Cell Biochemistry and Biophysics

, Volume 47, Issue 2, pp 285–299

Mechanistic aspects of Parkinson’s disease: α-synuclein and the biomembrane

Original paper
  • 359 Downloads

Abstract

A key feature in Parkinson’s disease is the deposition of Lewy bodies. The major protein component of these intracellular deposits is the 140-amino acid protein α-synuclein that is widely distributed throughout the brain. α-synuclein was identified in presynaptic terminals and in synaptosomal preparations. The protein is remarkable for its structural variability. It is almost unstructured as a monomer in aqueous solution. Self-aggregation leads to a variety of β-structures, while membrane association may result in the formation of an amphipathic helical structure. The present article strives to give an overview of what is currently known on the interaction of α-synuclein with lipid membranes, including synthetic lipid bilayers, membraneous cell fractions, synaptic vesicles and intact cells. Manifestations of a functional relevance of the α-synuclein–lipid interaction will be discussed and the potential pathogenicity of oligomeric α-synuclein aggregates will be briefly reviewed.

Keywords

Parkinson’s disease Synuclein Membrane interaction Protein aggregation Protein misfolding Vesicles 

References

  1. 1.
    Shults, C. W. (2006). Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 103, 1661–1668.PubMedGoogle Scholar
  2. 2.
    Iwai, A., Masliah, E., Yoshimoto, M., Ge, N., Flanagan, L., Rohan de Silva, H. A., Kittel, A., & Saitoh, T. (1995). The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron, 14, 467–475.PubMedGoogle Scholar
  3. 3.
    Totterdell, S., & Meredith, G. E. (2005). Localization of alpha-synuclein to identified fibers and synapses in the normal mouse brain. Neuroscience, 135, 907–913.PubMedGoogle Scholar
  4. 4.
    Rockenstein, E., Hansen, L. A., Mallory, M., Trojanowski, J. Q., Galasko, D., & Masliah, E. (2001). Altered expression of the synuclein family mRNA in Lewy body and Alzheimer’s disease. Brain Research, 914, 48–56.PubMedGoogle Scholar
  5. 5.
    Chiba-Falek, O., Lopez, G. J., & Nussbaum, R. L. (2006). Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Movement Disorders, 21, 1703–1708.PubMedGoogle Scholar
  6. 6.
    Segrest, J. P., Jones, M. K., De Loof, H., Brouillette, C. G., Venkatachalapathi, Y. V., & Anantharamaiah, G. M. (1992). The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. Journal of Lipid Research, 33, 141–166.PubMedGoogle Scholar
  7. 7.
    Davidson, W. S., Jonas, A., Clayton, D. F., & George, J. M. (1998). Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. The Journal of Biological Chemistry, 273, 9443–9449.PubMedGoogle Scholar
  8. 8.
    Takeda, A., Hashimoto, M., Mallory, M., Sundsumo, M., Hansen, L., Sisk, A., & Masliah, E. (1998). Abnormal distribution of the non-Aβ component of Alzheimer’s disease amyloid precursor/α-synuclein in Lewy body disease as revealed by proteinase K and formic acid pretreatment. Laboratory Investigation, 78, 1169–1177.PubMedGoogle Scholar
  9. 9.
    Park, J. Y., & Lansbury, P. T. Jr. (2003). β-synuclein inhibits formation of α-synuclein protofibrils: A possible therapeutic strategy against Parkinson’s disease. Biochemistry, 42, 3696–3700.PubMedGoogle Scholar
  10. 10.
    Giese, A., Bader, B., Bieschke, J., Schaffar, G., Odoy, S., Kahle, P. J., Haass, C., & Kretzschmar, H. (2005). Single particle detection and characterization of synuclein co-aggregation. Biochemical and Biophysical Research Communications, 333, 1202–1210.PubMedGoogle Scholar
  11. 11.
    Maroteaux, L., Campanelli, J. T., & Scheller, R. H. (1988). Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. The Journal of Neuroscience, 8, 2804–2815.PubMedGoogle Scholar
  12. 12.
    Withers, G. S., George, J. M., Banker, G. A., & Clayton, D. F. (1997). Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Brain Research. Developmental Brain Research, 99, 87–94.PubMedGoogle Scholar
  13. 13.
    Irizarry, M. C., Kim, T.-W., McNamara, M., Tanzi, R. E., George, J. M., Clayton, D. F., & Hyman, B. T. (1996). Characterization of the precursor protein of the non-Aβ component of senile plaques (NACP) in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 55, 889–895.PubMedGoogle Scholar
  14. 14.
    Kahle, P. J., Neumann, M., Ozmen, L., Müller, V., Jacobsen, H., Schindzielorz, A., Okochi, M., Leimer, U., van der Putten, H., Probst, A., Kremmer, E., Kretzschmar, H. A., & Haass, C. (2000). Subcellular localization of wild-type and Parkinson’s disease-associated mutant α-synuclein in human and transgenic mouse brain. The Journal of Neuroscience, 20, 6365–6373.PubMedGoogle Scholar
  15. 15.
