Cell Biochemistry and Biophysics

, Volume 49, Issue 2, pp 84–90

On the Opening of an Insensitive Cyclosporin A Non-specific Pore by Phenylarsine Plus Mersalyl

  • Noemí García
  • Eduardo Martínez-Abundis
  • Natalia Pavón
  • Edmundo Chávez
Original Paper

Abstract

The purpose of this work was addressed to provide new information on the effect of thiol reagents on mitochondrial non-specific pore opening, and its response to cyclosporin A (CSA). To meet this proposal phenylarsine oxide (PHA) and mersalyl were employed as tools to induce permeability transition and CSA to inhibit it. PHA-induced mitochondrial dysfunction, characterized by Ca2+ efflux, swelling, and membrane de-energization, was inhibited by N-ethylmaleimide and CSA. Conversely, mersalyl failed to inhibit the inducing effect of phenylarsine oxide, it rather strengthened it. In addition, the effect of mersalyl was associated with cross-linking of membrane proteins. The content of membrane thiol groups accessible to react with PHA, mersalyl, and PHA plus mersalyl was determined. In all situations, permeability transition was accompanied by a significant decrease in the whole free membrane thiol content. Interestingly, it is also shown that mersalyl hinders the protective effect of cyclosporin A on PHA-induced matrix Ca2+ efflux.

