Cell Biochemistry and Biophysics

, Volume 50, Issue 2, pp 53–78 | Cite as

Vascular Adaptation and Mechanical Homeostasis at Tissue, Cellular, and Sub-cellular Levels

Review Paper

Abstract

Blood vessels exhibit a remarkable ability to adapt throughout life that depends upon genetic programming and well-orchestrated biochemical processes. Findings over the past four decades demonstrate, however, that the mechanical environment experienced by these vessels similarly plays a critical role in governing their adaptive responses. This article briefly reviews, as illustrative examples, six cases of tissue level growth and remodeling, and then reviews general observations at cell-matrix, cellular, and sub-cellular levels, which collectively point to the existence of a “mechanical homeostasis” across multiple length and time scales that is mediated primarily by endothelial cells, vascular smooth muscle cells, and fibroblasts. In particular, responses to altered blood flow, blood pressure, and axial extension, disease processes such as cerebral aneurysms and vasospasm, and diverse experimental manipulations and clinical treatments suggest that arteries seek to maintain constant a preferred (homeostatic) mechanical state. Experiments on isolated microvessels, cell-seeded collagen gels, and adherent cells isolated in culture suggest that vascular cells and sub-cellular structures such as stress fibers and focal adhesions likewise seek to maintain constant a preferred mechanical state. Although much is known about mechanical homeostasis in the vasculature, there remains a pressing need for more quantitative data that will enable the formulation of an integrative mathematical theory that describes and eventually predicts vascular adaptations in response to diverse stimuli. Such a theory promises to deepen our understanding of vascular biology as well as to enable the design of improved clinical interventions and implantable medical devices.

Keywords

Mechanotransduction Mechanobiology Remodeling Stress Strain Arteries Endothelial cells Smooth muscle cells Fibroblasts 

References

  1. 1.
    Rosen, L. A., Hollis, T. M., & Sharma, M. G. (1974). Alterations in bovine endothelial histidine decarboxylase activity following exposure to shear stress. Experimental and Molecular Pathology, 20, 329–343.PubMedCrossRefGoogle Scholar
  2. 2.
    Leung, D. Y. M., Glagov, S., & Mathews, M. B. (1976). Cyclic stretching stimulates synthesis of matrix components by arterial smooth muscle cells in vitro. Science, 191, 475–477.PubMedCrossRefGoogle Scholar
  3. 3.
    Glagov, S., Vito, R. P., Giddens, D. P., & Zarins, C. K. (1992). Micro-architecture and composition of artery walls: relationship to location, diameter, and the distribution of mechanical stress. Journal of Hypertension, 10, S101–S104.PubMedCrossRefGoogle Scholar
  4. 4.
    Malek, A., & Izumo, S. (1992). Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. American Journal of Physiology, 263 (Cellular Physiology, 32), 389–396.Google Scholar
  5. 5.
    Gibbons, G. H., & Dzau, V. J. (1994). The emerging concept of vascular remodeling. New England Journal of Medicine, 330, 1431–1438.PubMedCrossRefGoogle Scholar
  6. 6.
    Davies, P. F. (1995). Flow-mediated endothelial mechanotransduction. Physiological Reviews, 75(3), 519–560.PubMedGoogle Scholar
  7. 7.
    Pries, A. R., Secomb, T. W., & Gaehtgens, P. (1995). Design principles of vascular beds. Circulation Research, 77, 1017–1023.PubMedGoogle Scholar
  8. 8.
    Taber, L. A. (1995). Biomechanics of growth, remodeling, and morphogenesis. Applied Mechanics Review, 48, 487–545.CrossRefGoogle Scholar
  9. 9.
    Langille, B. L. (1996). Arterial remodeling: relation to hemodynamics. Canadian Journal of Physiology and Pharmacology, 74, 834–841.PubMedCrossRefGoogle Scholar
  10. 10.
    Skalak, T., & Price, R. J. (1996). The role of mechanical stresses in microvascular remodeling. Microcirculation, 3, 143–165.PubMedCrossRefGoogle Scholar
  11. 11.
    Lehoux, S., Castier, Y., & Tedgui, A. (2006). Molecular mechanisms of the vascular responses to haemodynamic forces. Journal of Internal Medicine, 259, 381–392.PubMedCrossRefGoogle Scholar
  12. 12.
    Jamal, A., Bendeck, M., & Langille, B. L. (1992). Structural changes and recovery of function after arterial injury. Arteriosclerosis Thrombosis, 12, 307–317.Google Scholar
  13. 13.
    Mulvany, M. J. (1992). Vascular growth in hypertension. Journal of Cardiovascular Pharmacology, 20, S7–S11.PubMedGoogle Scholar
  14. 14.
    Dzau, V. J., & Horiuchi, M. (1998). Vascular remodeling – the emerging paradigm of programmed cell death (apoptosis). Chest, 114, 91S–99S.PubMedGoogle Scholar
  15. 15.
    Stenmark, K. R., & Mecham, R. P. (1997). Cellular and molecular mechanisms of pulmonary vascular remodeling. Annual Review of Physiology, 59, 89–144.PubMedCrossRefGoogle Scholar
  16. 16.
    Levy, B. I., & Tedgui, A. (1999). Biology of the arterial wall. Dordrecht: Kluwer Academic Publishers.Google Scholar
  17. 17.
    Ward, M. R., Pasterkamp, G., Yeung, A. C., & Borst, C. (2000). Arterial remodeling. Mechanisms and clinical implications. Circulation, 102, 1186–1191.PubMedGoogle Scholar
  18. 18.
    Humphrey, J. D. (2002). Cardiovascular solid mechanics: cells, tissues, and organs. New York: Springer-Verlag.Google Scholar
  19. 19.
    Libby, P. (2003). Vascular biology of atherosclerosis: overview and state of the art. American Journal of Cardiology, 91, 3A–6A.PubMedCrossRefGoogle Scholar
  20. 20.
    Resnick, N., Yahav, H., Shay-Salit, A., Shushy, M., Schubert, S., Zilberman, L. C. M., & Wofovitz, E. (2003). Fluid shear stress and the vascular endothelium: for better and for worse. Progress in Biophysics & Molecular Biology, 81, 177–199.CrossRefGoogle Scholar
  21. 21.