    Jensen, P. H., Nielsen, M. S., Jakes, R., Dotti, C. G., & Goedert, M. (1998). Binding of α-synuclein to brain vesicles is abolished by familial Parkinson’s disease mutation. The Journal of Biological Chemistry, 273, 26292–26294.PubMedGoogle Scholar
  16. 16.
    Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M.-Y. (2000). Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. The Journal of Neuroscience, 20, 3214–3220.PubMedGoogle Scholar
  17. 17.
    Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., Lu, B., & Nussbaum, R. L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. The Journal of Neuroscience, 22, 8797–8807.PubMedGoogle Scholar
  18. 18.
    Nuscher, B., Kamp, F., Mehnert, T., Odoy, S., Haass, C., Kahle, P. J., & Beyer, K. (2004). Alpha-synuclein has a high affinity for packing defects in a bilayer membrane: A thermodynamics study. The Journal of Biological Chemistry, 279, 21966–21975.PubMedGoogle Scholar
  19. 19.
    Lotharius, J., & Brundin, P. (2002). Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Human Molecular Genetics, 11, 2395–2407.PubMedGoogle Scholar
  20. 20.
    Abeliovich, A., Schmitz, Y., Fariñas, I., Choi-Lundberg, D., Ho, W.-H., Castillo, P. E., Shinsky, N., Garcia Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D., & Rosenthal, A. (2000). Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.PubMedGoogle Scholar
  21. 21.
    Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., Lu, B., & Nussbaum, R. L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. The Journal of Neuroscience, 22, 8797–8807.PubMedGoogle Scholar
  22. 22.
    Chandra, S., Fornai, F., Kwon, H. B., Yazdani, U., Atasoy, D., Liu, X., Hammer, R. E., Battaglia, G., German, D. C., Castillo, P. E., & Sudhof, T. C. (2004). Double-knockout mice for alpha- and beta-synucleins: Effect on synaptic functions. Proceedings of the National Academy of Sciences of the United States of America, 101, 14966–14971.PubMedGoogle Scholar
  23. 23.
    Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A., & Mucke, L. (2000). Dopaminergic loss and inclusion body formation in α-synuclein mice: Implications for neurodegenerative disorders. Science, 287, 1265–1269.PubMedGoogle Scholar
  24. 24.
    Springer, W., & Kahle, P. J. (2006). Mechanisms and models of alpha-synuclein-related neurodegeneration. Current Neurology and Neuroscience Reports, 6, 432–436.PubMedGoogle Scholar
  25. 25.
    Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.PubMedGoogle Scholar
  26. 26.
    Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., & Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.PubMedGoogle Scholar
  27. 27.
    Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Gomez Tortosa, E., del Ser, T., Munoz, D. G., & de Yebenes, J. G. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.PubMedGoogle Scholar
  28. 28.
    Conway, K. A., Lee, S.-J., Rochet, J.-C., Ding, T. T., Williamson, R. E., & Lansbury, P. T. Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both α-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 571–576.PubMedGoogle Scholar
  29. 29.
    Choi, W., Zibaee, S., Jakes, R., Serpell, L. C., Davletov, B., Crowther, R. A., & Goedert, M. (2004). Mutation E46K increases phospholipid binding and assembly into filaments of human alpha-synuclein. FEBS Letters, 576, 363–368.PubMedGoogle Scholar
  30. 30.
    Pandey, N., Schmidt, R. E., & Galvin, J. E. (2006). The alpha-synuclein mutation E46K promotes aggregation in cultured cells. Experimental Neurology, 197, 515–520.PubMedGoogle Scholar
  31. 31.
    Conway, K. A., Harper, J. D., & Lansbury, P. T. (1998). Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nature Medicine, 4, 1318–1320.PubMedGoogle Scholar
  32. 32.
    Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury, P. T. Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 571–576.PubMedGoogle Scholar
  33. 33.
    Narhi, L., Wood, S. J., Steavenson, S., Jiang, Y., Wu, G. M., Anafi, D., Kaufman, S. A., Martin, F., Sitney, K., Denis, P., Louis, J.-C., Wypych, J., Biere, A. L., & Citron, M. (1999). Both familial Parkinson’s disease mutations accelerate α-synuclein aggregation. The Journal of Biological Chemistry, 274, 9843–9846.PubMedGoogle Scholar
  34. 34.
    Nishioka, K., Hayashi, S., Farrer, M. J., Singleton, A. B., Yoshino, H., Imai, H., Kitami, T., Sato, K., Kuroda, R., Tomiyama, H., Mizoguchi, K., Murata, M., Toda, T., Imoto, I., Inazawa, J., Mizuno, Y., & Hattori, N. (2006). Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Annals of Neurology, 59, 298–309.PubMedGoogle Scholar
  35. 35.
    Farrer, M., Kachergus, J., Forno, L., Lincoln, S., Wang, D. S., Hulihan, M., Maraganore, D., Gwinn-Hardy, K., Wszolek, Z., Dickson, D., & Langston, J. W. (2004). Comparison of kindreds with Parkinsonism and alpha-synuclein genomic multiplications. Annals of Neurology, 55, 174–179.PubMedGoogle Scholar
  36. 36.
    Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., & Gwinn-Hardy, K. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.PubMedGoogle Scholar
  37. 37.
