Cell Biochemistry and Biophysics

, Volume 50, Issue 1, pp 23–39 | Cite as

Biomolecular Self-assembly and its Relevance in Silica Biomineralization

Review Paper

Abstract

Biomineralization, which means the formation of inorganic materials by biological processes, currently finds increasing research interest. It involves the synthesis of calcium-based minerals such as bones and teeth in vertebrates, and of shells. Silica biomineralization occurs, for example, in diatoms and silica sponges. Usually, biominerals are made up of amorphous compounds or small microcrystalline domains embedded into an amorphous matrix. Nevertheless, they exhibit very regular shapes and, as in the case of diatoms, intricate nanopatterns of amazing beauty. It is, therefore, commonly assumed that biominerals are formed under the structure-directing influence of templates. However, single molecules are by far too small to direct the formation of the observed shapes and patterns. Instead, supramolecular aggregates are shown to be involved in the formation of templating superstructures relevant in biomineralization. Specific biomolecules were identified in both diatoms and silica sponges, which elegantly combine two indispensable functions: on the one hand, the molecules are capable of inducing silica precipitation from precursor compounds. On the other hand, these molecules are capable of self-assembling into larger, structure-directing template aggregates. Such molecules are the silaffins in the case of diatoms and the silicateins in sponges. Long-chain polyamines of similar composition have meanwhile been discovered in both organisms. The present review is especially devoted to the discussion of the self-assembly behavior of these molecules. Physico-chemical studies on a model compound, poly(allylamine), are discussed in detail in order to elucidate the nature of the interactions responsible for self-assembly of long-chain polyamines and the parameters controlling this process. Numerous biomimetic silica synthesis experiments are discussed and evaluated with respect to the observations made on the aforementioned “natural” biomolecules.

Keywords

Biomolecules Self-assembly Silica biomineralization Silaffins Silicateins Polyamines 

References

  1. 1.
    Bäuerlein, E., Behrens, P., & Epple, M. (2007). Handbook of biomineralization. Weinheim: Wiley-VCH.Google Scholar
  2. 2.
    Müller, W. E. G. (2003). Progress in molecular and subcellular biology, vol. 33. Berlin, Heidelberg: Springer.Google Scholar
  3. 3.
    Mann, S. (2001). Biomineralization principles and concepts in bioinorganic materials chemistry. Oxford, New York: Oxford University Press.Google Scholar
  4. 4.
    Naka, K. (2007). Biomineralization. Berlin, Heidelberg, New York: Springer.Google Scholar
  5. 5.
    Wong Po Foo, C., Huang, J., & Kaplan, D. L. (2004). Lessons from seashells: silica mineralization via protein templating. Trends in Biotechnology, 22, 577–585.Google Scholar
  6. 6.
    Knoll, A. H. (2003). Biomineralization and evolutionary history. In P. M. Dove, J. J. DeYoreo, & S. Weiner (Eds.), Reviews in mineralogy and geochemistry, vol. 54, Biomineralization (pp. 329–356). Published by the Mineralogical Society of America, Geochemical Society.Google Scholar
  7. 7.
    Richardson, W. D. (1920). The ash of dune plants. Science, 51, 546–551.PubMedGoogle Scholar
  8. 8.
    Lanning, F. C., Ponnaiya, B. W. X., & Crumpton, C. F. (1958). The chemical nature of silica in plants. Plant Physiology, 33, 339–343.PubMedCrossRefGoogle Scholar
  9. 9.
    de Souza, M. F., Batista, P. S., Regiani, I., Liborio, J. B. L., & de Souza, D. P. F. (2000). Rice hull-derived silica: applications in Portland cement and mullite whiskers. Materials Research, 3, 25–30.Google Scholar
  10. 10.
    Freitas, J. C. C., Emmerich, F. G., & Bonagamba, T. J. (2000). High-resolution solid-state NMR study of the occurrence and thermal transformations of silicon-containing species in biomass materials. Chemistry of Materials, 12, 711–718.Google Scholar
  11. 11.