    Schaper, W., & Schaper, J. (2004). Arteriogenesis. Amsterdam: Kluwer Academic Press.Google Scholar
  22. 22.
    Intengan, H. D., & Schiffrin, E. L. (2007). Vascular remodeling in hypertension. Roles of apoptosis, inflammation, and fibrosis. Hypertension, 38, 581–587.CrossRefGoogle Scholar
  23. 23.
    Stehbens, W. E. (1990). Pathology and pathogenesis of intracranial berry aneurysms. Neurological Research, 12, 29–34.PubMedGoogle Scholar
  24. 24.
    Humphrey, J. D., & Canham, P. B. (2000). Structure, properties, and mechanics of intracranial saccular aneurysms. Journal of Elasticity, 61, 49–81.CrossRefGoogle Scholar
  25. 25.
    Zhang, B., Fugleholm, K., Day, L. B., Ye, S., Weller, R. O., & Day, I. N. M. (2003). Molecular pathogenesis of subarachnoid haemorrhage. International Journal of Biochemistry & Cell Biology, 35, 1341–1360.CrossRefGoogle Scholar
  26. 26.
    Kyriacou, S. K., & Humphrey, J. D. (1996). Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. Journal of Biomechanics, 29, 1015–1022. Erratum, 30, 761, 1997.Google Scholar
  27. 27.
    Ryan, J. M., & Humphrey, J. D. (1999). Finite element based predictions of preferred material symmetries in saccular aneurysms. Annals of Biomedical Engineering, 27, 641–647.PubMedCrossRefGoogle Scholar
  28. 28.
    Peters, D. G., Kassam, A. B., Feingold, E., Heidrich-O’Hare, E., Yonas, H., Ferrell, R. E., & Brufsky, A. (2001). Molecular anatomy of an intracranial aneurysm. Coordinated expression of genes involved in wound healing and tissue remodeling. Stroke, 32, 1036–1042.PubMedGoogle Scholar
  29. 29.
    Mimata, C., Kitaoka, M., Nagahiro, S., Iyama, K., Hori, H., Yoshioka, H., & Ushio, Y. (1997). Differential distribution and expressions of collagens in the cerebral aneurysmal wall. Acta Neuropathologica, 94, 197–206.PubMedCrossRefGoogle Scholar
  30. 30.
    Bruno, G., Todor, R., Lewis, I., & Chyatte, D. (1998). Vascular extracellular matrix remodeling in cerebral aneurysms. Journal of Neurosurgery, 89, 431–440.PubMedGoogle Scholar
  31. 31.
    Gaetani, P., Tartara, F., Tancioni, F., Rodriguez, R., Baena, Y., Casari, E., Alfano, M., & Grazioli, V. (1997). Deficiency of total collagen content and of deoxypyridinoline in intracranial aneurysm walls. FEBS Letters, 404, 303–306.PubMedCrossRefGoogle Scholar
  32. 32.
    Kassam, A. B., Horowitz, M., Chang, Y. F., & Peters, D. (2004). Altered arterial homeostasis and cerebral aneurysms: a molecular epidemiology study. Neurosurgery, 54, 1450–1462.PubMedCrossRefGoogle Scholar
  33. 33.
    Canham, P. B., Finlay, H. M., Kiernan, J. A., & Ferguson, G. G. (1999). Layered structure of saccular aneurysms assessed by collagen birefringence. Neurological Research, 21, 618–626.PubMedGoogle Scholar
  34. 34.
    Baek, S., Rajagopal, K. R., & Humphrey, J. D. (2006). A theoretical model of enlarging intracranial fusiform aneurysms. ASME Journal of Biomechanical Engineering, 128, 142–149.CrossRefGoogle Scholar
  35. 35.
    Mayberg, M. R., Okada, T., & Bark, D. H. (1990). The significance of morphological changes in cerebral arteries after subarachnoid hemorrhage. Journal of Neurosurgery, 72, 626–633.PubMedGoogle Scholar
  36. 36.
    Dietrich, H. H., & Dacey, R. G. (2000). Molecular keys to the problems of cerebral vasospasm. Neurosurgery, 46, 517–530.PubMedCrossRefGoogle Scholar
  37. 37.
    Dumont, A. S., Dumont, R. J., Chow, M. M., Lin, C-L., Calisaneller, T., Ley, K. F., Kassell, N. F., & Lee, K. S. (2003). Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery, 53, 123–135.PubMedCrossRefGoogle Scholar
  38. 38.
    Grasso, G. (2004). An overview of new pharmacological treatments for cerebrovascular dysfunction after experimental subarachnoid hemorrhage. Brain Research Developmental Brain Research, 44, 49–63.Google Scholar
  39. 39.
    Pluta, R. M. (2005). Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacology & Therapeutics, 105, 23–56.CrossRefGoogle Scholar
  40. 40.
    Humphrey, J. D. (2007). Towards a continuum biochemomechanical theory of soft tissue and cellular growth and remodeling. In G. Holzapfel, & R. W. Ogden (Eds.), Biomechanical modelling at the molecular, cellular and tissue levels. Heidelberg: Springer (in press).Google Scholar
  41. 41.
    Bayer, I. M., Adamson, S. L., & Langille, B. L. (1999). Atrophic remodeling of the artery-cuffed artery. Arteriosclerosis Thrombosis and Vascular Biology, 19, 1499–1505.Google Scholar
  42. 42.
    Yamaguchi-Okada, M., Nishizawa, S., Koide, M., & Nonaka, Y. (2005). Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. Journal of Applied Physiology, 99, 2045–2052.PubMedCrossRefGoogle Scholar
  43. 43.
    Truesdell, C., & Noll, W. (1965). The non-linear field theories of mechanics. In S. Flugge (Ed.), Handbuch der Physik (vol. III/3). Berlin: Springer.Google Scholar
  44. 44.
    Fung, Y. C. (1993). Biomechanics: mechanical properties of living tissues (2nd edn.). New York: Springer-Verlag.Google Scholar
  45. 45.