    Zhang, Y., Gao, J., Chung, K. K. K., Huang, H., Dawson, V. L., & Dawson, T. M. (2000). Parkin functions as an E2-dependent ubiquitin-protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proceedings of the National Academy of Sciences of the United States of America, 97, 13354–13359.PubMedGoogle Scholar
  38. 38.
    Shimura, H., Hattori, N., Kubo, S., Mizuno, Y., Asakawa, S., Minoshima, S., Shimizu, N., Iwai, K., Chiba, T., Tanaka, K., & Suzuki, T. (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nature Genetics, 25, 302–305.PubMedGoogle Scholar
  39. 39.
    Yamamoto, A., Friedlein, A., Imai, Y., Takahashi, R., Kahle, P. J., & Haass, C. (2005). Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. The Journal of Biological Chemistry, 280, 3390–3399.PubMedGoogle Scholar
  40. 40.
    Moore, D. J., West, A. B., Dawson, V. L., & Dawson, T. M. (2005). Molecular pathophysiology of Parkinson’s disease. Annual Review of Neuroscience, 28, 57–87.PubMedGoogle Scholar
  41. 41.
    Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joosse, M., van Dongen, J. W., Vanacore, N., van Swieten, J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A., & Heutink, P. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259.PubMedGoogle Scholar
  42. 42.
    Canet-Aviles, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., Baptista, M. J., Ringe, D., Petsko, G. A., & Cookson, M. R. (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101, 9103–9108.PubMedGoogle Scholar
  43. 43.
    Shendelman, S., Jonason, A., Martinat, C., Leete, T., & Abeliovich, A. (2004). DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biology, 2, e362.PubMedGoogle Scholar
  44. 44.
    Tan, J. M., & Dawson, T. M. (2006). Parkin blushed by PINK1. Neuron, 50, 527–529.PubMedGoogle Scholar
  45. 45.
    Mata, I. F., Wedemeyer, W. J., Farrer, M. J., Taylor, J. P., & Gallo, K. A. (2006). LRRK2 in Parkinson’s disease: Protein domains and functional insights. Trends in Neuroscience, 29, 286–293.Google Scholar
  46. 46.
    Langston, J. W., & Ballard, P. A. Jr. (1983). Parkinson’s disease in a chemist working with 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. The New England Journal of Medicine, 309, 310.PubMedGoogle Scholar
  47. 47.
    Thiruchelvam, M., Brockel, B. J., Richfield, E. K., Baggs, R. B., & Cory-Slechta, D. A. (2000). Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: Environmental risk factors for Parkinson’s disease? Brain Research, 873, 225–234.PubMedGoogle Scholar
  48. 48.
    Manning-Bog, A. B., McCormack, A. L., Li, J., Uversky, V. N., Fink, A. L., & Di Monte, D. A. (2002). The herbicide paraquat causes up-regulation and aggregation of alpha-synuclein in mice: Paraquat and alpha-synuclein. The Journal of Biological Chemistry, 277, 1641–1644.PubMedGoogle Scholar
  49. 49.
    Cookson, M. R. (2005). The biochemistry of Parkinson’s disease. Annual Review of Biochemistry, 74, 29–52.PubMedGoogle Scholar
  50. 50.
    Volles, M. J., & Lansbury, P. T. Jr. (2003). Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry, 42, 7871–7878.PubMedGoogle Scholar
  51. 51.
    Uversky, V. N. (2003). A protein-chameleon: Conformational plasticity of alpha-synuclein, a disordered protein involved in neurodegenerative disorders. Journal of Biomolecular Structure & Dynamics, 21, 211–234.Google Scholar
  52. 52.
    Eriksen, J. L., Dawson, T. M., Dickson, D. W., & Petrucelli, L. (2003). Caught in the act: α-synuclein is the culprit in Parkinson’s disease. Neuron, 40, 453–456.PubMedGoogle Scholar
  53. 53.
    Dev, K. K., Hofele, K., Barbieri, S., Buchman, V. L., & van der Putten, H. (2003). α-Synuclein and its molecular pathophysiological role in neurodegenerative disease. Neuropharmacology, 45, 14–44.PubMedGoogle Scholar
  54. 54.
    Lotharius, J., & Brundin, P. (2002). Pathogenesis of Parkinson’s disease: Dopamine, vesicles and alpha-synuclein. Nature Reviews. Neuroscience, 3, 932–942.PubMedGoogle Scholar
  55. 55.
    Kahle, P. J., Haass, C., Kretzschmar, H. A., & Neumann, M. (2002). Structure/function of α-synuclein in health and disease: Rational development of animal models for Parkinson’s and related diseases. Journal of Neurochemistry, 82, 449–457.PubMedGoogle Scholar
  56. 56.
    Paleologou, K. E., Irvine, G. B., & El-Agnaf, O. M. (2005). Alpha-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy. Biochemical Society Transactions, 33, 1106–1110.PubMedGoogle Scholar
  57. 57.
    Fink, A. L. (2006). The aggregation and fibrillation of alpha-synuclein. Accounts of Chemical Research, 39, 628–634.PubMedGoogle Scholar
  58. 58.