Keywords

Kidney mitochondria Cyclosporin A Phenylarsine Mersalyl Permeability transition 

References

  1. 1.
    Bernardi, P. (1999). Mitochondrial transport of cations: Channels, exchangers and permeability transition. Physiological Reviews, 79, 1127–1155.PubMedGoogle Scholar
  2. 2.
    Zoratti, M., Szabó, I., & De Marchi, U. (2005). Mitochondrial permeability transition: How many doors to the house. Biochimica et Biophysica Acta, 1706, 40–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Kushnareva, Y. E., Haley, L. M., & Sokolove, P. M. (1999). The role of low (<or = 1mM) phosphate concentrations in regulation of mitochondrial permeability: Modulation of matrix free Ca2+ concentration. Archives of Biochemistry and Biophysics, 363, 155–162.PubMedCrossRefGoogle Scholar
  4. 4.
    Chávez, E., & Holguín, J. A. (1988). Mitochondrial calcium release as induced by Hg2+. The Journal of Biological Chemistry, 263, 3582–3597.PubMedGoogle Scholar
  5. 5.
    Gogvadze, V., Walter, P. B., & Ames, B. N. (2003). The role of Fe2+-induced lipid peroxidation in the initiation of the mitochondrial permeability transition. Archives of Biochemistry and Biophysics, 414, 255–260.PubMedGoogle Scholar
  6. 6.
    Belyaeva, E. A., Glazunov, V. V., & Korotkov, S. M. (2004). Cd2+-promoted mitochondrial permeability transition: A comparison with other heavy metals. Acta Biochimica Polonica, 51, 545–551.PubMedGoogle Scholar
  7. 7.
    Kowaltowski, A. J., Vercesi, A. E., & Castilho, R. F. (1997). Mitochondrial membrane protein thiol reactivity with N-ethylmaleimide or mersalyl is modified by Ca2+: Correlation with mitochondrial permeability transition. Biochimica et Biophysica Acta, 1318, 395–402.PubMedCrossRefGoogle Scholar
  8. 8.
    Korege, P., Goldhaber, J. I., & Weiss, J. N. (2001). Phenylarsine oxide induces mitochondrial permeability transition, hypercontracture and cardiac cell death. American Journal of Physiology. Heart and Circulatory Physiology, 280, H2203–H2213.Google Scholar
  9. 9.
    Balakirev, M. Y., & Zimmer, G. (2001). Mitochondrial injury by disulfiram: Two different mechanisms of the mitochondrial permeability transition. Chemico-Biological Interactions, 138, 299–311.PubMedCrossRefGoogle Scholar
  10. 10.
    Crompton, M., Costi, A., & Hayat, L. (1987). Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. The Biochemical Journal, 245, 915–918.PubMedGoogle Scholar
  11. 11.
    Kowaltowski, A. J., Netto, L. E.S., & Vercesi, A. E. (1998). The thiol-specific antioxidant enzyme prevents mitochondrial permeability transition. Evidence for the participation of reactive oxygen species in this mechanism. The Journal of Biological Chemistry, 273, 12766–12769.PubMedCrossRefGoogle Scholar
  12. 12.
    Kushnareva, Y. E., & Sokolove, P. M. (2000). Prooxidants open both the mitochondrial permeability transition pore and a low conductance channel in the inner mitochondrial membrane. Archives of Biochemistry and Biophysics, 376, 377–378.PubMedCrossRefGoogle Scholar
  13. 13.
    Fagian, M. M., Pereira-da-Silva, L., Martins, I. S., & Vercesi, A. E. (1990). Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. The Journal of Biological Chemistry, 265, 19955–19960.PubMedGoogle Scholar
  14. 14.
    Petronilli, P., Costantini, L., Scorrano, R., Colonna, S., & Bernardi, P. (1994). The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation reduction state of vecinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. The Journal of Biological Chemistry, 269, 16638–16642.PubMedGoogle Scholar
  15. 15.
    Kanno, T., Sato, E. E., Muranaka, S., Fugita, H., Fujiwara, T., Utsumi, T., Inoue, M., & Utsumi, K. (2004). Oxidative stress underlies the mechanism for Ca2+-induced permeability transition of mitochondria. Free Radical Research, 38, 27–35.PubMedCrossRefGoogle Scholar
  16. 16.
    García, N., García, J. J., Correa, F., & Chávez, E. (2005). The permeability transition pore as a pathway for the release of mitochondrial DNA. Life Science, 76, 2873–2880.CrossRefGoogle Scholar
  17. 17.
    Sanadi, D. R., Hughes, J. B., & Joshi, S. (1981). Activation of potassium-dependent H+ efflux from mitochondria by cadmium and phenylarsine oxide. Journal of Bioenergetics and Biomembranes, 13, 425–431.PubMedCrossRefGoogle Scholar
  18. 18.
    Zazueta, C., Sánchez, C., García, N., & Correa, F. (2000). Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium. The International Journal of Biochemistry and Cell Biology, 32, 1093–1101.CrossRefGoogle Scholar
  19. 19.
    Chávez, E., Briones, R., Michel, B., Bravo, C., & Jay, D. (1985). Evidence for the involvement of dithiol groups in mitochondrial calcium transport: Studies with cadmium. Archives of Biochemistry and Biophysics, 242, 493–497.PubMedCrossRefGoogle Scholar
  20. 20.
    Belyaeva, E. A., Glazunov, V. V., & Korotkov, S. M. (2004). Cd2+ versus Ca2+-produced mitochondrial membrane permeabilization: A proposed direct participation of respiratory complexes I and III. Chemico-Biological Interactions, 150, 253–270.PubMedCrossRefGoogle Scholar
  21. 21.
    Diwan, J. J., Srivastava, J., Moore, C., & Haley, T. (1986). Stimulation of K+ flux into mitochondria by phenylarsine oxide. Journal of Bioenergetics and Biomembranes, 18, 123–124.PubMedCrossRefGoogle Scholar
  22. 22.
    Costantini, P., Colonna, R., & Bernardi, P. (1998). Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups. Potentiation by copper-ortho-phenanthroline without dimerization of the adenine nucleotide translocase. Biochimica et Biophysica Acta, 1365, 385–392.PubMedCrossRefGoogle Scholar
  23. 23.
    Lenartowicz, E., Bernardi, P., & Azzone, G. F. (1991). Phenylarsine oxide induces the cyclosporin A-sensitive membrane permeability transition in rat liver mitochondria. Journal of Bioenergetics and Biomembranes, 23, 679–688.PubMedCrossRefGoogle Scholar
  24. 24.
    McStay, G. P., Clarke, S. J., & Halestrap, A. P. (2002). Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition. The Biochemical Journal, 367, 541–548.PubMedCrossRefGoogle Scholar
  25. 25.
    LeQuoc, K., & LeQuoc, D. (1988). Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial permeability. Importance of the orientation of the nucleotide binding site. Archives of Biochemistry and Biophysics, 265, 249–257.CrossRefGoogle Scholar