    Mow, V. C., Hochmuth, R. M., Guilak, F., & Trans-Son-Tay, R. (1994). Cell mechanics and cellular engineering. New York: Springer-Verlag.Google Scholar
  46. 46.
    Holzapfel, G. A., & Odgen, R. W. (2006). Mechanics of biological tissue. Berlin: Springer.Google Scholar
  47. 47.
    Cowin, S. C., & Doty, S. B. (2007). Tissue mechanics. New York: Springer.Google Scholar
  48. 48.
    Chuong, C. J., & Fung, Y. C. (1986). On residual stress in arteries. ASME Journal of Biomechanical Engineering, 108, 189–192.Google Scholar
  49. 49.
    Dobrin, P. B., Canfield, T., & Sinha, S. (1975). Development of longitudinal retraction of carotid arteries in neonatal dogs. Experientia, 31, 1295–1296.PubMedCrossRefGoogle Scholar
  50. 50.
    Dobrin, P. B., Schwarcz, T. H., & Mrkvicka, R. (1990). Longitudinal retractive force in pressurized dog and human arteries. Journal of Surgical Research, 48, 116–120.PubMedCrossRefGoogle Scholar
  51. 51.
    Vaishnav, R. N., Vossoughi, J., Patel, D. J., Cothran, L. N., Coleman, B. R., & Ison-Franklin, E. L. (1990). Effect of hypertension on elasticity and geometry of aortic tissue from dogs. Journal of Biomechanical Engineering, 112, 70–74.PubMedGoogle Scholar
  52. 52.
    Dye, W. W., Gleason, R. L., Wilson, E., & Humphrey, J. D. (2007). Biaxial biomechanical behavior of carotid arteries in two knockout models of muscular dystrophy. Journal of Applied Physiology, 103, 664–672.PubMedCrossRefGoogle Scholar
  53. 53.
    Timoshenko, S. P., & Goodier, J. N. (1970). Theory of elasticity (3rd edn.). New York: McGraw Hill.Google Scholar
  54. 54.
    Ferry, J. D. (1980). Viscoelastic properties of polymers. New York: John Wiley & Sons.Google Scholar
  55. 55.
    Landau, L. D., & Lifshitz, E. M. (1986). Theory of elasticity (3rd edn.). Oxford: Pergamon Press.Google Scholar
  56. 56.
    Wertheim, M. G. (1847). Memoire sur l’eastocote et la cohesion des principaux tissues du corps humain. Annales de Chimie et de Physique, 21, 385–414.Google Scholar
  57. 57.
    Roy, C. S. (1880). The elastic properties of the arterial wall. Philosophical Transactions of the Royal Society of London, 99, 1–31.Google Scholar
  58. 58.
    Green, A. E., & Adkins, J. E. (1970). Large elastic deformations. Oxford: Oxford University Press.Google Scholar
  59. 59.
    Oden, J. T. (1972). Finite elements of nonlinear continua. New York: McGraw-Hill.Google Scholar
  60. 60.
    Treloar, L. R. G. (1975). The physics of rubber elasticity. Oxford: Oxford University Press.Google Scholar
  61. 61.
    Mow, V. C., Kuei, S. C., Lai, W. M., & Armstrong, C. G. (1980). Biphasic creep and relaxation of articular cartilage in compression? Theory and experiments. Journal of Biomechanical Engineering, 102, 73–84.PubMedGoogle Scholar
  62. 62.
    Thoma, R. (1893). Untersuchagen uberdie Histogenese and Histomechanik des Gefassystems. Stuttgart: Enke.Google Scholar
  63. 63.
    Murray, C. D. (1926). The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proceedings of the National Academy of Science USA, 12, 207–214.CrossRefGoogle Scholar
  64. 64.
    Zamir, M. (1977). Shear forces and blood vessel radii in the cardiovascular system. Journal of General Physiology, 69, 449–461.PubMedCrossRefGoogle Scholar
  65. 65.
    Kamiya, A., Bukhari, R., & Togawa, T. (1984). Adaptive regulation of wall shear stress optimizing vascular tree function. Bulletin of Mathematical Biology, 46, 127–137.PubMedGoogle Scholar
  66. 66.
    Greve, J. M., Les, A. S., Tang, B. T., Draney-Bloomme, M. T., Wilson, N. M., Dalman, R. L., Pelc, N. J., & Taylor, C. A. (2006). Allometric scaling of wall shear stress from mice to humans: quantification using cine phase contrast MRI and computational fluid dynamics. American Journal of Physiology, 291, H1700–H1708.PubMedGoogle Scholar
  67. 67.
    Langille, B. L., Bendeck, M. P., & Keeley, F. W. (1989). Adaptations of carotid arteries of young and mature rabbits to reduced carotid blood flow. American Journal of Physiology, 256 (Heart and Circulatory Physiology, 25), H931–H939.Google Scholar
  68. 68.
    Resnick, N., & Gimbrone, M. A. (1995). Hemodynamic forces are complex regulators of endothelial gene expression. FASEB Journal, 9, 874–882.PubMedGoogle Scholar
  69. 69.
    Driss, A. B., Benessiano, J., Poitevin, P., Levy, B. I., & Michael, J-B. (1997). Arterial expansive remodeling induced by high flow rates. American Journal of Physiology, 272, H851–H858.PubMedGoogle Scholar
  70. 70.
    Rudic, D. R., Shesely, E. G., Maeda, N., Smithies, O., Segal, S. S., & Sessa, W. C. (1998). Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. Journal of Clinical Investigation, 101, 731–736.PubMedGoogle Scholar
  71. 71.
    Singh, T. M., Abe, K. Y., Sasaki, T., Zhuang, Y. J., Masuda, H., & Zarins, C. K. (1998). Basic fibroblast growth factor expression precedes flow-induced arterial enlargement. Journal of Surgical Research, 77, 165–173.PubMedCrossRefGoogle Scholar
  72. 72.
    Humphrey, J. D., & Delange, S. L. (2004). An introduction to biomechanics: solids and fluids, analysis and design. New York: Springer-Verlag.Google Scholar
  73. 73.
