Cell Biochemistry and Biophysics

, Volume 47, Issue 2, pp 300–320 | Cite as

The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function

  • Shelly R. Peyton
  • Cyrus M. Ghajar
  • Chirag B. Khatiwala
  • Andrew J. Putnam
Review Paper


The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular “mechanotransduction” mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.


Extracellular matrix Mechanotransduction Cytoskeleton RhoA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors gratefully acknowledge financial support from the National Institutes of Health (NIDCR: DE-016117) and the American Heart Association (Western States Affiliate: 0465111Y) to A.J.P. and fellowships from the Achievement Rewards for College Scientists (ARCS) Foundation to S.R.P. and C.M.G.


  1. 1.
    Adams, J. C., & Watt, F. M. (1993). Regulation of development and differentiation by the extracellular matrix. Development, 117(4), 1183–1198.PubMedGoogle Scholar
  2. 2.
    Aikawa, M., Kim, H. S., Kuro-o, M., Manabe, I., Watanabe, M., Yamaguchi, H., Yazaki, Y., & Nagai, R. (1995). Phenotypic modulation of smooth muscle cells during progression of human atherosclerosis as determined by altered expression of myosin heavy chain isoforms. Annals of the New York Academy of Sciences, 748, 578–585.PubMedGoogle Scholar
  3. 3.
    Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Zhu, W., Kadowaki, T., & Yazaki, Y. (1999). Rho family small G proteins play critical roles in mechanical stress-induced hypertrophic responses in cardiac myocytes. Circulation Research, 84(4), 458–466.PubMedGoogle Scholar
  4. 4.
    Aikawa, M., Sakomura, Y., Ueda, M., Kimura, K., Manabe, I., Ishiwata, S., Komiyama, N., Yamaguchi, H., Yazaki, Y., & Nagai, R. (1997). Redifferentiation of smooth muscle cells after coronary angioplasty determined via myosin heavy chain expression. Circulation, 96(1), 82–90.PubMedGoogle Scholar
  5. 5.
    Alenghat, F. J., & Ingber, D. E. (2002). Mechanotransduction: All signals point to cytoskeleton, matrix, and integrins. Science STKE, 2002(119), PE6.Google Scholar
  6. 6.
    Almany, L., & Seliktar, D. (2005). Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials, 26(15), 2467–2477.PubMedGoogle Scholar
  7. 7.
    Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y., & Kaibuchi, K. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science, 275(5304), 1308–1311.PubMedGoogle Scholar
  8. 8.
    Aoki, H., Izumo, S., & Sadoshima, J. (1998). Angiotensin II activates RhoA in cardiac myocytes: A critical role of RhoA in angiotensin II-induced premyofibril formation. Circulation Research, 82(6), 666–676.PubMedGoogle Scholar
  9. 9.
    Arthur, W. T., & Burridge, K. (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Molecular Biology of the Cell, 12(9), 2711–2720.PubMedGoogle Scholar
  10. 10.
    Arthur, W. T., Petch, L. A., & Burridge, K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Current Biology, 10(12), 719–722.PubMedGoogle Scholar
  11. 11.
    Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G., Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L., & Geiger, B. (2001). Force and focal adhesion assembly: A close relationship studied using elastic micropatterned substrates. Nature Cell Biology, 3(5), 466–472.PubMedGoogle Scholar
  12. 12.
    Banes, A. J., Tsuzaki, M., Yamamoto, J., Fischer, T., Brigman, B., Brown, T., & Miller, L. (1995). Mechanoreception at the cellular level: The detection, interpretation, and diversity of responses to mechanical signals. Biochemistry and Cell Biology, 73(7–8), 349–365.PubMedGoogle Scholar
  13. 13.
    Barry, S. T., Flinn, H. M., Humphries, M. J., Critchley, D. R., & Ridley, A. J. (1997). Requirement for Rho in integrin signalling. Cell Adhesion and Communication, 4(6), 387–398.PubMedGoogle Scholar
  14. 14.
    Beningo, K. A., Dembo, M., Kaverina, I., Small, J. V., & Wang, Y. L. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. Journal of Cell Biology, 153(4), 881–888.PubMedGoogle Scholar
  15. 15.
    Bernard, M. P., Myers, J. C., Chu, M. L., Ramirez, F., Eikenberry, E. F., & Prockop, D. J. (1983). Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I). identifies structurally conserved features of the protein and the gene. Biochemistry, 22(5), 1139–1145.PubMedGoogle Scholar
  16. 16.