    Sánchez-Flores, N. A., Pacheco-Malagón, G., Pérez-Romero, P., Armendariz, H., de Guzmán-Castillo, M., Saniger, J. M., & Fripiat, J. J. (2007). Mesoporous silica from rice hull ash. Journal of Chemical Technology and Biotechnology, 82, 614–619.Google Scholar
  12. 12.
    Round, F., Crawford, R., & Mann, D. (1990). The diatoms. Cambridge, UK: Cambridge University Press.Google Scholar
  13. 13.
    Lutz, K., Gröger, C., Sumper, M., & Brunner, E. (2005). Biomimetic silica formation: analysis of the phosphate-induced self-assembly of polyamines. Physical Chemistry Chemical Physics, 7, 12812–12815.Google Scholar
  14. 14.
    van Bommel, K. J. C., Friggeri, A., & Shinkai, S. (2003). Organic templates for the generation of inorganic materials. Angewandte Chemie-International Edition, 42, 980–999.Google Scholar
  15. 15.
    Mann, S. (2004). Materials that naturally assemble themselves. Chemical Communications, 1–4.Google Scholar
  16. 16.
    Patwardhan, S. V., Clarson, S. J., & Perry, C. C. (2005). On the role(s) of additives in bioinspired silicification. Chemical Communications, 1113–1121.Google Scholar
  17. 17.
    Xu, A-W., Ma, Y., & Cölfen, H. (2007). Biomimetic mineralization. Journal of Materials Chemistry, 17, 415–449.Google Scholar
  18. 18.
    Lehn, J-M. (1990). Perspectives in supramolecular chemistry – from molecular recognition towards molecular information processing and self-organization. Angewandte Chemie-International Edition, 29, 1304–1319.Google Scholar
  19. 19.
    Lawrence, D. S., Jiang, T., & Levett, M. (1995). Self-assembling supramolecular complexes. Chemical Reviews, 95, 2229–2260.Google Scholar
  20. 20.
    Philp, D., & Stoddart, J. F. (1996). Self-assembly in natural and unnatural systems. Angewandte Chemie-International Edition, 35, 1154–1196.Google Scholar
  21. 21.
    Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295, 2418–2421.PubMedGoogle Scholar
  22. 22.
    Cölfen, H., & Mann, S. (2003). Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angewandte Chemie-International Edition, 42, 2350–2365.Google Scholar
  23. 23.
    Murphy, K. P., Privalov, P. L., & Gill, S. J. (1990). Common features of protein unfolding and dissolution of hydrophobic compounds. Science, 247, 559–561.PubMedGoogle Scholar
  24. 24.
    Dill, K. A. (1990). The meaning of hydrophobicity. Science, 250, 297–298.PubMedGoogle Scholar
  25. 25.
    Herzfeld, J. (1991). Understanding hydrophobic behavior. Science, 253, 88.PubMedGoogle Scholar
  26. 26.
    Sumper, M. (2002). A phase separation model for the nanopatterning of diatom biosilica. Science, 295, 2430–2433.PubMedGoogle Scholar
  27. 27.
    Sumper, M., & Brunner, E. (2006). Learning from diatoms: nature’s tools for the production of nanostructured silica. Advanced Functional Materials, 16, 17–26.Google Scholar
  28. 28.
    Drum, R. W., & Pankratz, H. S. (1964). Post mitotic fine structure of Gomphonema parvulum. Journal of Ultrastructure Research, 10, 217–223.PubMedGoogle Scholar
  29. 29.
    Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359, 710–712.Google Scholar
  30. 30.
    Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, CT-W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114, 10834–10843.Google Scholar
  31. 31.
    Volcani, B. E. (1981). Cell wall formation in diatoms: morphogenesis, biochemistry. In T. L. Simpson, & B. E. Volcani (Eds.), Silicon and siliceous structures in biological systems (pp. 157–200). New York: Springer-Verlag.Google Scholar
  32. 32.
    Kröger, N., Bergsdorf, C., & Sumper, M. (1996). Frustulins: domain conservation in a protein family associated with diatom cell walls. European Journal of Biochemistry, 239, 259–264.PubMedGoogle Scholar
  33. 33.
