Cell Biochemistry and Biophysics

, Volume 48, Issue 2–3, pp 97–102

Impact of bariatric surgery on type 2 diabetes

Original Paper

Abstract

The management and prevention of diabetes through lifestyle modifications and weight loss should be the mainstay of therapy in appropriate candidates. Although the results from the Diabetes Prevention Trial and the Finnish Prevention Study support this approach, over 95% of patients not participating in a prevention research study are unable to achieve and maintain any significant weight loss over time. Bariatric surgery for weight loss is an emerging option for more sustainable weight loss in the severely obese subject, especially when obesity is complicated by diabetes or other co-morbidities. The two most common types of procedures currently used in the United States are adjustable gastric bands and Roux-en-Y gastric bypass. These procedures can be performed laparoscopically, further reducing the perioperative morbidity and mortality associated with the surgery. While the gastric bypass procedure usually results is greater sustained weight loss (40–50%) than adjustable gastric banding (20–30%), it also carries greater morbidity and nutritional/metabolic issues, such as deficiencies in iron, B12, calcium, and vitamin D. Following bariatric surgery most subjects experience improvements in diabetes control, hypertension, dyslipidemia, and other obesity-related conditions. In patients with impaired glucose tolerance most studies report 99–100% prevention of progression to diabetes, while in subjects with diabetes prior to surgery, resolution of the disease is reported in 64–93% of the cases. While improvements in insulin resistance and beta-cell function are related to surgically induced weight loss, the rapid post-operative improvement in glycemia is possibly due to a combination of decreased nutrient intake and changes in gut hormones as a result of the bypassed intestine. Post-prandial hyperinsulinemic hypoglycemia associated with nesidioblastosis has been described in a series of patients following gastric bypass surgery, and may be related to the described changes in GLP-1 and other gut hormones.

Keywords

Weight loss Bariatric surgery Gastric bypass Gastric banding Diabetes Impaired glucose tolerance Glucagon-like Peptide 1 (GLP-1) 