    Uversky, V. N., Li, J., Souillac, P., Millett, I. S., Doniach, S., Jakes, R., Goedert, M., & Fink, A. L. (2002). Biophysical properties of the synucleins and their propensities to fibrillate: Inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. The Journal of Biological Chemistry, 277, 11970–11978.PubMedGoogle Scholar
  59. 59.
    Uversky, V. N. (2002). What does it mean to be natively unfolded? European Journal of Biochemistry, 269, 2–12.PubMedGoogle Scholar
  60. 60.
    Chandra, S., Chen, X., Rizo, J., Jahn, R., & Südhof, T. C. (2003). A broken α-helix in folded α-synuclein. The Journal of Biological Chemistry, 278, 15313–15318.PubMedGoogle Scholar
  61. 61.
    Eliezer, D., Kutluay, E., Bussell, R. Jr., & Browne, G. (2001). Conformational properties of α-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061–1073.PubMedGoogle Scholar
  62. 62.
    Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. The Journal of Biological Chemistry, 280, 9595–9603.PubMedGoogle Scholar
  63. 63.
    Crowther, R. A., Daniel, S. E., & Goedert, M. (2000). Characterisation of isolated alpha-synuclein filaments from substantia nigra of Parkinson’s disease brain. Neuroscience Letters, 292, 128–130.PubMedGoogle Scholar
  64. 64.
    Serpell, L. C., Berriman, J., Jakes, R., Goedert, M., & Crowther, R. A. (2000). Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proceedings of the National Academy of Sciences of the United States of America, 97, 4897–4902.PubMedGoogle Scholar
  65. 65.
    Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., & Lansbury, P. T. Jr. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709–13715.PubMedGoogle Scholar
  66. 66.
    Jo, E., McLaurin, J., Yip, C. M., St. George-Hyslop, P., & Fraser, P. E. (2000). α-Synuclein membrane interactions and lipid specificity. The Journal of Biological Chemistry, 275, 34328–34334.PubMedGoogle Scholar
  67. 67.
    Conway, K. A., Harper, J. D., & Lansbury, P. T. Jr. (2000). Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry, 39, 2552–2563.PubMedGoogle Scholar
  68. 68.
    George, J. M., Jin, H., Woods, W. S., & Clayton, D. F. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron, 15, 361–372.PubMedGoogle Scholar
  69. 69.
    Perrin, R. J., Woods, W. S., Clayton, D. F., & George, J. M. (2000). Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids. Structural analysis using site-directed mutagenesis. The Journal of Biological Chemistry, 275, 34393–34398.PubMedGoogle Scholar
  70. 70.
    Outeiro, T. F., & Lindquist, S. (2003). Yeast cells provide insight into alpha-synuclein biology and pathobiology. Science, 302, 1772–1775.PubMedGoogle Scholar
  71. 71.
    Fortin, D. L., Troyer, M. D., Nakamura, K., Kubo, S., Anthony, M. D., & Edwards, R. H. (2004). Lipid rafts mediate the synaptic localization of alpha-synuclein. The Journal of Neuroscience, 24, 6715–6723.PubMedGoogle Scholar
  72. 72.
    Jo, E., Fuller, N., Rand, R. P., St George-Hyslop, P., & Fraser, P. E. (2002). Defective membrane interactions of familial Parkinson’s disease mutant A30P α-synuclein. Journal of Molecular Biology, 315, 799–807.PubMedGoogle Scholar
  73. 73.
    Ulmer, T. S., & Bax, A. (2005). Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. The Journal of Biological Chemistry, 280, 43179–43187.PubMedGoogle Scholar
  74. 74.
    Zhu, M., Li, J., & Fink, A. L. (2003). The association of {alpha}-synuclein with membranes affects bilayer structure, stability, and fibril formation. The Journal of Biological Chemistry, 278, 40186–40197.PubMedGoogle Scholar
  75. 75.
    Rhoades, E., Ramlall, T. F., Webb, W. W., & Eliezer, D. (2006). Quantification of alpha-synuclein binding to lipid vesicles using fluorescence correlation spectroscopy. Biophysical Journal, 90, 4692–4700.PubMedGoogle Scholar
  76. 76.
    Ramakrishnan, M., Jensen, P. H., & Marsh, D. (2003). Alpha-synuclein association with phosphatidylglycerol probed by lipid spin labels. Biochemistry, 42, 12919–12926.PubMedGoogle Scholar
  77. 77.
    Ramakrishnan, M., Jensen, P. H., & Marsh, D. (2006). Association of alpha-synuclein and mutants with lipid membranes: Spin-label ESR and polarized IR. Biochemistry, 45, 3386–3395.PubMedGoogle Scholar
  78. 78.
    Crowther, R. A., Jakes, R., Spillantini, M. G., & Goedert, M. (1998). Synthetic filaments assembled from C-terminally truncated α-synuclein. FEBS Letters, 436, 309–312.PubMedGoogle Scholar
  79. 79.
    Murray, I. V., Giasson, B. I., Quinn, S. M., Koppaka, V., Axelsen, P. H., Ischiropoulos, H., Trojanowski, J. Q., & Lee, V. M. (2003). Role of alpha-synuclein carboxy-terminus on fibril formation in vitro. Biochemistry, 42, 8530–8540.PubMedGoogle Scholar
  80. 80.