  26. 26.
    Halestrap, A. P., & Brenner, C. (2003). The adenine nucleotide translocase: A central component of the mitochondrial permeability transition pore and a key player in cell death. Current Medical Chemistry, 10, 1507–1525.CrossRefGoogle Scholar
  27. 27.
    Haworth, R. A., & Hunter, D. R. (2000). Control of the mitochondrial permeability transition pore by high-affinity ADP/ATP translocase in permeabilized mitochondria. Journal of Bioenergetics and Biomembranes, 32, 91–96.PubMedCrossRefGoogle Scholar
  28. 28.
    García, N., Zazueta, C., Pavón, N., & Chávez, E. (2005). Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. Mitochondrion, 5, 272–281.PubMedCrossRefGoogle Scholar
  29. 29.
    Tikhonova, I. M., Andreyev, A. Yu., Antonenko, Yu. N., Kaulen, A. D., Komrakov, A. Yu., & Skulachev, V. P. (1994). Ion permeability induced in artificial membranes by the ADP/ATP antiporter. FEBS Letters, 337, 231–234.PubMedCrossRefGoogle Scholar
  30. 30.
    Brustovetsky, N., & Klingenberg, M. (1996). Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry, 35, 8483–8488.PubMedCrossRefGoogle Scholar
  31. 31.
    Rük, A., Dolder, M., Wallimann, T., & Bridczka, D. (1998). Reconstituted adenine nucleotide translocase forms a channel for small molecules comparable to the mitochondrial permeability transition pore. FEBS Letters, 426, 97–101.CrossRefGoogle Scholar
  32. 32.
    Halestrap, A. P., Woodfield, K. Y., & Connern, C. P. (1997). Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. The Journal of Biological Chemistry, 272, 3346–3354.PubMedCrossRefGoogle Scholar
  33. 33.
    Halestrap, A. P., McStay, G. P., & Clarke, S. J. (2002). The permeability transition pore complex: Another view. Biochimie, 84, 153–166.PubMedCrossRefGoogle Scholar
  34. 34.
    Brustovetsky, N., & Klingenberg, M. (1994). The reconstituted ADP/ATP can mediate H+ transport by free fatty acids, which is further stimulated by mersalyl. The Journal of Biological Chemistry, 269, 27327–27336.Google Scholar
  35. 35.
    Brustovetsky, N., & Dubinsky, J. M. (2000). Limitations of cyclosporin A inhibition of the permeability transition in CNS mitochondria. The Journal of Neuroscience, 20, 8229–8237.PubMedGoogle Scholar
  36. 36.
    Kanno, T., Fujita, H., Murnaka, S., Yano, H., Utsumi, T., Yoshioka, T., Inoue, M., & Utsumi, K. (2002). Mitochondrial swelling and cytochrome c release: Sensitivity to cyclosporin A and calcium. Physiological Chemistry and Physics and Medical NMR, 34, 91–102.PubMedGoogle Scholar
  37. 37.
    Lowry, O. H., Rosebrough, N., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. The Journal of Biological Chemistry, 193, 262–275.Google Scholar
  38. 38.
    Scarpa, A., Brinley, F. J., Tiffert, T., & Dubyak, G. R. (1978). Metallochromic indicators of ionized calcium. Annals of the New York Academy of Sciences, 307, 86–112.CrossRefGoogle Scholar
  39. 39.
    Akerman, K. E. O., & Wikström, M. F. K. (1976). Safranine as a probe for mitochondrial membrane potential. FEBS Letters, 68, 191–197.PubMedCrossRefGoogle Scholar
  40. 40.
    Ellman, G. L. (1958). A colorimetric method for determining low concentrations of mercaptans. Archives of Biochemistry and Biophysics, 74, 443–447.PubMedCrossRefGoogle Scholar
  41. 41.
    Majima, E., Koike, H., & Hong, Y. M., Shinohara, Y., & Terada, H. (1993). Characterization of cysteine residues of mitochondrial ADP/ATP carrier with the SH-reagents eosin 5-maleimide and N-ethylmaleimide. The Journal of Biological Chemistry, 268, 22181–22187.PubMedGoogle Scholar
  42. 42.
    Lakritz, J., Plopper, C., & Buckpitt, A. R. (1997). Validated high performance liquid chromatography-electrochemical method for determination of glutathione and glutathione disulfide in small tissue samples. Analytical Chemistry, 247, 63–68.Google Scholar
  43. 43.
    Stoner, C. D., & Sirak, H. D. (1978). Swelling and contraction of heart mitochondria suspended in ammonium phosphate. Journal of Bioenergetics and Biomembranes, 10, 75–88.PubMedCrossRefGoogle Scholar
  44. 44.
    Broekemeier, K., Dempsey, M. E., & Pfeiffer, D. R. (1989). Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. The Journal of Biological Chemistry, 264, 7826–7830.PubMedGoogle Scholar
  45. 45.
    Cardoso, C. M., Almeida, L. M., & Custodio, J. B. (2004). Protection of tamoxifen of mitochondrial thiols and NAD(P)H underlying the permeability transition induced by prooxidants. Chemico-Biological Interactions, 148, 149–161.PubMedCrossRefGoogle Scholar
  46. 46.
    Bishop, G. M., Dringen, R., & Robinson, S. R. (2007). Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Radical Biology & Medicine, 42, 1222–1230.CrossRefGoogle Scholar
  47. 47.
    Zazueta, C., Reyes-Vivas, H., Zafra, G., Sánchez, C. A., Vera, G., & Chávez, E. (1998). Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase. The International Journal of Biochemistry and Cell Biology, 30, 517–527.CrossRefGoogle Scholar
  48. 48.
    Tanveer, A., Virji, S., Andreeva, L., Totty, N. F., Hsuan, J., & Ward, J. M., Crompton, M. (1996). Involvement of cyclophilin D in the activation of a mitochondrial pore by Ca2+ and oxidant stress. European Journal of Biochemistry, 238, 166–172.PubMedCrossRefGoogle Scholar
  49. 49.
    Novgorodov, S. A., Gudz, T. I., Jung, D. W., & Brierley, G. P. (1991). The nonspecific inner membrane pore of liver mitochondria. Modulation of cyclosporin sensitivity by ADP at carboxyatractyloside-sensitive and insensitive sites. Biochemical and Biophysical Research Communications, 180, 33–38.PubMedCrossRefGoogle Scholar
  50. 50.
    Zazueta, C., Reyes-Vivas, H., Corona, N., Bravo, C., & Chávez, E. (1994). On the role of ADP to increase the inhibitory effect of cyclosporin on mitochondrial permeability transition. Biochemistry and Molecular Biology International, 33, 385–392.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Noemí García
    • 1
  • Eduardo Martínez-Abundis
    • 1
  • Natalia Pavón
    • 1
  • Edmundo Chávez
    • 1
  1. 1.Departamento de BioquímicaInstituto Nacional de CardiologíaMexicoMexico

Personalised recommendations