References

  1. 1.
    Hedley, A. A., Ogden, C. I., Johnson, C. L., Carroll, M. D., Curtin, L. R., & Flegal, K. M. (2004). Prevalence of overweight and obesity among us children, adolescents, and adults, 1999–2002. JAMA, 291, 2847–2850.PubMedCrossRefGoogle Scholar
  2. 2.
    Leibson, C. L., Williamson, D. F., Melton, L. J., Palumbo, P. J., Smith, S. A., Ramson, J. E., Schilling, P. L., & Narayan, K. M. (2001). Temporal trends in BMI among adults with diabetes. Diabetes Care, 24, 1584–1589.PubMedCrossRefGoogle Scholar
  3. 3.
    Tuomilehto, J., Lindstrom, J., Eriksson, J. G., Valle, T. T., Hamalainen, H., Ilanne-Parikka, P., Keinanen-Kiukaaniemi, S., Laakso, M., Louheranta, A., Rastas, M., Salminen, V., & Uusitura, M. for the Finnish Diabetes Prevention Study Group (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med., 344, 1343–1350.Google Scholar
  4. 4.
    Eriksson, J., Lindstrom, J., & Tuomilehto, J (2001). Potential for the prevention of type 2 diabetes. British Medical Bulletin, 60, 183–199.PubMedCrossRefGoogle Scholar
  5. 5.
    Diabetes Prevention Program Research Group (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine, 346, 393–403.CrossRefGoogle Scholar
  6. 6.
    UK Prospective Diabetes Study Group (1998). Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes. Lancet, 352, 837–853.CrossRefGoogle Scholar
  7. 7.
    The Diabetes Prevention Program Research Group (2005). Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the Diabetes Prevention Program. Diabetes Care, 28, 888–894.CrossRefGoogle Scholar
  8. 8.
    Saaddine, J. B., Engelgau, M. M., Beckles, G. L., Gregg, E. W., Thompson, T. J., & Venkat Narayan, K. M. (2002). A diabetes report card for the United States: Quality of care in the 1990s. Annals of Internal Medicine, 136, 565–574.PubMedGoogle Scholar
  9. 9.
    Koro, C. E., Bowlin, S. J., Bourgeois, N., & Fedder, D. O. (2004). Glycemic control from 1988 to 2000 among U.S. adults diagnosed with type 2 diabetes Diabetes Care, 27, 17–20.PubMedCrossRefGoogle Scholar
  10. 10.
    Leibbrand, R., & Fichter, M. M. (2002). Maintenance of weight loss after obesity treatment: is continuous support necessary? Behaviour Research and Therapy, 40, 1275–1289.PubMedCrossRefGoogle Scholar
  11. 11.
    Zimmet, P., Shaw, J., & Alberti, K. G. (2003). Preventing type 2 diabetes and the dysmetabolic syndrome in the real world: a realistic view. Diabetic Medicine, 20, 693–702.PubMedCrossRefGoogle Scholar
  12. 12.
    NIH Conference (1991). Gastrointestinal surgery for severe obesity. Consensus development conference panel. Annals of Internal Medicine, 115, 956–961.Google Scholar
  13. 13.
    Wing, R. R., Marcus, M. D., Epstein, L. H., & Salata, R. (1987). Type II diabetic subjects lose less weight than their overweight nondiabetic spouses. Diabetes Care, 10, 563–566.PubMedCrossRefGoogle Scholar
  14. 14.
    Foster, G. D., Wadden, T. A., Vogt, R. A., & Brewer, G. (1997). What is a reasonable weight loss? Patient’s expectations and evaluations of obesity treatment outcomes. Journals of Consulting and Clinical Psychology, 65, 79–85.CrossRefGoogle Scholar
  15. 15.
    Steinbrook, R. (2004). Surgery for severe obesity. The New England Journal of Medicine, 350, 1075–1079.PubMedCrossRefGoogle Scholar
  16. 16.
    Santry, H. P., Gillen, D. L., & Lauderdale, D. S. (2005). Trends in bariatric surgical procedures. JAMA, 294, 1909–1917.PubMedCrossRefGoogle Scholar
  17. 17.
    Schneider, B. E., & Mun, E. C. (2005). Surgical management of morbid obesity. Diabetes Care, 28, 475–480.PubMedCrossRefGoogle Scholar
  18. 18.
    Flum, D. R., Salem, L., Broeckel Elrod, J. A., Dellinger, E. P., Cheadle, A., & Chan, L. (2005). Early mortality among Medicare beneficiaries undergoing bariatric surgical procedures. JAMA, 294, 1903–1908.PubMedCrossRefGoogle Scholar
  19. 19.
    Zingmond, D. S., McGory, M. L., & Ko, C. Y. (2005). Hospitalization before and after bypass surgery. JAMA, 294, 1918–1924.PubMedCrossRefGoogle Scholar
  20. 20.
    Christou, N. V., Sampalis, J. S., Liberman, M., Look, D., Auger, S., McLean, A. P. H., & MacLean, L. D. (2004). Surgery decreases long-term mortality, morbidity and health care use in morbidly obese patients. Annals of Surgery, 240, 416–424.PubMedCrossRefGoogle Scholar
  21. 21.
    Narbro, K., Agren, G., Jonsson, E., Naslund, I., Sjostrom, L., & Peltonen, M. (2002). Pharmaceutical costs in obese individuals: Comparison with a randomly selected population sample and long-term changes after conventional and surgical treatment––the SOS intervention study. Archives of Internal Medicine, 162, 2061–2069.PubMedCrossRefGoogle Scholar
  22. 22.
    Fujioka, K. (2005). Follow-up of nutritional and metabolic problems after bariatric surgery. Diabetes Care, 28, 481–484.PubMedCrossRefGoogle Scholar
  23. 23.
    Wapnick, S., & Joness, J. J. (1972). Changes in glucose tolerance and serum insulin following partial gastrectomy and intestinal resection. Gut, 13, 871–873.PubMedGoogle Scholar
  24. 24.
    Service, G. F., Thompson, G. B., Service, F. J., Andrews, J. C., Collazo-Clavell, M. L., & Lloyd, R. V. (2005). Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. The New England Journal of Medicine, 353, 249–254.PubMedCrossRefGoogle Scholar
  25. 25.