    Li, W., West, N., Colla, E., Pletnikova, O., Troncoso, J. C., Marsh, L., Dawson, T. M., Jakala, P., Hartmann, T., Price, D. L., & Lee, M. K. (2005). Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proceedings of the National Academy of Sciences of the United States of America, 102, 2162–2167.PubMedGoogle Scholar
  81. 81.
    Liu, C. W., Giasson, B. I., Lewis, K. A., Lee, V. M., Demartino, G. N., & Thomas, P. J. (2005). A precipitating role for truncated alpha-synuclein and the proteasome in alpha-synuclein aggregation: Implications for pathogenesis of Parkinson disease. The Journal of Biological Chemistry, 280, 22670–22678.PubMedGoogle Scholar
  82. 82.
    Campbell, B. C. V., McLean, C. A., Culvenor, J. G., Gai, W. P., Blumbergs, P. C., Jäkälä, P., Beyreuther, K., Masters, C. L., & Li, Q.-X. (2001). The solubility of α-synuclein in multiple system atrophy differs from that of dementia with Lewy bodies and Parkinson’s disease. Journal of Neurochemistry, 76, 87–96.PubMedGoogle Scholar
  83. 83.
    Baba, M., Nakajo, S., Tu, P. H., Tomita, T., Nakaya, K., Lee, V. M., Trojanowski, J. Q., & Iwatsubo, T. (1998). Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. American Journal of Pathology, 152, 879–884.PubMedGoogle Scholar
  84. 84.
    Madine, J., Doig, A. J., & Middleton, D. A. (2006). A study of the regional effects of alpha-synuclein on the organization and stability of phospholipid bilayers. Biochemistry, 45, 5783–5792.PubMedGoogle Scholar
  85. 85.
    Perrin, R. J., Woods, W. S., Clayton, D. F., & George, J. M. (2001). Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. The Journal of Biological Chemistry, 276, 41958–41962.PubMedGoogle Scholar
  86. 86.
    Giasson, B. I., Duda, J. E., Murray, I. V. J., Chen, Q., Souza, J. M., Hurtig, H. I., Ischiropoulos, H., Trojanowski, J. Q., & Lee, V. M.-Y. (2000). Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science, 290, 985–989.PubMedGoogle Scholar
  87. 87.
    Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M.-Y., & Ischiropoulos, H. (2000). Dityrosine cross-linking promotes formation of stable α-synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. The Journal of Biological Chemistry, 275, 18344–18349.PubMedGoogle Scholar
  88. 88.
    Necula, M., Chirita, C. N., & Kuret, J. (2003). Rapid anionic micelle-mediated alpha-synuclein fibrillization in vitro. The Journal of Biological Chemistry, 278, 46674–46680.PubMedGoogle Scholar
  89. 89.
    Narayanan, V., & Scarlata, S. (2001). Membrane binding and self-association of alpha-synucleins. Biochemistry, 40, 9927–9934.PubMedGoogle Scholar
  90. 90.
    Kamp, F., & Beyer, K. (2006). Binding of alpha-synuclein affects the lipid packing in bilayers of small vesicles. The Journal of Biological Chemistry, 281, 9251–9259.PubMedGoogle Scholar
  91. 91.
    den Jager, W. A. (1969). Sphingomyelin in Lewy inclusion bodies in Parkinson’s disease. Archives of Neurology, 21, 615–619.Google Scholar
  92. 92.
    Gai, W. P., Yuan, H. X., Li, X. Q., Power, J. T. H., Blumbergs, P. C., & Jensen, P. H. (2000). In situ and in vitro study of colocalization and segregation of α-synuclein, ubiquitin, and lipids in Lewy bodies. Experimental Neurology, 166, 324–333.PubMedGoogle Scholar
  93. 93.
    Eliezer, D., Kutluay, E., Bussell, R. Jr., & Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states. Journal of Molecular Biology, 307, 1061–1073.PubMedGoogle Scholar
  94. 94.
    Bussell R. Jr., & Eliezer, D. (2001). Residual structure and dynamics in Parkinson’s disease-associated mutants of α-synuclein. The Journal of Biological Chemistry, 276, 45996–46003.PubMedGoogle Scholar
  95. 95.
    Bussell, R. Jr., & Eliezer, D. (2003). A structural and functional role for 11-mer repeats in α-synuclein and other exchangeable lipid binding proteins. Journal of Molecular Biology, 329, 763–778.PubMedGoogle Scholar
  96. 96.
    Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M., & Zweckstetter, M. (2005). From the cover: Release of long-range tertiary interactions potentiates aggregation of natively unstructured {alpha}-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 102, 1430–1435.PubMedGoogle Scholar
  97. 97.
    Fernandez, C. O., Hoyer, W., Zweckstetter, M., Jares-Erijman, E. A., Subramaniam, V., Griesinger, C., & Jovin, T. M. (2004). NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO Journal, 23, 2039–2046.PubMedGoogle Scholar
  98. 98.
