Cell Biochemistry and Biophysics

, Volume 47, Issue 3, pp 321–331 | Cite as

Opinion: alternative views of AMP-activated protein kinase

Original Paper


Genes most closely related to adenosine monophosphate (AMP)-activated protein kinase, including SAD kinases and Par-1 regulate cell polarity, although AMP-activated protein kinase (AMPK) modulates cellular energy status. LKB1 (Par-4) is required for normal activation of AMPK in the liver and also regulates cell polarity. AMPK is proposed to inhibit energy consuming activity while initiating energy producing activity during energy limitation. Demonstration that metformin, a common drug for Type 2 diabetes, requires LKB1 for full therapeutic benefit has increased interest in AMPK signaling. Despite the potential importance of AMPK signaling for diabetes, metabolic syndrome and even cancer, the developmental processes regulated by AMPK in genetically mutant animals require further elucidation. Mouse conditional null mutants for AMPK activity will allow genetic elucidation of AMPK function in vivo. This perspective focuses on sequence and structural moieties of AMPK and genetic analysis of AMPK mutations. Interestingly, the predicted protein structure of the carboxy-terminus of AMPKα resembles the carboxy-terminal KA-1 domain of MARK3, a Par-1 orthologue.


AMPK AMP-activated protein kinase LKB1 Diabetes Polarity KA-1 domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by funding from the Whitehall Foundation and NIMH RO1-073155 to J. E. B.


  1. 1.
    Adams, J., Chen, Z. P., Van Denderen, B. J., Morton, C. J., Parker, M. W., Witters, L. A., Stapleton, D., & Kemp, B. E. (2004). Intrasteric control of ampk via the gammal subunit amp allosteric regulatory site. Protein Science, 13, 155–165.PubMedCrossRefGoogle Scholar
  2. 2.
    Andreelli, F., Foretz, M., Knauf, C., Cani, P. D., Perrin, C., Iglesias, M. A., Pillot, B., Bado, A., Tronche, F., Mithieux, G., Vaulont, S., Burcelin, R., & Viollet, B. (2006). Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin. Endocrinology, 147, 2432–2441.PubMedCrossRefGoogle Scholar
  3. 3.
    Apfeld, J., O’Connor, G., McDonagh, T., DiStefano, P. S., & Curtis, R. (2004). The amp-activated protein kinase aak-2 links energy levels and insulin-like signals to lifespan in c.␣Elegans. Genes & Development, 18, 3004–3009.CrossRefGoogle Scholar
  4. 4.
    Arad, M., Moskowitz, I. P., Patel, V. V., Ahmad, F., Perez-Atayde, A. R., Sawyer, D. B., Walter, M., Li, G. H., Burgon, P. G., Maguire, C. T., Stapleton, D., Schmitt, J. P., Guo, X.␣X., Pizard, A., Kupershmidt, S., Roden, D. M., Berul, C.␣I., Seidman, C. E., & Seidman, J. G. (2003). Transgenic mice overexpressing mutant prkag2 define the cause of wolff-parkinson-white syndrome in glycogen storage cardiomyopathy. Circulation, 107, 2850–2856.PubMedCrossRefGoogle Scholar
  5. 5.
    Baas, A. F., Kuipers, J., van der Wel, N. N., Batlle, E., Koerten, H. K., Peters, P. J., & Clevers, H. C. (2004). Complete polarization of single intestinal epithelial cells upon activation of 1kb1 by strad. Cell, 116, 457–466.PubMedCrossRefGoogle Scholar
  6. 6.
    Bateman, A. (1997). The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends in Biochemical Science, 22, 12–13.CrossRefGoogle Scholar
  7. 7.
    Bertram, P. G., Choi, J. H., Carvalho, J., Chan, T. F., Ai, W., & Zheng, X. F. (2002). Convergence of tor-nitrogen and snf1-glucose signaling pathways onto gln3. Molecular and Cellular Biology, 22, 1246–1252.PubMedCrossRefGoogle Scholar
  8. 8.
    Carling, D. (2005). Amp-activated protein kinase: Balancing the scales. Biochimie, 87, 87–91.PubMedCrossRefGoogle Scholar
  9. 9.