    Patti, M. E., McMahon, G., Mun, E. C., Bitton, A., Holst, J. J., Goldsmith, J., Hanto, D. W., Callery, M., Arky, R., Nose, V., Bonner-Weir, S., & Goldfine, A. B. (2005). Severe hypoglycemia post-gastric bypass requiring partial pancreatectomy: Evidence for inappropriate insulin secretion and pancreatic islet hyperplasia. Diabetologia, 48, 2236–2240.PubMedCrossRefGoogle Scholar
  26. 26.
    Miholic, J., Orskov, C., Holst, J. J., Kotzerke, J., & Meyer, H. J. (1991). Emptying of the gastric substitute, Glucagon-like Peptide-1 (GLP-1), and reactive hypoglycemia after total gastrectomy. Digestive Diseases and Sciences, 36, 1361–1370.PubMedCrossRefGoogle Scholar
  27. 27.
    Gebhard, B., Holst, J. J., Biegelmayer, C., & Miholic, J. (2001). Postprandial GLP-1, norepinephrine, and reactive hypoglycemia in dumping syndrome. Digestive Diseases and Sciences, 46, 1915–1923.PubMedCrossRefGoogle Scholar
  28. 28.
    Farilla, L., Bulotta, A., Hirshberg, B., Li Calzi, S., Khoury, N., Noushmehr, H., Bertolotto, C., Di Mario, U., Harlan, D. M., & Perfetti, R. (2003). Glucagon-like Peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology, 144, 5149–5158.PubMedCrossRefGoogle Scholar
  29. 29.
    Brubaker, P. L., & Drucker, D. J. (2004). Minireview: Glucagon-like polypeptides regulate cell proliferation and apoptosis in the pancreas, gut and central nervous system. Endocrinology, 145, 2653–2659.PubMedCrossRefGoogle Scholar
  30. 30.
    Pories, W. J., Swanson, M. S., MacDonald, K. G., Long, S. B., Morris, P. G., Brown, B. M., Barakat, H. A., deRamon, R. A., Israel, G., & Dolezal, J. M. (1995). Who would have thought it? An operation proves to be the most effective therapy for adult onset diabetes mellitus. Annals of Surgery, 222, 339–352.PubMedCrossRefGoogle Scholar
  31. 31.
    Long, S., O’Brien, K., MacDonald, K. G. Jr, Leggett-Frazier, N., Swanson, M. S., Pories, W. J., & Caro, J. F. (1994). Weight loss in severely obese subjects prevents progression of impaired glucose tolerance to type II diabetes. Diabetes Care, 17, 372–375.PubMedCrossRefGoogle Scholar
  32. 32.
    Dixon, J. B., & O’Brien, P. E. (2002). Health outcomes of severely obese type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care, 25, 358–363.PubMedCrossRefGoogle Scholar
  33. 33.
    Polyzogopoulou, E. V., Kalfarentzos, F., Vagenakis, A. G., & Alexandrides, T. K. (2003). Restoration of euglycemia and normal acute insulin response to glucose in obese subjects with type 2 diabetes following bariatric surgery. Diabetes, 52, 1098–1103.PubMedCrossRefGoogle Scholar
  34. 34.
    Hickey, M. S., Pories, W. J., MacDonald, K. G., Cory, K. A., Dohm, G. L., Swanson, M. S., Israel, R. G., Barakat, H. A., Considine, R. V., Caro, J. F., & Houmard, J. A. (1998). A new paradigm for type 2 diabetes mellitus: could it be a disease of the foregut? Annals of Surgery, 227, 637–644.PubMedCrossRefGoogle Scholar
  35. 35.
    Kellum, J. M., Kuemmerle, J. F., O’Dorisio, T. M., Rayford, P., Martin, D., Engle, K., Wolf, L., & Sugerman, H. J. (1990). GI hormone response to meals before and after gastric bypass and vertical banded gastroplasty. Annals of Surgery, 211, 763–771.PubMedCrossRefGoogle Scholar
  36. 36.
    Rubino, F., & Gagner, M. (2002). Potential of surgery for curing type 2 diabetes mellitus. Annals of Surgery, 236, 554–559.PubMedCrossRefGoogle Scholar
  37. 37.
    Faraj, M., Havel, P. J., Phelis, S., Blank, D., Sniderman, A. D., & Cianflone, K. (2003). Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. The Journal of Clinical Endocrinology and Metabolism, 88, 1594–1602.PubMedCrossRefGoogle Scholar
  38. 38.
    Sjostrom, L., Lindroos, A. K., Peltonen, M., Torgerson, J., Bouchard, C., Carlsson, B., Dahlgreen, S., Larsson, B., Narbro, K., Sjostrom, C. D., Sullivan, M., & Wedel, H. for the SOS Study Scientific Group (2004). Lifestyle, diabetes and cardiovascular risk factors 10 years after bariatric surgery. The New England Journal of Medicine, 351, 2683–2693.Google Scholar
  39. 39.
    Ferchak, C. V., & Meneghini, L. F. (2004). Obesity, bariatric surgery and type 2 diabetes: a systematic review. Diabetes Metabolism Research and Reviews, 20, 438–445.PubMedCrossRefGoogle Scholar
  40. 40.
    Cowan, G. S., & Buffington, C. K. (1998). Significant changes in blood pressure, glucose and lipids with gastric bypass surgery. World Journal of Surgery, 22, 987–992.PubMedCrossRefGoogle Scholar
  41. 41.
    DeMaria, E. J., Sugarman, H. J., Kellum, J. M., Meador, J. G., & Wolfe, L. G. (2002). Results of 281 consecutive total laparoscopic Roux-en-Y gastric bypasses to treat morbid obesity. Annals of Surgery, 235, 640–647.PubMedCrossRefGoogle Scholar
  42. 42.
    MacDonald, K. G. Jr., Long, S. D., Swanson, M. S., Brown, B. M., Morris, P., Dohm, G. L., & Pories, W. J. (1997). The gastric bypass operation reduces the progression and mortality of non-insulin dependent diabetes mellitus. Gastrointestinal Surgery, 1, 213–220.CrossRefGoogle Scholar
  43. 43.
    Buchwald, H., Avidor, Y., Braunwald, E., Jensen, M. D., Pories, W., Fahrbach, K., & Schoelles, K., (2004). Bariatric surgery: A systematic review and meta-analysis. JAMA, 292, 1724–1737.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Diabetes Research InstituteUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations