternative view of phospholipid phase behavior at the air–water interface. Microscope and film balance studies. Biophysical Journal, 36, 409–419.Google Scholar
  291. 291.
    Hénon, S., & Meunier, J. (1991). Microscope at the Brewster angle: Direct observation of first-order phase transitions in mmonolayers. Review of Scientific Instruments, 62, 936–939.Google Scholar
  292. 292.
    Hönig, D., & Möbius, D. (1991). Direct visualization of monolayers at the air–water interface by Brewster angle microscopy. Journal of Physical Chemistry, 95, 4590–4592.Google Scholar
  293. 293.
    Hönig, D., & Möbius, D. (1992). Reflectometry at the Brewster angle and Brewster angle microscopy at the air–water interface. Thin solid films, 210/211, 64–68.Google Scholar
  294. 294.
    Oliveira, R. G., Tanaka, M., & Maggio, B. (2005). Many length scales surface fractality in monomolecular films of whole myelin lipids and proteins. Journal of Structural Biology, 149, 158–169.PubMedGoogle Scholar
  295. 295.
    Keller, S. L., Pitcher, W. H. III, Huestis, W. H., & McConnell, H. M. (1998). Red blood cell lipids form immiscible liquids. Physical Review Letters, 81, 5019–5022.Google Scholar
  296. 296.
    Mouritsen, O. G., & Jorgensen, K. (1994). Dynamical order and disorder in lipid bilayers. Chemistry and Physics of Lipids, 73, 3–25.PubMedGoogle Scholar
  297. 297.
    Demel, R. A., Paltauf, F., & Hauser, H. (1987). Monolayer characteristics and thermal behavior of natural and synthetic phosphatidylserines. Biochemistry, 26, 8659–8665.PubMedGoogle Scholar
  298. 298.
    Leveiller, F., Böhm, C., Jacquemain, D., Möhwald, H., Leiserowitz, L., Kjaer, K., & Als-Nielsen, J. (1994). Two-dimensional crystal structure of cadmium arachidate studied by synchrotron X-ray diffraction and reflectivity. Langmuir, 10, 819–829.Google Scholar
  299. 299.
    Subramaniam, S., & McConnell, H. M. (1987). Critical mixing in monolayer mixtures of phospholipid and cholesterol. Journal of Physical Chemistry, 91, 1715–1718.Google Scholar
  300. 300.
    McConnell, H. M., & Radhakrishnan, A. (2003). Condensed complexes of cholesterol and phospholipids. Biochimica et Biophysica Acta, 1610, 159–173.PubMedGoogle Scholar
  301. 301.
    Dewey, T.G. (1997). Fractals in molecular biophysics. Oxford: Oxford University Press.Google Scholar
  302. 302.
    Miller, A., Knoll, W., & Mohwald, H. (1986). Fractal growth of crystalline phospholipid domains in monomolecular layers. Physical Review Letters, 56, 2633–2636.PubMedGoogle Scholar
  303. 303.
    Rosetti, C. M., & Maggio, B. (2007). Protein-induced surface structuring in myelin membrane monolayers. Biophysical Journal.  doi: 10.1529/biophysj.107.112441.
  304. 304.
    Fidelio, G. D., Maggio, B., & Cumar, F. A. (1984). Interaction of myelin basic protein, melittin and bovine serum albumin with gangliosides, sulphatide and neutral glycosphingolipids in mixed monolayers. Chemistry and Physics of Lipids, 35, 231–245.PubMedGoogle Scholar
  305. 305.
    Maggio, B. (1997). Molecular interactions of the major myelin glycosphingolipids and myelin basic protein in model membranes. Neurochemical Research, 22, 475–481.PubMedGoogle Scholar
  306. 306.
    Braun, P. E. (1984). Molecular organization of myelin. In P. Morell (Ed.), Myelin (pp. 97–116). New York: Plenum Press.Google Scholar
  307. 307.
    Franks, N. P., Melchior, V., Kirshner, D. A., & Caspar, D. L. (1982). Structure of myelin lipid bilayers. Changes during maturation. Journal of Molecular Biology, 155, 133–153.PubMedGoogle Scholar
  308. 308.
    Gershfeld, N. L. (1989). The critical unilamellar lipid state: A perspective for membrane bilayer assembly. Biochimica et Biophysica Acta, 988, 335–350.PubMedGoogle Scholar
  309. 309.
    Taylor, C. M., Coetzee, T., & Pfeiffer, S. E. (2002). Detergent-insoluble glycosphingolipid/cholesterol microdomains of the myelin membrane. Journal of Neurochemistry, 81, 993–1004.PubMedGoogle Scholar
  310. 310.
    Arvanitis, D. N., Yang, W., & Boggs, J. M. (2002). Myelin proteolipid protein, basic protein, the small isoform of myelin-associated glycoprotein, and p42MAPK are associated in the Triton X-100 extract of central nervous system myelin. Journal of Neuroscience Research, 70, 8–23.PubMedGoogle Scholar
  311. 311.
    Debruin, L. S., & Harauz, G. (2007). White matter rafting—membrane microdomains in myelin. Neurochemical Research, 32, 213–228.PubMedGoogle Scholar
  312. 312.
    Gielen, E., Baron, W., Vandeven, M., Steels, P., Hoekstra, D., & Ameloot, M. (2006). Rafts in oligodendrocytes: Evidence and structure–function relationship. Glia, 54, 499–512.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Bruno Maggio
    • 1
  • Graciela A. Borioli
    • 1
  • Maximiliano Del Boca
    • 1
  • Luisina De Tullio
    • 1
  • María L. Fanani
    • 1
  • Rafael G. Oliveira
    • 1
  • Carla M. Rosetti
    • 1
  • Natalia Wilke
    • 1
  1. 1.Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC)Universidad Nacional de Córdoba – CONICETCordobaArgentina

Personalised recommendations