    Carling, D., Aguan, K., Woods, A., Verhoeven, A. J., Beri, R. K., Brennan, C. H., Sidebottom, C., Davison, M. D., & Scott, J. (1994). Mammalian amp-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. The Journal of Biological Chemistry, 269, 11442–11448.PubMedGoogle Scholar
  10. 10.
    Carling, D., Clarke, P. R., Zammit, V. A., & Hardie, D. G. (1989). Purification and characterization of the amp-activated protein kinase. Copurification of acetyl-coa carboxylase kinase and 3-hydroxy-3-methylglutaryl-coa reductase kinase activities. European Journal of Biochemistry, 186, 129–136.PubMedCrossRefGoogle Scholar
  11. 11.
    Carling, D., Zammit, V. A., & Hardie, D. G. (1987). A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Letters, 223, 217–222.PubMedCrossRefGoogle Scholar
  12. 12.
    Carlson, M., Osmond, B. C., & Botstein, D. (1981). Mutants of yeast defective in sucrose utilization. Genetics, 98, 25–40.PubMedGoogle Scholar
  13. 13.
    Celenza, J. L., & Carlson, M. (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science, 233, 1175–1180.PubMedCrossRefGoogle Scholar
  14. 14.
    Celenza, J. L., & Carlson, M. (1989). Mutational analysis of the saccharomyces cerevisiae snf1 protein kinase and evidence for functional interaction with the snf4 protein. Molecular and Cellular Biology, 9, 5034–5044.PubMedGoogle Scholar
  15. 15.
    Celenza, J. L., Eng, F. J., & Carlson, M. (1989). Molecular analysis of the snf4 gene of saccharomyces cerevisiae: Evidence for physical association of the snf4 protein with the␣snf1 protein kinase. Molecular and Cellular Biology, 9, 5045–5054.PubMedGoogle Scholar
  16. 16.
    Cheung, P. C., Salt, I. P., Davies, S. P., Hardie, D. G., & Carling, D. (2000). Characterization of amp-activated protein kinase gamma-subunit isoforms and their role in amp binding. The Biochemical Journal, 346(Pt 3), 659–669.PubMedCrossRefGoogle Scholar
  17. 17.
    Cool, B., Zinker, B., Chiou, W., Kifle, L., Cao, N., Perham, M., Dickinson, R., Adler, A., Gagne, G., Iyengar, R., Zhao, G., Marsh, K., Kym, P., Jung, P., Camp, H. S., & Frevert, E. (2006). Identification and characterization of a small molecule ampk activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metabolism, 3, 403–416.PubMedCrossRefGoogle Scholar
  18. 18.
    Corton, J. M., Gillespie, J. G., Hawley, S. A., & Hardie, D.␣G. (1995). 5-aminoimidazole-4-carboxamide ribonucleoside. A␣specific method for activating amp-activated protein kinase␣in intact cells? European Journal of Biochemistry, 229, 558–565.PubMedCrossRefGoogle Scholar
  19. 19.
    Curtis, R., O’Connor, G., & DiStefano, P. S. (2006). Aging networks in caenorhabditis elegans: Amp-activated protein kinase (aak-2) links multiple aging and metabolism pathways. Aging Cell, 5, 119–126.PubMedCrossRefGoogle Scholar
  20. 20.
    Davies, S. P., Carling, D., & Hardie, D. G. (1989). Tissue distribution of the amp-activated protein kinase, and lack of activation by cyclic-amp-dependent protein kinase, studied using a specific and sensitive peptide assay. European Journal of Biochemistry, 186, 123–128.PubMedCrossRefGoogle Scholar
  21. 21.
    Davies, S. P., Hawley, S. A., Woods, A., Carling, D., Haystead, T. A., & Hardie, D. G. (1994). Purification of the amp-activated protein kinase on atp-gamma-sepharose and analysis of its subunit structure. European Journal of Biochemistry, 223, 351–357.PubMedCrossRefGoogle Scholar
  22. 22.
    Dunn, W. A. Jr. (1990). Studies on the mechanisms of autophagy: Formation of the autophagic vacuole. The Journal of Cell Biology, 110, 1923–1933.PubMedCrossRefGoogle Scholar
  23. 23.
    Dunn, W. A. Jr. (1990). Studies on the mechanisms of autophagy: Maturation of the autophagic vacuole. The Journal of Cell Biology, 110, 1935–1945.PubMedCrossRefGoogle Scholar
  24. 24.