    Wolinsky, H., & Glagov, S. (1967). A lamellar unit of aortic medial structure and function in mammals. Circulation Research, 20, 99–111.PubMedGoogle Scholar
  74. 74.
    Wolinsky, H. (1970). Comparison of medial growth of human thoracic and abdominal aortas. Circulation Research, 27, 531–538.PubMedGoogle Scholar
  75. 75.
    Matsumoto, T., & Hayashi, K. (1994). Mechanical and dimensional adaptation of rat aorta to hypertension. ASME Journal of Biomechanical Engineering, 116, 278–283.Google Scholar
  76. 76.
    Xu, C., Zarins, C. K., Bassiouny, H. S., Briggs, W. H., Reardon, C., & Glagov, S. (2000). Differential transmural distribution of gene expression for collagen types I and III proximal to aortic coarctation in the rabbit. Journal of Vascular Research, 37, 170–182.PubMedCrossRefGoogle Scholar
  77. 77.
    Glagov, S., Weisenberg, E., Zarins, C. K., Stankunavicius, R., & Kolettis, G. J. (1987). Compensatory enlargement of human atherosclerotic coronary arteries. New England Journal of Medicine, 316, 1371–1375.PubMedCrossRefGoogle Scholar
  78. 78.
    Han, H. C., & Fung, Y. C. (1995). Longitudinal strain of canine and porcine aortas. Journal of Biomechanics, 28, 637–641.PubMedCrossRefGoogle Scholar
  79. 79.
    Jackson, Z. S., Gotlieb, A. I., & Langille, B. L. (2002). Wall tissue remodeling regulates longitudinal tension in arteries. Circulation Research, 90, 918–925.PubMedCrossRefGoogle Scholar
  80. 80.
    Gleason, R. L., Wilson, E., & Humphrey, J. D. (2007). Biaxial biomechanical adaptations of mouse carotid arteries cultured at altered axial extensions. Journal of Biomechanics, 40, 766–776.PubMedCrossRefGoogle Scholar
  81. 81.
    Gleason, R. L., & Humphrey, J. D. (2005). Effects of a sustained extension on arterial growth and remodeling: a theoretical study. Journal of Biomechanics, 38, 1255–1261.PubMedCrossRefGoogle Scholar
  82. 82.
    Gleason, R. L., Taber, L. A., & Humphrey, J. D. (2004). A 2-D model for flow-induced alterations in the geometry, structure, and properties of carotid arteries. ASME Journal of Biomechanical Engineering, 126, 371–381.CrossRefGoogle Scholar
  83. 83.
    Gleason, R. L., & Humphrey, J. D. (2004). A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. Journal of Vascular Research, 41, 352–363.PubMedCrossRefGoogle Scholar
  84. 84.
    Jackson, Z. S., Dajnoweiec, D., Gotlieb, A. I., & Langille, B. L. (2005). Partial off-loading of longitudinal tension induces arterial tortuosity. Arteriosclerosis Thrombosis and Vascular Biology, 25, 957–962.CrossRefGoogle Scholar
  85. 85.
    Elsdale, T., Bard, J. (1972). Collagen strata for studies on cell behavior. Journal of Cell Biology, 54, 626–637.PubMedCrossRefGoogle Scholar
  86. 86.
    Bell, E., Ivarsson, B., & Merrill, C. (1979). Production of tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proceedings of the National Academy of Science USA, 76, 1274–1278.CrossRefGoogle Scholar
  87. 87.
    Harris, A. K., Stopak, D., & Wild, P. (1981). Fibroblast traction as a mechanism for collagen morphogenesis. Nature, 290, 249–251.PubMedCrossRefGoogle Scholar
  88. 88.
    Tomasek, J. J., & Hay, E. D. (1984). Analysis of the role of microfilaments in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. Journal of Cell Biology, 99, 536–549.PubMedCrossRefGoogle Scholar
  89. 89.
    Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C., & Brown, R. A. (2002). Myofibroblasts and mechanoregulation of connective tissue remodeling. Nature Reviews, 3, 349–363.PubMedCrossRefGoogle Scholar
  90. 90.
    Grinnell, F. (2003). Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 13, 264–269.PubMedCrossRefGoogle Scholar
  91. 91.
    Delvoye, P., Wiliquet, P., Leveque, J-J., Nusgens, B. V., & Lapiere, C. M. (1991). Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. Journal of Investigative Dermatology, 97, 898–902.PubMedCrossRefGoogle Scholar
  92. 92.
    Brown, R. A., Prajapati, R., McGrouther, D. A., Yannas, I. V., & Eastwood, M. (1998). Tensional homeostasis in dermal fibroblasts: mechanical responses to mechanical loading in three-dimensional substrates. Journal of Cell Physiology, 175, 323–332.CrossRefGoogle Scholar
  93. 93.
    Martinez-Lemus, L. A., Hill, M. A., Bolz, S. S., Pohl, U., & Meininger, G. A. (2004). Acute mechanoadaptation of vascular smooth muscle cells in response to continuous arteriolar vasoconstriction: implications for functional remodeling. FASEB Journal, 18, 708–710.PubMedGoogle Scholar
  94. 94.
    Gerthoffer, W. T. (2005). Actin cytoskeletal dynamics in smooth muscle contraction. Candian Journal of Physiology and Pharmacology, 83, 851–856.CrossRefGoogle Scholar
  95. 95.
    Langille, B. L., & Dajnowiec, D. (2005). Cross-linking vasomotor tone and vascular remodeling. A novel function for tissue transglutaminase. Circulation Research, 96, 9–11.PubMedCrossRefGoogle Scholar
  96. 96.
    Grinnell, F. (1994). Fibroblasts, myofibroblasts, and wound contraction. Journal of Cell Biology, 124, 401–404.PubMedCrossRefGoogle Scholar
  97. 97.
    Ingber, D. E. (1993). Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. Journal of Cell Science, 104, 613–627.PubMedGoogle Scholar
  98. 98.
    Pourati, J., Maniotis, A., Spiegel, D., Schaffer, J. L., Butler, J. P., Fredberg, J. J., Ingber, D. E., Stamenovic, D., & Wang, N. (1998). Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? American Journal of Physiology, 274, C1283–C1289.PubMedGoogle Scholar
  99. 99.
    Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E., & Ingber, D. E. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal, 90, 3762–3773.PubMedCrossRefGoogle Scholar
  100. 100.
    Wang, N., Tolic-Norrelykke I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology Cell Physiology, 282, C606–C616.PubMedGoogle Scholar
  101. 101.
    Mizutani, T., Haga, H., & Kawabata, K. (2004). Cellular stiffness response to external deformation: tensional homeostasis in a single fibroblast. Cell Motility and the Cytoskeleton, 59, 242–248.PubMedCrossRefGoogle Scholar
  102. 102.
    Costa, K. D., Hucker, W. J., & Yin, F. C. P. (2002). Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry. Cell Motility and the Cytoskeleton, 52, 266–274.PubMedCrossRefGoogle Scholar
  103. 103.
    Deguchi, S., Ohashi, T., & Sato, M. (2006). Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells. Journal of Biomechanics, 39, 2603–2610.PubMedCrossRefGoogle Scholar
  104. 104.
    Deguchi, S., Ohashi, T., & Sato, M. (2005). Intracellular stress transmission through actin stress fiber network in adherent vascular cells. Molecular and Cellular Biomechanics, 2, 205–216.PubMedGoogle Scholar
  105. 105.
    Ingber, D. E. (1997). Tensegrity: the architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.PubMedCrossRefGoogle Scholar
  106. 106.
    Fung, Y. C. (1967). Elasticity of soft tissues in simple elongation. American Journal of Physiology, 213, 1532–1544.PubMedGoogle Scholar
  107. 107.
    Liu, X., Pollack, G. H. (2002). Mechanics of F-actin characterized with microfabricated cantilevers. Biophysical Journal, 83, 2705–2715.PubMedGoogle Scholar
  108. 108.
    Romer, L. H., Birukov, K. G., & Garcia, J. G. N. (2006). Focal adhesions: paradigm for signaling nexus. Circulation Research, 98, 606–616.PubMedCrossRefGoogle Scholar
  109. 109.
    Saez, A. O., Zhang, W., Wu, Y., Turner, C. E., Tang, D. D., & Gunst, S. J. (2004). Tension development during contractile stimulation of smooth muscle requires recruitment of paxillin and vinculin to the membrane. American Journal of Physiology, 286, C433–C447.CrossRefGoogle Scholar
  110. 110.
    Cunningham, J. J., Linderman, J. J., & Mooney, D. J. (2002). Externally applied cyclic strain regulates localization of focal contact components in cultured smooth muscle cells. Annals of Biomedical Engineering, 30, 927–935.PubMedCrossRefGoogle Scholar
  111. 111.
    Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., & Geiger, B. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3, 466–473.PubMedCrossRefGoogle Scholar
  112. 112.
    Tan, J. L., Tien, J., Pirone, D. M., Gray, D. S., Bhadriraju, K., & Chen, C. S. (2003). Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proceedings of the National Academy of Science USA, 100, 1484–1489.CrossRefGoogle Scholar
  113. 113.
    Goffin, J. M., Pittet, P., Csucs, G., Lussi, J. W., Meister, J-J., & Hinz, B. (2006). Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. Journal of Cell Biology, 172, 259–268.PubMedCrossRefGoogle Scholar
  114. 114.
    Kolodney, M. S., & Wysolmerski, R. B. (1992). Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. Journal of Cell Biology, 117, 73–82.PubMedCrossRefGoogle Scholar
  115. 115.
    Discher, D. E., Janmey, P., & Wang, Y-L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310, 1139–1143.PubMedCrossRefGoogle Scholar
  116. 116.
    Humphrey, J. D. (2001). Stress, strain, and mechanotransduction in cells. ASME Journal of Biomechanical Engineering, 123, 638–641.CrossRefGoogle Scholar
  117. 117.
    Na, S., Meininger, G. A., & Humphrey, J. D. (2007). A theoretical model for F-actin remodeling in vascular smooth muscle cells subjected to cyclic stretch. Journal of Theoretical Biology, 246, 87–99.PubMedCrossRefGoogle Scholar
  118. 118.
    Humphrey, J. D., & Rajagopal, K. R. (2002). A constrained mixture model for growth and remodeling of soft tissues. Mathematical Models & Methods in Applied Sciences, 12, 407–430.CrossRefGoogle Scholar
  119. 119.
    Sasamura, H., Shimizu-Hirota, R., & Saruta, T. (2005). Extracellular matrix remodeling in hypertension. Current Hypertension Review, 1, 51–60.CrossRefGoogle Scholar
  120. 120.
    Carver, W., Nagpal, M. L., Nachtigal, M., Borg, T. K., & Terracio, L. (1991). Collagen expression in mechanically stimulated cardiac fibroblasts. Circulation Research, 69, 116–122.PubMedGoogle Scholar
  121. 121.
    Li, Q., Muragaki, Y., Hatamura, I., Ueno, H., & Ooshima, A. (1998). Stretch-induced collagen synthesis in cultured smooth muscle cells from rabbit aortic media and a possible involvement of angiotensin II and transforming growth factor-β. Journal of Vascular Research, 35, 93–103.PubMedCrossRefGoogle Scholar
  122. 122.
    Nimni, M. E. (1992). Collagen in cardiovascular tissue. In G. W. Hastings (Eds.), Cardiovascular biomaterials. New York: Springer-Verlag.Google Scholar
  123. 123.
    Bishop, J. E. (1998). Regulation of cardiovascular collagen deposition by mechanical forces. Molecular Medicine Today, 69–75.Google Scholar
  124. 124.
    Rodriguez-Feo, J. A., Sluijter, J. P. G., de Kleijn, D. P. V., & Pasterkamp, G. (2005). Modulation of collagen turnover in cardiovascular disease. Current Pharmaceutical Design, 11, 2501–2514.PubMedCrossRefGoogle Scholar
  125. 125.