    Bershadsky, A. D., Balaban, N. Q., & Geiger, B. (2003). Adhesion-dependent cell mechanosensitivity. Annual Review of Cell and Developmental Biology, 19, 677–695.PubMedGoogle Scholar
  17. 17.
    Bischofs, I. B., & Schwarz, U. S. (2003). Cell organization in soft media due to active mechanosensing. Proceedings of the National Academy of Sciences, 100(16), 9274–9279.Google Scholar
  18. 18.
    Brangwynne, C. P., Mackintosh, F. C., Kumar, S., Geisse, N. A., Talbot, J., Mahadevan, L., Parker, K. K., Ingber, D. E., & Weitz, D. A. (2006). Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. Journal of Cell Biology, 173(5), 733–741.PubMedGoogle Scholar
  19. 19.
    Brown, E., McKee, T., diTomaso, E., Pluen, A., Seed, B., Boucher, Y., & Jain, R. K. (2003). Dynamic imaging of collagen and its modulation in tumors in␣vivo using second-harmonic generation. Nature Medicine, 9(6), 796–800.PubMedGoogle Scholar
  20. 20.
    Brown, X. Q., Ookawa, K., & Wong, J. Y. (2005). Evaluation of polydimethylsiloxane scaffolds with physiologically-relevant elastic moduli: Interplay of substrate mechanics and surface chemistry effects on vascular smooth muscle cell response. Biomaterials, 26(16), 3123–3129.PubMedGoogle Scholar
  21. 21.
    Bryant, S. J., & Anseth, K. S. (2002). Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. Journal of Biomedical Material Research, 59(1), 63–72.Google Scholar
  22. 22.
    Bryant, S. J., & Anseth, K. S. (2003). Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. Journal of Biomedical Material Research A, 64(1), 70–79.Google Scholar
  23. 23.
    Bryant, S. J., Bender, R. J., Durand, K. L., & Anseth, K. S. (2004). Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: Engineering gel structural changes to facilitate cartilaginous tissue production. Biotechnology and Bioengineering, 86(7), 747–755.PubMedGoogle Scholar
  24. 24.
    Burdick, J. A., & Anseth, K. S. (2002). Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 23(22), 4315–4323.PubMedGoogle Scholar
  25. 25.
    Burdick, J. A., Khademhosseini, A., & Langer, R. (2004). Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir, 20(13), 5153–5156.PubMedGoogle Scholar
  26. 26.
    Carmeliet, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9(6), 653–660.PubMedGoogle Scholar
  27. 27.
    Chen, J., Fabry, B., Schiffrin, E. L., & Wang, N. (2001). Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology Cell Physiology, 280(6), C1475–C1484.PubMedGoogle Scholar
  28. 28.
    Chen, K. D., Li, Y. S., Kim, M., Li, S., Yuan, S., Chien, S., & Shyy, J. Y. (1999). Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc. Journal of Biological Chemistry, 274(26), 18393–18400.PubMedGoogle Scholar
  29. 29.
    Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., & Ingber, D. E. (1997). Geometric control of cell life and death. Science, 276(5317), 1425–1428.PubMedGoogle Scholar
  30. 30.
    Chicurel, M. E., Chen, C. S., & Ingber, D. E. (1998). Cellular control lies in the balance of forces. Current Opinion in Cell Biology, 10(2), 232–239.PubMedGoogle Scholar
  31. 31.
    Chiquet, M. (1999). Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biology, 18(5), 417–426.PubMedGoogle Scholar
  32. 32.
    Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., & Chiquet-Ehrismann, R. (1996). Regulation of extracellular matrix synthesis by mechanical stress. Biochemistry and Cell Biology, 74(6), 737–744.PubMedGoogle Scholar
  33. 33.
    Chiquet, M., Renedo, A. S., Huber, F., & Fluck, M. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biology, 22(1), 73–80.PubMedGoogle Scholar
  34. 34.
    Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M., & Schwartz, M. A. (1994). The small GTP-binding protein Rho regulates a phosphatidylinositol 4- phosphate 5-kinase in mammalian cells. Cell, 79(3), 507–513.PubMedGoogle Scholar
  35. 35.
    Choquet, D., Felsenfeld, D. P., & Sheetz, M. P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell, 88(1), 39–48.PubMedGoogle Scholar
  36. 36.
    Chrzanowska-Wodnicka, M., Burridge, K. (1996). Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. Journal of Cell Biology, 133(6), 1403–1415.PubMedGoogle Scholar
  37. 37.