    El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., & Leverve, X. (2000). Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex i. The Journal of Biological Chemistry, 275, 223–228.PubMedCrossRefGoogle Scholar
  25. 25.
    Fahimi, H. D., Reinicke, A., Sujatta, M., Yokota, S., Ozel, M., Hartig, F., & Stegmeier, K. (1982). The short and long-term effects of bezafibrate in the rat. Annals of the New York Academy of Sciences, 386, 111–135.PubMedCrossRefGoogle Scholar
  26. 26.
    Fryer, L. G., Parbu-Patel, A., & Carling, D. (2002). The anti-diabetic drugs rosiglitazone and metformin stimulate amp-activated protein kinase through distinct signaling pathways. The Journal of Biological Chemistry, 277, 25226–25232.PubMedCrossRefGoogle Scholar
  27. 27.
    Gao, G., Fernandez, C. S., Stapleton, D., Auster, A. S., Widmer, J., Dyck, J. R., Kemp, B. E., & Witters, L. A. (1996). Non-catalytic beta- and gamma-subunit isoforms of the 5′-amp-activated protein kinase. The Journal of Biological Chemistry, 271, 8675–8681.PubMedCrossRefGoogle Scholar
  28. 28.
    Gollob, M. H., Green, M. S., Tang, A. S., Gollob, T., Karibe, A., Ali Hassan, A. S., Ahmad, F., Lozado, R., Shah, G., Fananapazir, L., Bachinski, L. L., & Roberts, R. (2001). Identification of a gene responsible for familial wolff-parkinson-white syndrome. The New England Journal of Medicine, 344, 1823–1831.PubMedCrossRefGoogle Scholar
  29. 29.
    Guigas, B., Bertrand, L., Taleux, N., Foretz, M., Wiernsperger, N., Vertommen, D., Andreelli, F., Viollet, B., & Hue, L. (2006). 5-aminoimidazole-4-carboxamide-1-{beta}-d-ribofuranoside and metformin inhibit hepatic glucose phosphorylation by an amp-activated protein kinase-independent effect on glucokinase translocation. Diabetes, 55, 865–874.PubMedCrossRefGoogle Scholar
  30. 30.
    Guo, S., & Kemphues, K. J. (1995). Par-1, a gene required for establishing polarity in c. Elegans embryos, encodes a putative ser/thr kinase that is asymmetrically distributed. Cell, 81, 611–620.PubMedCrossRefGoogle Scholar
  31. 31.
    Hardie, D. G., Hawley, S. A., & Scott, J. W. (2006). Amp-activated protein kinase–development of the energy sensor concept. The Journal of Physiology, 574, 7–15.PubMedCrossRefGoogle Scholar
  32. 32.
    Hartmann-Petersen, R., Semple, C. A., Ponting, C. P., Hendil, K. B., & Gordon, C. (2003). Uba domain containing proteins in fission yeast. The International Journal of Biochemistry & Cell Biology, 35, 629–636.CrossRefGoogle Scholar
  33. 33.
    Hawley, S. A., Boudeau, J., Reid, J. L., Mustard, K. J., Udd, L., Makela, T. P., Alessi, D. R., & Hardie, D. G. (2003). Complexes between the 1kb1 tumor suppressor, strad alpha/beta and mo25 alpha/beta are upstream kinases in the amp-activated protein kinase cascade. Journal of Biology, 2, 28.PubMedCrossRefGoogle Scholar
  34. 34.
    Hawley, S. A., Pan, D. A., Mustard, K. J., Ross, L., Bain, J., Edelman, A. M., Frenguelli, B. G., & Hardie, D. G. (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for amp-activated protein kinase. Cell Metabolism, 2, 9–19.PubMedCrossRefGoogle Scholar
  35. 35.
    Hoepfner, D., Schildknegt, D., Braakman, I., Philippsen, P., & Tabak, H. F. (2005). Contribution of the endoplasmic reticulum to peroxisome formation. Cell, 122, 85–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Hong, S. P., Leiper, F. C., Woods, A., Carling, D., & Carlson, M. (2003). Activation of yeast snf1 and mammalian amp-activated protein kinase by upstream kinases. Proceedings of the National Academy of Sciences of the United States of America, 100, 8839–8843.PubMedCrossRefGoogle Scholar
  37. 37.