    Niedermuller, H., Skalicky, M., Hofecker, G., & Kment, A. (1977). Investigations on the kinetics of collagen-metabolism in young and old rats. Experimental Gerontology, 12, 159–168.PubMedCrossRefGoogle Scholar
  126. 126.
    Kao, W. W-Y., Berg, R. A., & Prockop, D. J. (1977). Kinetics for the secretion of procollagen by freshly isolated tendon cells. Journal of Biological Chemistry, 252, 8391–8397.PubMedGoogle Scholar
  127. 127.
    Nissen, R., Cardinale, G. J., & Undenfriend, S. (1978). Increased turnover of arterial collagen in hypertensive rats. Proceedings of the National Academy of Science USA, 75, 451–453.CrossRefGoogle Scholar
  128. 128.
    Strauss, B. H., Robinson, R., Batchelor, W. B., Chisholm, R. J., Ravi, G., Natarajan, M. K., Logan, R. A., Mehta, S. R., Levy, D. E., Ezrin, A. M., & Keeley, F. W. (1996). In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circulation Research, 79, 541–550.PubMedGoogle Scholar
  129. 129.
    Sluijter, J. P. G., Smeets, M. B., Velema, E., Pasterkamp, G., & de Kleijn, D. P. V. (2004). Increase in collagen turnover but not in collagen fiber content is associated with flow-induced arterial remodeling. Journal of Vascular Research, 41, 546–555.PubMedCrossRefGoogle Scholar
  130. 130.
    Meshel, A. S., Wei, Q., Aldelstein, R. S., & Sheetz, M. P. (2005). Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nature Cell Biology, 7, 157–164.PubMedCrossRefGoogle Scholar
  131. 131.
    Kozel, B. A., Rongish, B. J., Czirok, A., Zach, J., Little, C. D., Davis, E. C., Knutsen, R. H., Wagenseil, J. E., Levy, M. A., & Mecham, R. P. (2006). Elastic fiber formation: a dynamic view of extracellular matrix assembly using timer reporters. Journal of Cellular Physiology, 207, 87–96.PubMedCrossRefGoogle Scholar
  132. 132.
    Czirok, A., Zach, J., Kozel, B. A., Mecham, R. P., Davis, E. C., & Rongish, B. J. (2006). Elastic fiber macro-assembly is a hierarchial, cell motion-mediated process. Journal of Cellular Physiology, 207, 97–106.PubMedCrossRefGoogle Scholar
  133. 133.
    Kielty, C. M., Sherratt, M. J., & Shuttleworth, C. A. (2002). Elastic fibres. Journal of Cell Science, 115, 2817–2828.PubMedGoogle Scholar
  134. 134.
    Brooke, B. S., Bayes-Genis, A., & Li, D-Y. (2003). New insights into elastin and vascular disease. Trends in Cardiovascular Medicine, 13, 176–181.PubMedCrossRefGoogle Scholar
  135. 135.
    Karnik, S. K., Brooke, B. S., Bayes-Genis, A., Sorensen, L., Wythe, J. D., Schwartz, R. S., Keating, M. T., & Li, D. Y. (2003). A critical role for elastin signaling in vascular morphogenesis and disease. Development, 130, 411–423.PubMedCrossRefGoogle Scholar
  136. 136.
    Arribas, S. M., Hinek, A., & Gonzalez, M. C. (2006). Elastic fibres and vascular structure in hypertension. Pharmacology & Therapeutics, 111, 771–791.CrossRefGoogle Scholar
  137. 137.
    Canty, E. G., Lu, Y., Meadows, R. S., Shaw, M. K., Holmes, D. F., & Kadler, K. E. (2004). Coalignment of plasma membrane channels and protrusions (fibropositors) specifies the parallelism of tendon. Journal of Cell Biology, 165, 553–563.PubMedCrossRefGoogle Scholar
  138. 138.
    Canty, E. G., & Kadler, K. E. (2005). Procollagen trafficking, processing, and fibrillogenesis. Journal of Cell Science, 118, 1341–1353.PubMedCrossRefGoogle Scholar
  139. 139.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell. New York: Garland Science.Google Scholar
  140. 140.
    Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562–573.PubMedCrossRefGoogle Scholar
  141. 141.
    Newby, A. C. (2006). Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovascular Research, 69, 614–624.PubMedCrossRefGoogle Scholar
  142. 142.
    Chase, A. J., & Newby, A. C. (2003). Regulation of matrix metalloproteinase (matrixin) genes n blood vessels: a multi-step recruitment model for pathological remodeling. Journal of Vascular Research, 40, 329–343.PubMedCrossRefGoogle Scholar
  143. 143.
    Prajapati, R. T., Eastwood, M., & Brown, R. A. (2000). Duration and orientation of mechanical loads determine fibroblast cyto-mechanical activation: monitored by protease release. Wound Repair and Regeneration, 8, 238–246.PubMedCrossRefGoogle Scholar
  144. 144.
    Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M., & Harrison, D. G. (1995). Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. American Journal of Physiology, 269, C1371–C1378.PubMedGoogle Scholar
  145. 145.
    Frangos, J. A., McIntire, L. V., & Ives, C. L. (1985). Flow effects on prostacyclin production by cultured human endothelial cells. Science, 227, 1477–1479.PubMedCrossRefGoogle Scholar
  146. 146.
    Ward, I. M. (1983). Mechanical properties of solid polymers. New York: John Wiley & Sons.Google Scholar
  147. 147.
    Holzapfel, G. A. (2000). Nonlinear solid mechanics: a continuum approach for engineers. Chichester: John Wiley & Sons.Google Scholar
  148. 148.
    Shah, A. D., & Humphrey, J. D. (1999). Finite strain elastodynamics of intracranial saccular aneurysms. Journal of Biomechanics, 32, 593–599.PubMedCrossRefGoogle Scholar
  149. 149.
    Baek, S., Gleason, R. L., Rajagopal, K. R., & Humphrey, J. D. (2007). Theory of small on large for computing fluid-solid interactions in arteries. Computer Methods in Applied Mechanics and Engineering, 196, 3070–3078.CrossRefGoogle Scholar
  150. 150.
    Turing, A. M. (1952). The chemical basis of morphogenesis. Proceedings of the Royal Society of London, B237, 37–72.Google Scholar
  151. 151.