    Clark, E. A., King, W. G., Brugge, J. S., Symons, M., & Hynes, R. O. (1998). Integrin-mediated signals regulated by members of the rho family of GTPases. Journal of Cell Biology, 142(2), 573–586.PubMedGoogle Scholar
  38. 38.
    Cook, T. A., Nagasaki, T., & Gundersen, G. G. (1998). Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. Journal of Cell Biology, 141(1), 175–185.PubMedGoogle Scholar
  39. 39.
    Cotran, R. S., Kumar, V., & Collins, T. (1999) Robbins pathologic basis of disease (6th ed.). Philadelphia: W.B. Saunders, p. 1425.Google Scholar
  40. 40.
    Cukierman, E., Pankov, R., Stevens, D. R., & Yamada, K. M. (2001). Taking cell-matrix adhesions to the third dimension. Science, 294(5547), 1708–1712.PubMedGoogle Scholar
  41. 41.
    Danowski, B. A. (1989). Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of Cell Science, 93(Pt 2), 255–266.PubMedGoogle Scholar
  42. 42.
    Darling, E. M., & Athanasiou, K. A. (2003). Articular cartilage bioreactors and bioprocesses. Tissue Engineering, 9(1), 9–26.PubMedGoogle Scholar
  43. 43.
    Davis, G. E., Bayless, K. J., & Mavila, A. (2002). Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anatomical Record, 268(3), 252–275.PubMedGoogle Scholar
  44. 44.
    Dedhar, S., Ruoslahti, E., & Pierschbacher, M. D. (1987). A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. Journal of Cell Biology, 104(3), 585–593.PubMedGoogle Scholar
  45. 45.
    Deroanne, C. F., Lapiere, C. M., & Nusgens, B. V. (2001). In vitro tubulogenesis of endothelial cells by relaxation of the coupling extracellular matrix-cytoskeleton. Cardiovascular Research, 49(3), 647–658.PubMedGoogle Scholar
  46. 46.
    Dikovsky, D., Bianco-Peled, H., & Seliktar, D. (2006). The effect of structural alterations of PEG-fibrinogen hydrogel scaffolds on 3-D cellular morphology and cellular migration. Biomaterials, 27(8), 1496–1506.PubMedGoogle Scholar
  47. 47.
    DiMilla, P. A., Stone, J. A., Quinn, J. A., Albelda, S. M., & Lauffenburger, D. A. (1993). Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. Journal of Cell Biology, 122(3), 729–737.PubMedGoogle Scholar
  48. 48.
    Discher, D. E., Janmey, P., & Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science, 310(5751), 1139–1143.PubMedGoogle Scholar
  49. 49.
    Duncan, R. L. (1995). Transduction of mechanical strain in bone. ASGSB Bulletin, 8(2), 49–62.PubMedGoogle Scholar
  50. 50.
    Dvorak, H. F., Senger, D. R., & Dvorak, A. M. (1983). Fibrin as a component of the tumor stroma: Origins and biological significance. Cancer Metastasis Reviews, 2(1), 41–73.PubMedGoogle Scholar
  51. 51.
    Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–174.PubMedGoogle Scholar
  52. 52.
    Elisseeff, J., Anseth, K., Sims, D., McIntosh, W., Randolph, M., & Langer, R. (1999). Transdermal photopolymerization for minimally invasive implantation. Proceedings of the National Academy of Sciences of the United States of America, 96(6), 3104–3107.PubMedGoogle Scholar
  53. 53.
    Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M., & Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophysical Journal, 86(1 Pt 1), 617–628.PubMedGoogle Scholar
  54. 54.
    Engler, A. J., Griffin, M. A., Sen, S., Bonnemann, C. G., Sweeney, H. L., & Discher, D. E. (2004). Myotubes differentiate optimally on substrates with tissue-like stiffness: Pathological implications for soft or stiff microenvironments. Journal of Cell Biology, 166(6), 877–887.PubMedGoogle Scholar
  55. 55.
    Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.PubMedGoogle Scholar
  56. 56.
    Enomoto, T. (1996). Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: Possible involvement of the rho signal cascade. Cell Structure and Function, 21(5), 317–326.PubMedCrossRefGoogle Scholar
  57. 57.
    Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedGoogle Scholar
  58. 58.
    Felsenfeld, D. P., Schwartzberg, P. L., Venegas, A., Tse, R., & Sheetz, M. P. (1999). Selective regulation of integrin–cytoskeleton interactions by the tyrosine kinase Src. Nature Cell Biology, 1(4), 200–206.PubMedGoogle Scholar
  59. 59.