    Bisaglia, M., Tessari, I., Pinato, L., Bellanda, M., Giraudo, S., Fasano, M., Bergantino, E., Bubacco, L., & Mammi, S. (2005). A topological model of the interaction between alpha-synuclein and sodium dodecyl sulfate micelles. Biochemistry, 44, 329–339.PubMedGoogle Scholar
  99. 99.
    Bussell, R. Jr., Ramlall, T. F., & Eliezer, D. (2005). Helix periodicity, topology, and dynamics of membrane-associated alpha-synuclein. Protein Science, 14, 862–872.PubMedGoogle Scholar
  100. 100.
    Aniansson, E. A. G., Wall, S. N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J., & Tondre, C. (1976). Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants. The Journal of Physical Chemistry, 80, 905–922.Google Scholar
  101. 101.
    Der-Sarkissian, A., Jao, C. C., Chen, J., & Langen, R. (2003). Structural organization of α-synuclein fibrils studied by site-directed spin labeling. The Journal of Biological Chemistry, 278, 37530–37535.PubMedGoogle Scholar
  102. 102.
    Jao, C. C. (2004). Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. PNAS, 101, 8331–8336.PubMedGoogle Scholar
  103. 103.
    Bertoncini, C. W., Fernandez, C. O., Griesinger, C., Jovin, T. M., & Zweckstetter, M. (2005). Familial mutants of alpha-synuclein with increased neurotoxicity have a destabilized conformation. The Journal of Biological Chemistry, 280, 30649–30652.PubMedGoogle Scholar
  104. 104.
    Shibayama-Imazu, T., Okahashi, I., Omata, K., Nakajo, S., Ochiai, H., Nakai, Y., Hama, T., Nakamura, Y., & Nakaya, K. (1993). Cell and tissue distribution and developmental change of neuron specific 14 kDa protein (phosphoneuroprotein 14). Brain Research, 622, 17–25.PubMedGoogle Scholar
  105. 105.
    McLean, P. J., Kawamata, H., Ribich, S., & Hyman, B. T. (2000). Membrane association and protein conformation of α-synuclein in intact neurons. The Journal of Biological Chemistry, 275, 8812–8816.PubMedGoogle Scholar
  106. 106.
    Irizarry, M. C., Kim, T. W., McNamara, M., Tanzi, R. E., George, J. M., Clayton, D. F., & Hyman, B. T. (1996). Characterization of the precursor protein of the non-A beta component of senile plaques (NACP) in the human central nervous system. Journal of Neuropathology and Experimental Neurology, 55, 889–895.PubMedGoogle Scholar
  107. 107.
    Lee, H. J., Choi, C., & Lee, S. J. (2002). Membrane-bound alpha-synuclein has a high aggregation propensity and the ability to seed the aggregation of the cytosolic form. The Journal of Biological Chemistry, 277, 671–678.PubMedGoogle Scholar
  108. 108.
    Zhu, M., & Fink, A. L. (2003). Lipid binding inhibits alpha-synuclein fibril formation. The Journal of Biological Chemistry, 5, 5.Google Scholar
  109. 109.
    Cole, N. B., Murphy, D. D., Grider, T., Rueter, S., Brasaemle, D., & Nussbaum, R. L. (2002). Lipid droplet binding and oligomerization properties of the Parkinson’s disease protein alpha-synuclein. The Journal of Biological Chemistry, 277, 6344–6352.PubMedGoogle Scholar
  110. 110.
    Sharon, R., Goldberg, M. S., Bar-Josef, I., Betensky, R. A., Shen, J., & Selkoe, D. J. (2001). alpha-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 9110–9115.PubMedGoogle Scholar
  111. 111.
    Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003). The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37, 583–595.PubMedGoogle Scholar
  112. 112.
    Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N., & Selkoe, D. J. (2003). Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. The Journal of Biological Chemistry, 278, 49874–49881.PubMedGoogle Scholar
  113. 113.
    Lucke, C., Gantz, D. L., Klimtchuk, E., & Hamilton, J. A. (2006). Interactions between fatty acids and alpha-synuclein. Journal of Lipid Research, 47, 1714–1724.PubMedGoogle Scholar
  114. 114.
    Edidin, M. (2003). The state of lipid rafts: From model membranes to cells. Annual Review of Biophysics and Biomolecular Structure, 32, 257–283.PubMedGoogle Scholar
  115. 115.
    Heerklotz, H. (2002). Triton promotes domain formation in lipid raft mixtures. Biophysical Journal, 83, 2693–2701.PubMedCrossRefGoogle Scholar
  116. 116.
    Kubo, S., Nemani, V. M., Chalkley, R. J., Anthony, M. D., Hattori, N., Mizuno, Y., Edwards, R. H., & Fortin, D. L. (2005). A combinatorial code for the interaction of alpha-synuclein with membranes. The Journal of Biological Chemistry, 280, 31664–31672.PubMedGoogle Scholar
  117. 117.
    Kim, Y. S., Laurine, E., Woods, W., & Lee, S. J. (2006). A novel mechanism of interaction between alpha-synuclein and biological membranes. Journal of Molecular Biology, 360, 386–397.PubMedGoogle Scholar
  118. 118.