    Christiansen, S. C., Hedin, N., Epping, J. D., Janicke, M. T., del Amo, Y., Demarest, M., Brzesinski, M., & Chmelka, B. F. (2006). Sensitivity considerations in polarization transfer and filtering using dipole-dipole couplings: implications for biomineral systems. Solid State Nuclear Magnetic Resonance, 29, 170–182.PubMedGoogle Scholar
  34. 34.
    Brunner, E., & Lutz, K. (2007). Solid-state NMR in biomimetic silica formation, silica biomineralization. In P. Behrens, & E. Bäuerlein (Eds.), Handbook of biomineralization: biomimetic and bioinspired chemistry (vol. 2, pp. 19–38). Weinheim: Wiley-VCH.Google Scholar
  35. 35.
    Kröger, N., Deutzmann, R., & Sumper, M. (1999). Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286, 1129–1132.PubMedGoogle Scholar
  36. 36.
    Kröger, N., Deutzmann, R., & Sumper, M. (2001). Silica-precipitating peptides from diatoms. Journal of Biological Chemistry, 276, 26066–26070.PubMedGoogle Scholar
  37. 37.
    Poulsen, N., & Kröger, N. (2004). Silica morphogenesis by alternative processing of silaffins in the diatom Thalassiosira pseudonana. Journal of Biological Chemistry, 279, 42993–42999.PubMedGoogle Scholar
  38. 38.
    Wenzl, S., Deutzmann, R., Hett, R., Hochmuth, E., & Sumper, M. (2004). Quaternary ammonium groups in silica-associated proteins. Angewandte Chemie-International Edition, 43, 5933–5936.Google Scholar
  39. 39.
    Kröger, N., Lorenz, S., Brunner, E., & Sumper, M. (2002). Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science, 298, 584–586.PubMedGoogle Scholar
  40. 40.
    Barrer, R. M. (1981). Zeolites and their synthesis. Zeolites, 1, 130–140.Google Scholar
  41. 41.
    Kröger, N., Deutzmann, R., Bergsdorf, C., & Sumper, M. (2000). Species-specific polyamines from diatoms control silica morphology. Proceedings of the National Academy of Science USA, 97, 14133–14138.Google Scholar
  42. 42.
    Sumper, M., Brunner, E., & Lehmann, G. (2005). Biomineralization in diatoms: characterization of novel polyamines associated with silica. FEBS Letters, 579, 3765–3769.PubMedGoogle Scholar
  43. 43.
    Sumper, M., & Lehmann, G. (2006). Silica pattern formation in diatoms: species-specific polyamine biosynthesis. ChemBioChem, 7, 1419–1427.PubMedGoogle Scholar
  44. 44.
    Iler, R. K. (1979). The chemistry of silica. New York: Wiley.Google Scholar
  45. 45.
    Mizutani, T., Nagase, H., & Ogoshi, H. (1998). Silicic acid polymerization catalyzed by amines and polyamines. Chemistry Letters, 133–134.Google Scholar
  46. 46.
    Mizutani, T., Nagase, H., Fujiwara, N., & Ogoshi, H. (1998). Silicic acid polymerization catalyzed by amines and polyamines. Bulletin of the Chemical Society of Japan, 71, 2017–2022.Google Scholar
  47. 47.
    Coradin, T., & Lopez, P. J. (2003). Biogenic silica patterning: simple chemistry or subtle biology? ChemBioChem, 4, 251–259.PubMedGoogle Scholar
  48. 48.
    Holeman, A. F., & Wiberg, E. (1995). Lehrbuch der Anorganischen Chemie. Berlin: deGruyter.Google Scholar
  49. 49.
    Perry, C. C., & Keeling-Tucker, T. (2000). Biosilification: the role of the organic matrix in structure control. Journal of Biological Inorganic Chemistry, 5, 537–550.PubMedGoogle Scholar
  50. 50.
    Perry, C. C., Belton, D., & Shafran, K. (2003). Studies of biosilicas; structural aspects, chemical principles, model studies and the future. Progress in Molecular and Subcellular Biology, 33, 269–299.PubMedGoogle Scholar
  51. 51.