    Murray, J. D. (2002). Mathematical biology. I. An introduction. Berlin: Springer-Verlag.Google Scholar
  152. 152.
    Skalak, R. (1981). Growth as a finite displacement field. In D. E. Carlson, & R. T. Shield (Eds.), Proc IUTAM symposium on finite elasticity. The Hague: Martinus Nijhoff.Google Scholar
  153. 153.
    Rodriguez, E. K., Hoger, A., & McCulloch, A. D. (1994). Stress-dependent finite growth in soft elastic tissues. Journal of Biomechanics, 27, 455–467.PubMedCrossRefGoogle Scholar
  154. 154.
    Taber, L. A. (1998). A model for aortic growth based on fluid shear and fiber stresses. ASME Journal of Biomechanical Engineering, 120, 348–354.Google Scholar
  155. 155.
    Rachev, A., Stergiopulos, N., & Meister, J-J. (1996). Theoretical study of dynamics of arterial wall remodeling in response to changes in blood pressure. Journal of Biomechanics, 29, 635–642.PubMedCrossRefGoogle Scholar
  156. 156.
    Rachev, A., Stergiopulos, N., Meister, J-J. (1998). A model for geometric and mechanical adaptation of arteries to sustained hypertension. ASME Journal of Biomechanical Engineering, 120, 9–17.Google Scholar
  157. 157.
    Fridez, P., Rachev, A., Meister, J-J., Hayashi, K., & Stergiopulos, N. (2001). Model of geometrical and smooth muscle tone adaptation of carotid artery subject to step change in pressure. American Journal of Physiology, 280, H2752–H2760.PubMedGoogle Scholar
  158. 158.
    Bowen, R. M. (1976). Theory of mixtures. In A. C. Eringen (Ed.), Continuum physics (vol. III). New York: Academic Press.Google Scholar
  159. 159.
    Bernard, S., Pujo-Menjouet, L., & Mackey, M. C. (2003). Analysis of cell kinetics using a cell division marker: mathematical modeling of experimental data. Biophysical Journal, 84, 3414–3424.PubMedGoogle Scholar
  160. 160.
    Zhu, C., Bao, G., & Wang, N. (2000). Cell mechanics: mechanical response, cell adhesion, and molecular deformation. Annual Review of Biomedical Engineering, 2, 189–226.PubMedCrossRefGoogle Scholar
  161. 161.
    Stamenovic, D., & Ingber, D. E. (2002). Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1, 95–108.PubMedCrossRefGoogle Scholar
  162. 162.
    Bao, G., & Suresh, S. (2003). Cell and molecular mechanics of biological materials. Nature Materials, 2, 715–725.PubMedCrossRefGoogle Scholar
  163. 163.
    Huang, H., Kamm, R. D., & Lee, R. T. (2004). Cell mechanics and mechanotransduction: pathways, probes, and physiology. American Journal of Physiology Cell Physiology, 287, C1–C11.PubMedCrossRefGoogle Scholar
  164. 164.
    Heidemann, S. R., & Wirtz, D. (2004). Towards a regional approach to cell mechanics. Trends in Cell Biology, 14, 160–166.PubMedCrossRefGoogle Scholar
  165. 165.
    Lim, C. T., Zhou, E. H., & Quek, S. T. (2006). Mechanical models for living cells-a review. Journal of Biomechanics, 39, 195–216.PubMedCrossRefGoogle Scholar
  166. 166.
    Wu, H. W., Kuhn, T., & Moy, V. T. (1998). Mechanical properties of L929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning, 20, 389–397.PubMedCrossRefGoogle Scholar
  167. 167.
    Rotsch, C., & Radmacher, M. (2000). Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophysical Journal, 78, 520–535.PubMedGoogle Scholar
  168. 168.
    Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Krauss, W. E., & Truskey, G. A. (2001). Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics, 34, 1545–1553.PubMedCrossRefGoogle Scholar
  169. 169.
    Mijailovich, S. M., Kojic, M., Zivkovic, M., Fabry, B., & Fredberg, J. J. (2002). A finite element model of cell deformation during magnetic bead twisting. American Journal of Physiology, 93, 1429–1436.Google Scholar
  170. 170.
    Mack, P. J., Kaazempur-Mofrad, M. R., Karcher, H., Lee, R. T., & Kamm, R. D. (2003). Force-induced focal adhesion transduction: effects of force amplitude and frequency. American Journal of Physiology, 287, C954–C962.CrossRefGoogle Scholar
  171. 171.
    Fabry, B., Maksym, G. N., Butler, J. P., Glogauer, M., Navajas, D., & Fredberg, J. J. (2001). Scaling the microrheology of living cells. Physical Review Letters, 87, 148102–148114.PubMedCrossRefGoogle Scholar
  172. 172.
    Smith, B. A., Tolloczko, B., Martin, J. G., & Grutter, P. (2005). Probing the viscoelastic behavior of cultured airway smooth muscle cells with atomic force microscopy: Stiffening by contractile agonist. Biophysical Journal, 88, 2994–3007.PubMedCrossRefGoogle Scholar
  173. 173.
    Desprat, N., Richert, A., Simeon, J., & Asnacios, A. (2005). Creep function of a single living cell. Biophysical Journal, 88, 2224–2233.PubMedCrossRefGoogle Scholar
  174. 174.
    Lenormand, G., & Fredberg, J. J. (2006). Deformability, dynamics, and remodeling of cytoskeleton of the adherent living cell. Biorheology, 43, 1–30.PubMedGoogle Scholar
  175. 175.
    Costa, K. D., & Yin, F. C. P. (1999). Analysis of indentation: implications for measuring mechanical properties with atomic force microscopy. ASME Journal of Biomechanical Engineering, 121, 462–471.Google Scholar
  176. 176.
    Janmey, P. A., Euteneuer, U., Traub, P., & Schliwa, M. (1991). Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. Journal of Cell Biology, 113, 155–160.PubMedCrossRefGoogle Scholar
  177. 177.