    Honigberg, S. M., & Lee, R. H. (1998). Snf1 kinase connects nutritional pathways controlling meiosis in saccharomyces cerevisiae. Molecular and Cellular Biology, 18, 4548–4555.PubMedGoogle Scholar
  38. 38.
    Hudson, E. R., Pan, D. A., James, J., Lucocq, J. M., Hawley, S. A., Green, K. A., Baba, O., Terashima, T., & Hardie, D.␣G. (2003). A novel domain in amp-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Current Biology, 13, 861–866.PubMedCrossRefGoogle Scholar
  39. 39.
    Hurley, R. L., Anderson, K. A., Franzone, J. M., Kemp, B.␣E., Means, A. R., & Witters, L. A. (2005). The ca2+/calmodulin-dependent protein kinase kinases are amp-activated protein kinase kinases. The Journal of Biological Chemistry, 280, 29060–29066.PubMedCrossRefGoogle Scholar
  40. 40.
    Ignoul, S., & Eggermont, J. (2005). Cbs domains: Structure, function, and pathology in human proteins. American Journal of Physiology. Cell Physiology, 289, C1369–C1378.PubMedCrossRefGoogle Scholar
  41. 41.
    Inoki, K., Ouyang, H., Zhu, T., Lindvall, C., Wang, Y., Zhang, X., Yang, Q., Bennett, C., Harada, Y., Stankunas, K., Wang, C. Y., He, X., MacDougald, O. A., You, M., Williams, B. O., & Guan, K. L. (2006). Tsc2 integrates wnt and energy signals via a coordinated phosphorylation by ampk and gsk3 to regulate cell growth. Cell, 126, 955–968.PubMedCrossRefGoogle Scholar
  42. 42.
    Inoki, K., Zhu, T., & Guan, K. L. (2003). Tsc2 mediates cellular energy response to control cell growth and survival. Cell, 115, 577–590.PubMedCrossRefGoogle Scholar
  43. 43.
    Iseli, T. J., Walter, M., van Denderen, B. J., Katsis, F., Witters, L. A., Kemp, B. E., Michell, B. J., & Stapleton, D. (2005). Amp-activated protein kinase beta subunit tethers alpha and␣gamma subunits via its c-terminal sequence (186–270). The Journal of Biological Chemistry, 280, 13395–13400.PubMedCrossRefGoogle Scholar
  44. 44.
    Jaleel, M., Villa, F., Deak, M., Toth, R., Prescott, A. R., Van Aalten, D. M., & Alessi, D. R. (2006). The ubiquitin-associated domain of ampk-related kinases regulates conformation and lkb1-mediated phosphorylation and activation. The Biochemical Journal, 394, 545–555.PubMedCrossRefGoogle Scholar
  45. 45.
    Jishage, K., Nezu, J., Kawase, Y., Iwata, T., Watanabe, M., Miyoshi, A., Ose, A., Habu, K., Kake, T., Kamada, N., Ueda, O., Kinoshita, M., Jenne, D. E., Shimane, M., & Suzuki, H. (2002). Role of 1kb1, the causative gene of peutz-jegher's syndrome, in embryogenesis and polyposis. Proceedings of the National Academy of Sciences of the United States of America, 99, 8903–8908.PubMedGoogle Scholar
  46. 46.
    Jorgensen, S. B., Viollet, B., Andreelli, F., Frosig, C., Birk, J.␣B., Schjerling, P., Vaulont, S., Richter, E. A., & Wojtaszewski, J. F. (2004). Knockout of the alpha2 but not alpha1 5′-amp-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside but not contraction-induced glucose uptake in skeletal muscle. The Journal of Biological Chemistry, 279, 1070–1079.PubMedCrossRefGoogle Scholar
  47. 47.
    Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). Amp-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.PubMedCrossRefGoogle Scholar
  48. 48.
    Kishi, M., Pan, Y. A., Crump, J. G., & Sanes, J. R. (2005). Mammalian sad kinases are required for neuronal polarization. Science, 307, 929–932.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuchin, S., Vyas, V. K., & Carlson, M. (2002). Snf1 protein kinase and the repressors nrg1 and nrg2 regulate flo11, haploid invasive growth, and diploid pseudohyphal differentiation. Molecular and Cellular Biology, 22, 3994–4000.PubMedCrossRefGoogle Scholar
  50. 50.
    Kunau, W. H., Dommes, V., & Schulz, H. (1995). Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progesss. Progress in Lipid Research, 34, 267–342.PubMedCrossRefGoogle Scholar
  51. 51.