    Vrieling, E. G., Hazelaar, S., Gieskes, W. W. C., Sun, Q., Beelen, T. P. M., & van Santen, R. A. (2003). Silicon biomineralisation: towards mimicking biogenic silica formation in diatoms. Progress in Molecular and Subcellular Biology, 33, 301–334.PubMedGoogle Scholar
  52. 52.
    Sumper, M. (2004). Biomimetic patterning of silica by long-chain polyamines. Angewandte Chemie-International Edition, 43, 2251–2254.Google Scholar
  53. 53.
    Delak, K. M., & Sahai, N. (2005). Amine-catalyzed biomimetic hydrolysis and condensation of organosilicate. Chemistry of Materials, 17, 3221–3227.Google Scholar
  54. 54.
    Delak, K. M., & Sahai, N. (2006). Mechanisms of amine-catalyzed organosilicate hydrolysis at circum-neutral pH. Journal of Physical Chemistry B, 110, 17819–17829.Google Scholar
  55. 55.
    Cavanagh, J., Fairbrother, W. J., Palmer, A. G. III, & Skelton, N. J. (1996). Protein NMR spectroscopy. San Diego: Academic Press.Google Scholar
  56. 56.
    Sumper, M., Lorenz, S., & Brunner, E. (2003). Biomimetic control of size in the polyamine-directed formation of silica nanospheres. Angewandte Chemie-International Edition, 42, 5192–5195.Google Scholar
  57. 57.
    Coradin, T., & Livage, J. (2001). Effect of some amino acids and peptides on silicic acid polymerisation. Colloids and Surfaces B: Biointerfaces, 21, 329–336.Google Scholar
  58. 58.
    Coradin, T., Durupthy, O., & Livage, J. (2002). Interactions of amino-containing peptides with sodium silicate and colloidal silica: a biomimetic approach of silicification. Langmuir, 18, 2331–2336.Google Scholar
  59. 59.
    Coffman, E. A., Melechko, A. V., Allison, D. P., Simpson, M. L., & Doktycz, M. J. (2004). Surface patterning of silica nanostructures using bio-inspired templates and directed synthesis. Langmuir, 20, 8431–8436.PubMedGoogle Scholar
  60. 60.
    McKenna, B. J., Birkedal, H., Bartl, M. H., Deming, T. J., & Stucky, G. D. (2004). Micrometer-sized spherical assemblies of polypeptides and small molecules by acid-base chemistry. Angewandte Chemie-International Edition, 43, 5652–5655.Google Scholar
  61. 61.
    Patwardhan, S. V., & Clarson, S. J. (2002). Silicification and biosilicification, part 4. Effect of template size on the formation of silica. Journal of Inorganic and Organometallic Polymers, 12, 109–116.Google Scholar
  62. 62.
    Patwardhan, S. V., & Clarson, S. J. (2003). Silicification and biosilicification, part 6: poly-L-histidine mediated synthesis of silica at neutral pH. Journal of Inorganic and Organometallic Polymers, 13, 49–53.Google Scholar
  63. 63.
    Brott, L. L., Naik, R. R., Pikas, D. J., Kirkpatrick, S. M., Tomlin, D. W., Whitlock, P. W., Clarson, S. J., & Stone, M. O. (2001). Ultrafast holographic nanopatterning of biocatalytically formed silica. Nature, 413, 291–293.PubMedGoogle Scholar
  64. 64.
    Cha, J. N., Stucky, G. D., Morse, D. E., & Deming, T. J. (2000). Biomimetic sythesis of ordered silica structures mediated by block copolypeptides. Nature, 403, 289–292.PubMedGoogle Scholar
  65. 65.
    Pouget, E., Dujardin, E., Cavalier, A., Moreac, A., Valéry, C., Marchi-Artzner, V., Weiss, T., Renault, A., Paternostre, M., & Artzner, F. (2007). Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Materials, 6, 434–439.PubMedGoogle Scholar
  66. 66.