    Herant, M., Marganski, W. A., & Dembo, M. (2003). The mechanics of neutrophils: synthetic modeling of three experiments. Biophysical Journal, 84, 3389–3413.PubMedGoogle Scholar
  178. 178.
    Mooney, D. J., Langer, R., & Ingber, D. E. (1995). Cytoskeletal filament assembly and the control of cell spreading and function by extracellular matrix. Journal of Cell Science, 108, 2311–2320.PubMedGoogle Scholar
  179. 179.
    McGrath, J. L., Tardy, Y., Dewey, D. F., Meister, J. J., & Hartwig, J. H. (1998). Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 75, 2070–2078.PubMedGoogle Scholar
  180. 180.
    Worth, F. F., Rolfe, B. E., Song, J., & Campbell, G. R. (2001). Vascular smooth muscle phenotypic modulation in culture is associated with reorganization of contractile and cytoskeletal proteins. Cell Motility and the Cytoskeleton, 49, 130–145.PubMedCrossRefGoogle Scholar
  181. 181.
    Davies, P. F., Zilberberg, J., & Helmke, B. P. (2003). Spatial microstimuli in endothelial mechanosignaling. Circulation Research, 92, 359–370.PubMedCrossRefGoogle Scholar
  182. 182.
    Huang, H., Sylvan, J., Jonas, M., Barresi, R., So, P. T. C., Campbell, K. P., & Lee, R. T. (2005). Cell stiffness and receptors: evidence for cytoskeletal subnetworks. American Journal of Physiology Cell Physiology, 288, C72–C80.PubMedGoogle Scholar
  183. 183.
    Langevin, H. M., Cornbrooks, C. J., & Taatjes, D. J. (2004). Fibroblasts form a body-wide cellular network. Histochemistry and Cell Biology, 122, 7–15.PubMedCrossRefGoogle Scholar
  184. 184.
    Wilson, E., Mai, Q., Sudhir, K., Weiss, R. H., & Ives, H. E. (1993). Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. Journal of Cell Biology, 123, 741–747.PubMedCrossRefGoogle Scholar
  185. 185.
    Swartz, M. A., Tschumperlin, D. J., Kamm, R. D., & Drazen, J. M. (2001). Mechanical stress is communicated between different cell types to elicit matrix remodeling. Proocedings of the National Academy of Science USA, 98, 6180–6185.CrossRefGoogle Scholar
  186. 186.
    Flybjerg, H., Jobs, E., & Leibler, S. (1996). Kinetics of self-assembling microtubules: An “inverse problem” in biochemistry. Proceedings of the National Academy of Science USA, 93, 5975–5979.CrossRefGoogle Scholar
  187. 187.
    Edelstein-Keshet, L. (1998). A mathematical approach to cytoskeletal assembly. European Biophysics Journal, 27, 521–531.PubMedCrossRefGoogle Scholar
  188. 188.
    Storm, C., Pastore, J. J., MacKintosh, F. C., Lubensky, T. C., & Janmey, P. A. (2005). Nonlinear elasticity in biological gels. Nature, 435, 191–194.PubMedCrossRefGoogle Scholar
  189. 189.
    Gardel, M. L., Shin, J. H., MacKintosh, F. C., Mahadevan, L., Matsudaira, P., & Weitz, D. A. (2004). Elastic behavior of cross-linked and bundled actin networks. Science, 304, 1301–1305.PubMedCrossRefGoogle Scholar
  190. 190.
    Wagner, B., Tharmann, R., Haase, I., Fischer, M., & Bausch, A. R. (2006). Cytoskeletal polymer networks: the molecular structure of cross-linkers determines macroscopic properties. Proceedings of the National Academy of Science USA, 103, 13974–13978.CrossRefGoogle Scholar
  191. 191.
    Sept, D., & McCammon, J. A. (2001). Thermodynamics and kinetics of actin filament nucleation. Biophysical Journal, 81, 667–674.PubMedGoogle Scholar
  192. 192.
    VanBuren, V., Cassimeris, L., & Odde, D. J. (2005). Mechanical model of microtubule structure and self-assembly kinetics. Biophysical Journal, 89, 2911–2926.PubMedCrossRefGoogle Scholar
  193. 193.
    Galou, M., Gao, J., Humbert, J., Mericskay, M., Li, Z., Paulin, D., & Vicart, P. (1997). The importance of intermediate filaments in the adaptation of tissues to mechanical stress: evidence from gene knockout studies. Biology of the Cell, 89, 85–97.PubMedCrossRefGoogle Scholar
  194. 194.
    Westerhoff, H. V., & Paulson, B. O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22, 1249–1252.PubMedCrossRefGoogle Scholar
  195. 195.
    Skalak, T. C. (2002). In vivo and in silico approaches for analysis and design of multisignal, multicomponent assembly processes in vascular systems. Annals of the New York Academy of Sciences, 961, 223–242.PubMedCrossRefGoogle Scholar
  196. 196.
    Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society of London A, 459, 3–46.CrossRefGoogle Scholar
  197. 197.
    Harris, A. K. (1994). Multicellular mechanics in the creation of anatomical structures. In N. Akkas (Ed.), Biomechanics of active movement and division of cells (pp. 87–129). Berlin: Springer.Google Scholar
  198. 198.
    Fung, Y. C. (2002). Foreword: celebrating the inauguration of the journal: Biomechanics and Modeling in Mechanobiology. Biomechanics and Modeling in Mechanobiology, 1, 3–4.CrossRefGoogle Scholar
  199. 199.
    Baek, S., Wells, P. B., Rajagopal, K. R., & Humphrey, J. D. (2005). Heat-induced changes in the finite strain viscoelastic behavior of a collagenous tissue. ASME Journal of Biomechanical Engineering, 127, 580–586.CrossRefGoogle Scholar
  200. 200.
    Ogden, R. W. (1997). Non-linear elastic deformations. New York: Dover.Google Scholar
  201. 201.
    Humphrey, J. D. (1999). Remodeling of a collagenous tissue at fixed lengths. ASME Journal of Biomechanical Engineering, 121, 591–597.Google Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, 337 Zachry Engineering CenterTexas A&M UniversityCollege StationUSA

Personalised recommendations