    Kwanyuen, P., Witherspoon, S. M., Creech, D. R., Colton, H. M., Falls, J. G., & Cariello, N. F. (2006). Flow cytometric assessment of peroxisome proliferation from frozen liver of fibrate-treated monkeys. International Journal of Toxicology, 25, 41–47.PubMedCrossRefGoogle Scholar
  52. 52.
    Lum, J. J., DeBerardinis, R. J., & Thompson, C. B. (2005). Autophagy in metazoans: Cell survival in the land of plenty. Nature Reviews. Molecular Cell Biology, 6, 439–448.PubMedCrossRefGoogle Scholar
  53. 53.
    Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912–1934.PubMedCrossRefGoogle Scholar
  54. 54.
    Michell, B. J., Stapleton, D., Mitchelhill, K. I., House, C. M., Katsis, F., Witters, L. A., & Kemp, B. E. (1996). Isoform-specific purification and substrate specificity of the 5′-amp-activated protein kinase. The Journal of Biological Chemistry, 271, 28445–284450.PubMedCrossRefGoogle Scholar
  55. 55.
    Milan, D., Jeon, J. T., Looft, C., Amarger, V., Robic, A., Thelander, M., Rogel-Gaillard, C., Paul, S., Iannuccelli, N., Rask, L., Ronne, H., Lundstrom, K., Reinsch, N., Gellin, J., Kalm, E., Roy, P. L., Chardon, P., & Andersson, L. (2000). A mutation in prkag3 associated with excess glycogen content in pig skeletal muscle. Science, 288, 1248–1251.PubMedCrossRefGoogle Scholar
  56. 56.
    Minokoshi, Y., Alquier, T., Furukawa, N., Kim, Y. B., Lee, A., Xue, B., Mu, J., Foufelle, F., Ferre, P., Birnbaum, M. J., Stuck, B. J., & Kahn, B. B. (2004). Amp-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428, 569–574.PubMedCrossRefGoogle Scholar
  57. 57.
    Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., Carling, D., & Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating amp-activated protein kinase. Nature, 415, 339–343.PubMedCrossRefGoogle Scholar
  58. 58.
    Mitchelhill, K. I., Stapleton, D., Gao, G., House, C., Michell, B., Katsis, F., Witters, L. A., & Kemp, B. E. (1994). Mammalian amp-activated protein kinase shares structural and functional homology with the catalytic domain of yeast snf1 protein kinase. The Journal of Biological Chemistry, 269, 2361–2364.PubMedGoogle Scholar
  59. 59.
    Nayak, V., Zhao, K., Wyce, A., Schwartz, M. F., Lo, W. S., Berger, S. L., & Marmorstein, R. (2006). Structure and dimerization of the kinase domain from yeast snf1, a member of the snf1/ampk protein family. Structure, 14, 477–485.PubMedCrossRefGoogle Scholar
  60. 60.
    Neigeborn, L., & Carlson, M. (1984). Genes affecting the regulation of suc2 gene expression by glucose repression in saccharomyces cerevisiae. Genetics, 108, 845–858.PubMedGoogle Scholar
  61. 61.
    Owen, M. R., Doran, E., & Halestrap, A. P. (2000). Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. The Biochemical Journal, 348(Pt 3), 607–614.PubMedCrossRefGoogle Scholar
  62. 62.
    Pan, D. A., & Hardie, D. G. (2002). A homologue of amp-activated protein kinase in drosophila melanogaster is␣sensitive to amp and is activated by atp depletion. The Biochemical Journal, 367, 179–186.PubMedCrossRefGoogle Scholar
  63. 63.
    Polekhina, G., Gupta, A., van Denderen, B. J., Feil, S. C., Kemp, B. E., Stapleton, D., & Parker, M. W. (2005). Ampk beta subunit targets metabolic stress sensing to glycogen. Structure, 13, 1453–1462.PubMedCrossRefGoogle Scholar
  64. 64.
    Polekhina, G., Gupta, A., Michell, B. J., van Denderen, B., Murthy, S., Feil, S. C., Jennings, I. G., Campbell, D. J., Witters, L. A., Parker, M. W., Kemp, B. E., & Stapleton, D. (2003). Structural basis for glycogen recognition by amp-activated protein kinase. Current Biology, 13, 867–871.PubMedCrossRefGoogle Scholar
  65. 65.