    Wislet-Gendebien, S., D’Souza, C., Kawarai, T., St George-Hyslop, P., Westaway, D., Fraser, P., & Tandon, A. (2006). Cytosolic proteins regulate alpha-synuclein dissociation from presynaptic membranes. The Journal of Biological Chemistry, 281, 32148–32155.PubMedGoogle Scholar
  119. 119.
    Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D., & Rosenthal, A. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.PubMedGoogle Scholar
  120. 120.
    Sayre, L. M., Smith, M. A., & Perry, G. (2001). Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Current Medicinal Chemistry, 8, 721–738.PubMedGoogle Scholar
  121. 121.
    Jenner, P. (2003). Oxidative stress in Parkinson’s disease. Annals of Neurology, 53(Suppl 3), S26–36; discussion S36–28.Google Scholar
  122. 122.
    Glaser, C. B., Yamin, G., Uversky, V. N., & Fink, A. L. (2005). Methionine oxidation, alpha-synuclein and Parkinson’s disease. Biochimica et Biophysica Acta, 1703, 157–169.PubMedGoogle Scholar
  123. 123.
    Zhu, M., Qin, Z. J., Hu, D., Munishkina, L. A., & Fink, A. L. (2006). alpha-Synuclein can function as an antioxidant preventing oxidation of unsaturated lipid in vesicles. Biochemistry, 45, 8135–8142.PubMedGoogle Scholar
  124. 124.
    Hsu, L. J., Sagara, Y., Arroyo, A., Rockenstein, E., Sisk, A., Mallory, M., Wong, J., Takenouchi, T., Hashimoto, M., & Masliah, E. (2000). α-Synuclein promotes mitochondrial deficit and oxidative stress. American Journal of Pathology, 157, 401–410.PubMedGoogle Scholar
  125. 125.
    Jenco, J. M., Rawlingson, A., Daniels, B., & Morris, A. J. (1998). Regulation of phospholipase D2: Selective inhibition of mammalian phospholipase D isoenzymes by α- and β-synucleins. Biochemistry, 37, 4901–4909.PubMedGoogle Scholar
  126. 126.
    Ahn, B. H., Rhim, H., Kim, S. Y., Sung, Y. M., Lee, M. Y., Choi, J. Y., Wolozin, B., Chang, J. S., Lee, Y. H., Kwon, T. K., Chung, K. C., Yoon, S. H., Hahn, S. J., Kim, M. S., Jo, Y. H., & Min do, S. (2002). alpha-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. The Journal of Biological Chemistry, 277, 12334–12342.PubMedGoogle Scholar
  127. 127.
    Payton, J. E., Perrin, R. J., Woods, W. S., & George, J. M. (2004). Structural determinants of PLD2 inhibition by alpha-synuclein. Journal of Molecular Biology, 337, 1001–1009.PubMedGoogle Scholar
  128. 128.
    Schmidt, A., Wolde, M., Thiele, C., Fest, W., Kratzin, H., Podtelejnikov, A. V., Witke, W., Huttner, W. B., & Soling, H. D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature, 401, 133–141.PubMedGoogle Scholar
  129. 129.
    Sidhu, A., Wersinger, C., & Vernier, P. (2004). alpha-Synuclein regulation of the dopaminergic transporter: A possible role in the pathogenesis of Parkinson’s disease. FEBS Letters, 565, 1–5.PubMedGoogle Scholar
  130. 130.
    Cubells, J. F., Rayport, S., Rajendran, G., & Sulzer, D. (1994). Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. The Journal of Neuroscience, 14, 2260–2271.PubMedGoogle Scholar
  131. 131.
    Lotharius, J., & O’Malley, K. L. (2001). Role of mitochondrial dysfunction and dopamine-dependent oxidative stress in amphetamine-induced toxicity. Annals of Neurology, 49, 79–89.PubMedGoogle Scholar
  132. 132.
    Ziv, I., Offen, D., Barzilai, A., Haviv, R., Stein, R., Zilkha-Falb, R., Shirvan, A., & Melamed, E. (1997). Modulation of control mechanisms of dopamine-induced apoptosis – a future approach to the treatment of Parkinson’s disease? Journal of Neural Transmission. Supplementum, 49, 195–202.PubMedGoogle Scholar
  133. 133.
    Narayanan, V., Guo, Y., & Scarlata, S. (2005). Fluorescence studies suggest a role for alpha-synuclein in the phosphatidylinositol lipid signaling pathway. Biochemistry, 44, 462–470.PubMedGoogle Scholar
  134. 134.
    Lansbury, P. T. Jr. (1999). Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease. Proceedings of the National Academy of Sciences of the United States of America, 96, 3342–3344.PubMedGoogle Scholar
  135. 135.
    Goldberg, M. S., & Lansbury, P. T. Jr. (2000). Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson’s disease?. Nature Cell Biology, 2, E115–E119.PubMedGoogle Scholar
  136. 136.
    Rochet, J. C., Outeiro, T. F., Conway, K. A., Ding, T. T., Volles, M. J., Lashuel, H. A., Bieganski, R. M., Lindquist, S. L., & Lansbury, P. T. (2004). Interactions among alpha-synuclein, dopamine, and biomembranes: Some clues for understanding neurodegeneration in Parkinson’s disease. Journal of Molecular Neuroscience, 23, 23–34.PubMedGoogle Scholar
  137. 137.