    Folkman, J., & Moscona, A. (1978). Role of cell shape in growth control. Nature, 273(5661), 345–349.PubMedGoogle Scholar
  60. 60.
    Freyman, T. M., Yannas, I. V., Yokoo, R., & Gibson, L. J. (2002). Fibroblast contractile force is independent of the stiffness which resists the contraction. Experimental Cell Research, 272(2), 153–162.PubMedGoogle Scholar
  61. 61.
    Fringer, J., & Grinnell, F. (2001). Fibroblast quiescence in floating or released collagen matrices: Contribution of the ERK signaling pathway and actin cytoskeletal organization. Journal of Biological Chemistry, 276(33), 31047–31052.PubMedGoogle Scholar
  62. 62.
    Fritz, G., Just, I., & Kaina, B. (1999). Rho GTPases are over-expressed in human tumors. International Journal of Cancer, 81(5), 682–687.Google Scholar
  63. 63.
    Fuller, B. (1961). Tensegrity. Portfolio Artnews Annual, 4, 112–127.Google Scholar
  64. 64.
    Fung, Y. C. (1993). Biomechanics: Mechanical properties of living tissues (2nd ed.). New York: Springer-Verlag, p 568.Google Scholar
  65. 65.
    Galbraith, C. G., & Sheetz, M. P. (1998). Forces on adhesive contacts affect cell function. Current Opinion in Cell Biology, 10(5), 566–571.PubMedGoogle Scholar
  66. 66.
    Galbraith, C. G., Yamada, K. M., & Sheetz, M. P. (2002). The relationship between force and focal complex development. Journal of Cell Biology, 159(4), 695–705.PubMedGoogle Scholar
  67. 67.
    Genes, N. G., Rowley, J. A., Mooney, D. J., & Bonassar, L. J. (2004). Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Archives of Biochemistry and Biophysics, 422(2), 161–167.PubMedGoogle Scholar
  68. 68.
    Georges, P. C., & Janmey, P. A. (2005). Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 98(4), 1547–1553.PubMedGoogle Scholar
  69. 69.
    Ghajar, C. M., Blevins, K. S., Hughes, C. C. W., George, S. C., & Putnam, A. J. (2006). Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early MMP upregulation. Tissue Engineering, 12(10), 2875–2888.Google Scholar
  70. 70.
    Giancotti, F. G., & Ruoslahti, E. (1999). Integrin signaling. Science, 285(5430), 1028–1032.PubMedGoogle Scholar
  71. 71.
    Gobin, A. S., & West, J. L. (2002). Cell migration through defined, synthetic ECM analogs. FASEB Journal, 16(7), 751–753.PubMedGoogle Scholar
  72. 72.
    Goldmann, W. H. (2002). Mechanical aspects of cell shape regulation and signaling. Cell Biology International, 26(4), 313–317.PubMedGoogle Scholar
  73. 73.
    Gray, D. S., Tien, J., & Chen, C. S. (2003). Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. Journal of Biomedical Materials Research A, 66(3), 605–614.Google Scholar
  74. 74.
    Grinnell, F. (2000). Fibroblast-collagen-matrix contraction: Growth-factor signalling and mechanical loading. Trends in Cell Biology, 10(9), 362–365.PubMedGoogle Scholar
  75. 75.
    Grinnell, F. (2003). Fibroblast biology in three-dimensional collagen matrices. Trends in Cell Biology, 13(5), 264–269.PubMedGoogle Scholar
  76. 76.
    Gunn, J. W., Turner, S. D., & Mann, B. K. (2005). Adhesive and mechanical properties of hydrogels influence neurite extension. Journal of Biomedical Materials Research A, 72(1), 91–97.Google Scholar
  77. 77.
    Guo, W. H., Frey, M. T., Burnham, N. A., & Wang, Y. L. (2006). Substrate rigidity regulates the formation and maintenance of tissues. Biophysical Journal, 90(6), 2213–2220.PubMedGoogle Scholar
  78. 78.
    Hall, A. (1998). Rho GTPases and the actin cytoskeleton. Science, 279(5350), 509–514.PubMedGoogle Scholar
  79. 79.
    Halliday, N. L., & Tomasek, J. J. (1995). Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in␣vitro. Experimental Cell Research, 217(1), 109–117.PubMedGoogle Scholar
  80. 80.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.PubMedGoogle Scholar
  81. 81.