    Polypeptide modeling: residues 269–552 of human PRKAA2 (AMPKα2). were submitted to the Structure Prediction Meta Server (www.bioinfo.pl/meta/). This server utilizes five structure prediction servers: Sam-T02 (http://www.cse.ucsc.edu/research/compbio/HMM-apps/T02-query.html), Inub (http://fischerlab.bioinformatics.buffalo.edu/inub/), Fugue2 (http://www.cryst.bioc.cam.ac.uk/∼fugue/prfsearch.html), 3D-PSSM (http://www.sbg.bio.ic.ac.uk/∼3dpssm/), GenTHREADER (http://bioinf.cs.ucl.ac.uk/psipred/), and 3-D Jury to identify structural templates for homology modeling. Two structures were identified as templates for a C-terminal region of PRKAA2 (K398-R552), both corresponding to the C-terminal KA-1 domain from mouse MARK3 (PDB ID 1v5s and 1ul7). Models of the PRKAA2 C-terminal domain were built, guided by the alignments returned from the fold-recognition servers, using the modeler module of the InsightII molecular modeling system from Accelrys Inc. (www.accelrys.com). The homology model was evaluated for sequence-structure compatibility using the Verify-3D function of the Profiles-3D module from InsightII. The ideal helix was built using the Biopolymer module of InsightII. Alignment and neighbor-joining phylogenetic tree calculations were performed on the protein sequences using the ClustalX (Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882) and Njplot programs (The neighbor-joining method: a new method for reconstructing phylogenetic trees. Saitou N, Nei M. Mol Biol Evol. 1987 Jul; 4(4): 406–425).Google Scholar
  66. 66.
    Rider, M. H. (2006). The ubiquitin-associated domain of ampk-related protein kinase allows lkbl-induced phosphorylation and activation. The Biochemical Journal, 394, e7–e9.PubMedCrossRefGoogle Scholar
  67. 67.
    van Roermund, C. W., Waterham, H. R., Ijlst, L., & Wanders, R. J. (2003). Fatty acid metabolism in saccharomyces cerevisiae. Cellular and Molecular Life Sciences, 60, 1838–1851.PubMedCrossRefGoogle Scholar
  68. 68.
    Rudolph, M. J., Amodeo, G. A., Bai, Y., & Tong, L. (2005). Crystal structure of the protein kinase domain of yeast amp-activated protein kniase snf1. Biochemical and Biophysical Research Communications, 337, 1224–1228.PubMedCrossRefGoogle Scholar
  69. 69.
    Santangelo, G. M. (2006). Glucose signaling in saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 253–282.PubMedCrossRefGoogle Scholar
  70. 70.
    Shaw, R. J., Lamia, K. A., Vasquez, D., Koo, S. H., Bardeesy, N., Depinho, R. A., Montminy, M., & Cantley, L. C. (2005). The kinase lkb1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science, 310, 1642–1646.PubMedCrossRefGoogle Scholar
  71. 71.
    Sidhu, J. S., Rajawat, Y. S., Rami, T. G., Gollob, M. H., Wang,␣Z., Yuan, R., Marian, A. J., DeMayo, F. J., Weilbacher, D., Taffet, G. E., Davies, J. K., Carling, D., Khoury, D. S., & Roberts, R. (2005). Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an amp-activated protein kinase loss-of-function mutation responsible for wolff-parkinson-white syndrome. Circulation, 111, 21–29.PubMedCrossRefGoogle Scholar
  72. 72.
    Simon, M., Binder, M., Adam, G., Hartig, A., & Ruis, H. (1992). Control of peroxisome proliferation in saccharomyces cerevisiae by adr1, snf1 (cat1, ccr1) and snf1 (cat3). Yeast, 8, 303–309.PubMedCrossRefGoogle Scholar
  73. 73.
    Stapleton, D., Gao, G., Michell, B. J., Widmer, J., Mitchelhill, K., Teh, T., House, C. M., Witters, L. A., & Kemp, B. E. (1994). Mammalian 5′-amp-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast snf1 protein kinase. The Journal of Biological Chemistry, 269, 29343–29346.PubMedGoogle Scholar
  74. 74.