    Valéry, C., Paternostre, M., Robert, B., Gulik-Krzywicki, T., Narayanan, T., Dedieu, J-C., Keller, G., Torres, M-L., Cherif-Cheikh, R., Calvo, P., & Artzner, F. (2003). Biomimetic organization: octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proceedings of the National Academy of Science, 100, 10258–10262.Google Scholar
  67. 67.
    Lopez, P. J., Gautier, C., Livage, J., & Coradin, T. (2005). Mimicking biogenic silica nanostructures formation. Current Nanoscience, 1, 73–83.Google Scholar
  68. 68.
    Padden, F. J. Jr., & Keith, H. D. (1965). Crystalline morphology of synthetic peptides. Journal of Applied Physics, 36, 2987–2995.Google Scholar
  69. 69.
    Padden, F. J. Jr., Keith, H. D., & Giannoni, G. (1969). Single crystals of poly-L-lysine. Biopolymers, 7, 793–804.Google Scholar
  70. 70.
    Glawe, D. D., Rodriguez, F, Stone, M. O., & Naik, R. R. (2005). Polypeptide-mediated silica growth on indium tin oxide surfaces. Langmuir, 21, 717–720.PubMedGoogle Scholar
  71. 71.
    Rodriguez, F., Glawe, D. D., Naik, R. R., Hallinan, N. P., & Stone, M. (2004). Study of the chemical and physical influence upon in vitro peptide-mediated silica formation. Biomacromolecules, 5, 261–265.PubMedGoogle Scholar
  72. 72.
    Baral, S., & Schoen, P. (1993). Silica-deposited phospholipid tubules as a precursor to hollow submicron-diameter silica cylinders. Chemistry of Materials, 5, 145–147.Google Scholar
  73. 73.
    Shenton, W., Douglas, T., Young, M., Stubbs, G., & Mann, S. (1999). Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Advanced Materials, 11, 253–256.Google Scholar
  74. 74.
    Adachi, M., Harada, T., & Harada, M. (1999). Formation of huge length silica nanotubes by a templating mechanism in the laurylamine/tetraethoxysilane system. Langmuir, 15, 7097–7100.Google Scholar
  75. 75.
    Nakamura, H., & Matsui, Y. (1999). Silica gel nanotubes obtained by sol-gel method. Journal of the American Chemical Society, 117, 2651–2652.Google Scholar
  76. 76.
    Adachi, M., Harada, T., & Harada, M. (2000). Formation processes of silica nanotubes through a surfactant-assisted templating mechanism in laurylamine hydrochloride/tetraethoxysilane system. Langmuir, 16, 2376–2652.Google Scholar
  77. 77.
    Harada, M., & Adachi, M. (2000). Surfactant-mediated fabrication of silica nanotubes. Advanced Materials, 12, 839–841.Google Scholar
  78. 78.
    Ji, Q., Iwaura, R., & Shimizu, T. (2004). Controlling wall thickness of silica nanotubes within 4-nm precision. Chemistry Letters, 33, 504–505.Google Scholar
  79. 79.
    Ji, Q., Iwaura, R., Kogiso, M., Jung, J. H., Yoshida, K., & Shimizu, T. (2004). Direct sol-gel replication without catalyst in an aqueous gel system: from a lipid nanotube with a single bilayer wall to a uniform silica hollow cylinder with an ultrathin wall. Chemistry of Materials, 16, 250–254.Google Scholar
  80. 80.
    Brunner, E., Lutz, K., & Sumper, M. (2004). Biomimetic synthesis of silica nanospheres depends on the aggregation and phase separation of polyamines in aqueous solution. Physical Chemistry Chemical Physics, 6, 854–857.Google Scholar
  81. 81.
    Bazzicalupi, C., Bencini, A., Bianchi, A., Cecchi, M., Escuder, B., Fusi, V., Garcia-Espanã, E., Giorgi, C., Luis, S. V., Maccagni, G., Marcelino, V., Paoletti, P., & Valtancoli, B. (1999). Thermodynamics of phosphate and pyrophosphate anions binding by polyammonium receptors. Journal of the American Chemical Society, 121, 6807–6815.Google Scholar
  82. 82.