    Caughey, B., & Lansbury, P. T. Jr. (2003). Protofibrils, pores, fibrils, and neurodegeneration: Separating the responsible protein aggregates from the innocent bystanders. Annual Review of Neuroscience, 26, 267–298.PubMedGoogle Scholar
  138. 138.
    Rochet, J. C., Conway, K. A., & Lansbury, P. T. Jr. (2000). Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry, 39, 10619–10626.PubMedGoogle Scholar
  139. 139.
    Volles, M. J., Lee, S.-J., Rochet, J.-C., Shtilerman, M. D., Ding, T. T., Kessler, J. C., & Lansbury, P. T. Jr. (2001). Vesicle permeabilization by protofibrillar α-synuclein: Implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry, 40, 7812–7819.PubMedGoogle Scholar
  140. 140.
    Lashuel, H. A., Petre, B. M., Wall, J., Simon, M., Nowak, R. J., Walz, T., & Lansbury, P. T. Jr. (2002). Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. Journal of Molecular Biology, 322, 1089–1102.PubMedGoogle Scholar
  141. 141.
    Ding, T. T., Lee, S. J., Rochet, J. C., & Lansbury, P. T. Jr. (2002). Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry, 41, 10209–10217.PubMedGoogle Scholar
  142. 142.
    Lashuel, H. A., Hartley, D., Petre, B. M., Walz, T., & Lansbury, P. T. Jr. (2002). Neurodegenerative disease: Amyloid pores from pathogenic mutations. Nature, 418, 291.PubMedGoogle Scholar
  143. 143.
    Lashuel, H., & Grillo-Bosch, D. (2005). In vitro preparation of prefibrillar intermediates of Amyloid-β and α-Synuclein. In E. Sigurdsson (Ed.), Amyloid Proteins (Vol. 299, pp. 19–33). Totowa, NJ: Humana Press.Google Scholar
  144. 144.
    Volles, M. J., & Lansbury, P. T. Jr. (2002). Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry, 41, 4595–4602.PubMedGoogle Scholar
  145. 145.
    Lashuel, H. A., Hartley, D. M., Petre, B. M., Wall, J. S., Simon, M. N., Walz, T., & Lansbury, P. T. Jr. (2003). Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. Journal of Molecular Biology, 332, 795–808.PubMedGoogle Scholar
  146. 146.
    Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: Lessons from the Alzheimer’s amyloid beta-peptide. Nature Reviews. Molecular Cell Biology, 8, 101–112.PubMedGoogle Scholar
  147. 147.
    Conway, K. A., Rochet, J. C., Bieganski, R. M., & Lansbury, P. T. Jr. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science, 294, 1346–1349.PubMedGoogle Scholar
  148. 148.
    Norris, E. H., Giasson, B. I., Hodara, R., Xu, S., Trojanowski, J. Q., Ischiropoulos, H., & Lee, V. M. (2005). Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. The Journal of Biological Chemistry, 280, 21212–21219.PubMedGoogle Scholar
  149. 149.
    Xu, J., Kao, S. Y., Lee, F. J., Song, W., Jin, L. W., & Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of alpha-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nature Medicine, 8, 600–606.PubMedGoogle Scholar
  150. 150.
    Mazzulli, J. R., Mishizen, A. J., Giasson, B. I., Lynch, D. R., Thomas, S. A., Nakashima, A., Nagatsu, T., Ota, A., & Ischiropoulos, H. (2006). Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. The Journal of Neuroscience, 26, 10068–10078.PubMedGoogle Scholar
  151. 151.
    Kayed, R., Head, E., Thompson, J. L., McIntire, T. M., Milton, S. C., Cotman, C. W., & Glabe, C. G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 300, 486–489.PubMedGoogle Scholar
  152. 152.
    Glabe, C. G. (2006). Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiology of Aging, 27, 570–575.PubMedGoogle Scholar
  153. 153.
    Glabe, C. G., & Kayed, R. (2006). Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 66, S74–78.PubMedGoogle Scholar
  154. 154.
    Kayed, R., Sokolov, Y., Edmonds, B., McIntire, T. M., Milton, S. C., Hall, J. E., & Glabe, C. G. (2004). Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. The Journal of Biological Chemistry, 279, 46363–46366.PubMedGoogle Scholar
  155. 155.
    Quist, A., Doudevski, I., Lin, H., Azimova, R., Ng, D., Frangione, B., Kagan, B., Ghiso, J., & Lal, R. (2005). Amyloid ion channels: A common structural link for protein-misfolding disease. Proceedings of the National Academy of Sciences of the United States of America, 102, 10427–10432.PubMedGoogle Scholar
  156. 156.
    Kagan, B. L., Hirakura, Y., Azimov, R., Azimova, R., & Lin, M. C. (2002). The channel hypothesis of Alzheimer’s disease: Current status. Peptides, 23, 1311–1315.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Laboratory of Alzheimer’s and Parkinson’s Disease Research, Department of BiochemistryLudwig Maximilian UniversityMunichGermany

Personalised recommendations