    Van der Leij, I., Van den Berg, M., Boot, R., Franse, M., Distel, B., & Tabak, H. F. (1992). Isolation of peroxisome assembly mutants from saccharomyces cerevisiae with different morphologies using a novel positive selection procedure. The Journal of Cell Biology, 119, 153–162.PubMedCrossRefGoogle Scholar
  75. 75.
    Veenhuis, M., Mateblowski, M., Kunau, W. H., & Harder, W. (1987). Proliferation of microbodies in saccharomyces cerevisiae. Yeast, 3, 77–84.PubMedCrossRefGoogle Scholar
  76. 76.
    Villena, J. A., Viollet, B., Andreelli, F., Kahn, A., Vaulont, S., & Sul, H. S. (2004). Induced adiposity and adipocyte hypertrophy in mice lacking the amp-activated protein kinase-alpha2 subunit. Diabetes, 53, 2242–2249.PubMedCrossRefGoogle Scholar
  77. 77.
    Viollet, B., Andreelli, F., Jorgensen, S. B., Perrin, C., Flamez, D., Mu, J., Wojtaszewski, J. F., Schuit, F. C., Birnbaum, M., Richter, E., Burcelin, R., & Vaulont, S. (2003). Physiological role of amp-activated protein kinase (ampk): Insights from knockout mouse models. Biochemical Society Transactions, 31, 216–219.PubMedCrossRefGoogle Scholar
  78. 78.
    Viollet, B., Andreelli, F., Jorgensen, S. B., Perrin, C., Geloen, A., Flamez, D., Mu, J., Lenzner, C., Baud, O., Bennoun, M., Gomas, E., Nicolas, G., Wojtaszewski, J. F., Kahn, A., Carling, D., Schuit, F. C., Birnbaum, M. J., Richter, E. A., Burcelin, R., & Vaulont, S. (2003). The amp-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity. The Journal of Clinical Investigation, 111, 91–98.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang, Z., Wilson, W. A., Fujino, M. A., & Roach, P. J. (2001). Antagonistic controls of autophagy and glycogen accumulation by snf1p, the yeast homolog of amp-activated protein kinase, and the cyclin-dependent kinase pho85p. Molecular and Cellular Biology, 21, 5742–5752.PubMedCrossRefGoogle Scholar
  80. 80.
    Wilson, W. A., Hawley, S. A., & Hardie, D. G. (1996). Glucose repression/derepression in budding yeast: Snf1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high amp:Atp ratio. Current Biology, 6, 1426–1434.PubMedCrossRefGoogle Scholar
  81. 81.
    Wong, K. A., & Lodish, H. F. (2006). A revised model for ampk structure: The alpha -subunit binds to both the beta - and gamma -subunits but there is no direct binding between beta - and gamma -subunits. The Journal of Biological Chemistry.Google Scholar
  82. 82.
    Woods, A., Dickerson, K., Heath, R., Hong, S. P., Momcilovic, M., Johnstone, S. R., Carlson, M., & Carling, D. (2005). C(ca2+)/calmodulin-dependent protein kinase kinase-beta acts upstream of amp-activated protein kinase in mammalian cells. Cell Metabolism, 2, 21–33.PubMedCrossRefGoogle Scholar
  83. 83.
    Woods, A., Johnstone, S. R., Dickerson, K., Leiper, F. C., Fryer, L. G., Neumann, D., Schlattner, U., Wallimann, T., Carlson, M., & Carling, D. (2003). Lkb1 is the upstream kinase in the amp-activated protein kinase cascade. Current Biology, 13, 2004–2008.PubMedCrossRefGoogle Scholar
  84. 84.
    Ylikorkala, A., Rossi, D. J., Korsisaari, N., Luukko, K., Alitalo, K., Henkemeyer, M., & Makela, T. P. (2001). Vascular abnormalities and deregulation of vegf in lkb1-deficient mice. Science, 293, 1323–1326.PubMedCrossRefGoogle Scholar
  85. 85.
    Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J., & Moller, D. E. (2001). Role of amp-activated protein kinase in mechanism of metformin action. The Journal of Clinical Investigation, 108, 1167–1174.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Cell and Developmental Biology and Neuroscience CenterUniversity of North Carolina at Chapel Hill School of MedicineChapel HillUSA
  2. 2.The Juliano Structural Bioinformatics Core FacilityUniversity of North Carolina at Chapel Hill School of MedicineChapel HillUSA

Personalised recommendations