    Kumar, R., Bhaumik, A., Ahedi, R. K., & Ganapathy, S. (1996). Promoter-induced enhancement of the crystallization rate of zeolites and related molecular sieves. Nature, 381, 298–300.Google Scholar
  83. 83.
    Patwardhan, S. V., Mukherjee, N., & Clarson, S. J. (2002). Formation of fiber-like amorphous silica structures by externally applied shear. Journal of Inorganic and Organometallic Polymers, 11, 117–121.Google Scholar
  84. 84.
    Patwardhan, S. V., Mukherjee, N., & Clarson, S. J. (2002). Effect of process parameters on the polymer synthesis of silica at neutral pH. Silicon Chemistry, 1, 47–55.Google Scholar
  85. 85.
    Patwardhan, S. V., & Clarson, S. J. (2002). Silicification and biosilicification, Part 3. The role of synthetic polymers and peptides at neutral pH. Silicon Chemistry, 1, 207–214.Google Scholar
  86. 86.
    Patwardhan, S. V., & Clarson, S. J. (2003). Silicification and biosilicification, part 5. An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Materials Science and Engineering C, 23, 495–499.Google Scholar
  87. 87.
    Menzel, H., Horstmann, S., Behrens, P., Bärnreuther, P., Krueger, I., & Jahns, M. (2003). Chemical properties of polyamines with relevance to the biomineralization of silica. Chemical Communications, 2994–2995.Google Scholar
  88. 88.
    Behrens, P., Jahns, M., & Menzel, H. (2007). The polyamine silica system: a biomimetic model for the biomineralization of silica. In P. Behrens, & E. Bäuerlein (Eds.), Handbook of biomineralization: biomimetic and bioinspired chemistry (vol. 2, pp. 3–18). Weinheim: Wiley-VCH.Google Scholar
  89. 89.
    Annenkov, V. V., Patwardhan, S. V., Belton, D., Danilovtseva, E. N., & Perry, C. C. (2006). A new stepwise synthesis of a family of propylamines derived from diatom silaffins and their activity in silicification. Chemical Communications, 1521–1523.Google Scholar
  90. 90.
    Belton, D., Patwardhan, S. V., & Perry, C. C. (2005). Putrescine homologues control silica morphogenesis by electrostatic interactions and the hydrophobic effect. Chemical Communications, 3475–3477.Google Scholar
  91. 91.
    Robinson, D. B., Rognlien, J. L., Bauer, C. A., & Simmons, B. A. (2007). Dependence of amine-accelerated silicate condensation on amine structure. Journal of Materials Chemistry, 17, 2113–2119.Google Scholar
  92. 92.
    Bauer, C. A., Robinson, D. B., & Simmons, B. A. (2007). Silica formation in confined environments via bioinspired polyamine catalysis at near-neutral pH. Small, 3, 58–62.PubMedGoogle Scholar
  93. 93.
    Yuan, J. J., & Jin, R. H. (2005). Multiply shaped silica mediated by aggregates of linear poly(ethyleneimine). Advanced Materials, 17, 885–888.Google Scholar
  94. 94.
    Jin, R. H., & Yuan, J. J. (2005). Simple synthesis of hierarchically structured silicas by poly(ethyleneimine) aggregates pre-organized by media modulation. Macromolecular Chemistry and Physics, 206, 2160–2170.Google Scholar
  95. 95.
    Yuan, J. J., Zhu, P. X., Fukazawa, N., & Jin, R. H. (2006). Synthesis of nanofiber-based silica networks mediated by organized poly(ethylene imine): structure, properties, and mechanism. Advanced Functional Materials, 16, 2205–2212.Google Scholar
  96. 96.
    Knecht, M. R., & Wright, D. W. (2004). Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir, 20, 4728–4732.PubMedGoogle Scholar
  97. 97.
    Knecht, M. R., Sewell, S. L., & Wright, D. W. (2005) Size control of dendrimer-templated silica. Langmuir, 21, 2058–2061.PubMedGoogle Scholar
  98. 98.
    Müller, W. E. G. (2006). The stem cell concept in sponges (Porifera): metazoan traits. Seminars in Cell & Developmental Biology, 17, 481–491.Google Scholar
  99. 99.
    Matsunaga, S., Sakai, R., Jimbo, M., & Kamiya, H. (2007). Long-chain polyamines (LCPAs) from marine sponge: possible implication in spicule formation. ChemBioChem. 10.1007/s12013-007-9003-2
  100. 100.
    Garrone, R. (1978). Phylogenesis of connective tissue. Morphological aspects and biosynthesis of sponge intercellular matrix. In L. R. Créteil (Ed.), Frontiers of matrix biology (vol. 5, pp. 108–158). Basel: Karger-Verlag.Google Scholar
  101. 101.
    Shimizu, K., Cha, J., Stucky, G. D., & Morse, D. E. (1998). Silicatein α: cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Science USA, 95, 6234–6238.Google Scholar
  102. 102.
    Müller, W. E. G., Rothenberger, M., Boreiko, A., Tremel, W., Reiber, A., & Schröder, H. C. (2005). Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 321, 285–297.PubMedGoogle Scholar
  103. 103.
    Cha, J. N., Shimizu, K., Zhou, Y., Christiansen, S. C., Chmelka, B. F., Stucky, G. D., & Morse, D. E. (1999). Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Science USA, 96, 361–365.Google Scholar
  104. 104.
    Weaver, J. C., & Morse, D. E. (2003). Molecular biology of demosponge axial filaments and their roles in biosilicification. Microscopy Research and Technique, 62, 356–367.PubMedGoogle Scholar
  105. 105.
    Krasko, A., Lorenz, B., Batel, R., Schröder, H. C., Müller I. M., & Müller, W. E. G. (2000). Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry, 267, 4878–4887.PubMedGoogle Scholar
  106. 106.
    Kaluzhnaya, O. V., Belikov, S. I., Schröder, H. C., Rothenberger, M., Zapf, S., Kaandorp, J. A., Borejko, A., Müller, I. M., & Müller, W. E.G (2005). Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part I. Biological and biochemical studies. Naturwissenschaften, 92, 128–133.PubMedGoogle Scholar
  107. 107.
    Murr, M. M., & Morse, D. E. (2005). Fractal intermediates in the self-assembly of silicatein filaments. Proceedings of the National Academy of Science USA, 102, 11657–11662.Google Scholar
  108. 108.
    Müller, W. E. G., Boreiko, A., Schloßmacher, U., Wang, X., Tahir, M. N., Tremel, W., Brandt, D., Kaandorp, J. A., & Schröder, H. C. (2007). Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. Biomaterials, 28, 4501–4511.PubMedGoogle Scholar
  109. 109.
    Eckert, C., Schröder, H. C., Brandt, D., Perovic-Ottstadt, S., & Müller, W. E. G (2006). Histochemical and electron microscopic analysis of spiculogenesis in the demosponge Suberites domuncula. Journal of Histochemistry & Cytochemistry, 54, 1031–1040.Google Scholar
  110. 110.
    Schröder, H. C., Boreiko, A., Korzhev, M., Tahir, M. N., Tremel, W., Eckert, C., Ushijima, H., Müller, I. M., & Müller, W. E. G. (2006). Co-expression and functional interaction of silicatein with galectin: matrix-guided formation of siliceous spicules in the marine demosponge Suberites domuncula. Journal of Biological Chemistry, 281, 12001–12009.PubMedGoogle Scholar
  111. 111.
    Schröder, H. C., Natalio, F., Shukoor, I., Tremel, W., Schloßmacher, U., Wang, X., & Müller, W. E. G. (2007). Apposition of silica lamellae during growth of spicules in the demosponge Suberites domuncula: biological/biochemical studies and chemical/biomimetical confirmation. Journal of Structural Biology. 10.1007/s12013-007-9003-2

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Christian Gröger
    • 1
  • Katharina Lutz
    • 1
  • Eike Brunner
    • 1
  1. 1.Institute of Biophysics and Physical BiochemistryUniversity of RegensburgRegensburgGermany

Personalised recommendations