    Harris, A. K., Wild, P., & Stopak, D. (1980). Silicone rubber substrata: A new wrinkle in the study of cell locomotion. Science, 208(4440), 177–179.PubMedGoogle Scholar
  82. 82.
    Hern, D. L., & Hubbell, J. A. (1998). Incorporation of adhesion peptides into nonadhesive hydrogels useful for tissue resurfacing. Journal of Biomedical Material Research, 39(2), 266–276.Google Scholar
  83. 83.
    Hu, S., Chen, J., Butler, J. P., & Wang, N. (2005). Prestress mediates force propagation into the nucleus. Biochemical and Biophysical Research Communication, 329(2), 423–428.Google Scholar
  84. 84.
    Hu, S., & Wang, N. (2006). Control of stress propagation in the cytoplasm by prestress and loading frequency. Molecular and Cellular Biomechanics, 3(2), 49–60.PubMedGoogle Scholar
  85. 85.
    Huang, S., & Ingber, D. E. (1999). The structural and mechanical complexity of cell-growth control. Nature Cell Biology, 1(5), E131–E138.PubMedGoogle Scholar
  86. 86.
    Hynes, R. O. (2002). Integrins: Bidirectional, allosteric signaling machines. Cell, 110(6), 673–687.PubMedGoogle Scholar
  87. 87.
    Ingber, D. E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.PubMedGoogle Scholar
  88. 88.
    Ingber, D. E. (2002). Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circulation Research, 91(10), 877–887.PubMedGoogle Scholar
  89. 89.
    Ingber, D. E. (2003). Tensegrity II. How structural networks influence cellular information processing networks. Journal of Cell Science, 116(Pt 8), 1397–1408.PubMedGoogle Scholar
  90. 90.
    Ingber, D. E. (2003). Tensegrity I. Cell structure and hierarchical systems biology. Journal of Cell Science, 116(Pt 7), 1157–1173.PubMedGoogle Scholar
  91. 91.
    Ingber, D. E. (2006). Cellular mechanotransduction: Putting all the pieces together again. FASEB Journal, 20(7), 811–827.PubMedGoogle Scholar
  92. 92.
    Ingber, D. E., & Folkman, J. (1989). Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in␣vitro: role of extracellular matrix. Journal of Cell Biology, 109(1), 317–330.PubMedGoogle Scholar
  93. 93.
    Ingber, D. E., Madri, J. A., & Jamieson, J. D. (1985). Neoplastic disorganization of pancreatic epithelial cell-cell relations. Role of basement membrane. American Journal of Pathology, 121(2), 248–260.PubMedGoogle Scholar
  94. 94.
    Isenberg, B. C., & Tranquillo, R. T. (2003). Long-term cyclic distention enhances the mechanical properties of collagen-based media-equivalents. Annals of Biomedical Engineering, 31(8), 937–949.PubMedGoogle Scholar
  95. 95.
    Jain, R. K. (2003). Molecular regulation of vessel maturation. Nature Medicine, 9(6), 685–693.PubMedGoogle Scholar
  96. 96.
    Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401.PubMedGoogle Scholar
  97. 97.
    Katsumi, A., Milanini, J., Kiosses, W. B., del Pozo, M. A., Kaunas, R., Chien, S., Hahn, K. M., & Schwartz, M. A. (2002). Effects of cell tension on the small GTPase Rac. Journal of Cell Biology, 158(1), 153–164.PubMedGoogle Scholar
  98. 98.
    Keeley, F. W., & Bartoszewicz, L. A. (1995). Elastin in systemic and pulmonary hypertension. Ciba Foundation Symposium, 192, 259–273; discussion 273–278.Google Scholar
  99. 99.
    Khademhosseini, A., Langer, R., Borenstein, J., & Vacanti, J. P. (2006). Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America, 103(8), 2480–2487.PubMedGoogle Scholar
  100. 100.
    Khatiwala, C. B., Peyton, S. R., & Putnam, A. J. (2006). Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. American Journal of Physiology Cell Physiology, 290(6), C1640–C1650.PubMedGoogle Scholar
  101. 101.
    Kim, B. S., Nikolovski, J., Bonadio, J., & Mooney, D. J. (1999). Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nature Biotechnology, 17(10), 979–983.PubMedGoogle Scholar
  102. 102.
    Kim, B. S., Nikolovski, J., Bonadio, J., Smiley, E., & Mooney, D. J. (1999). Engineered smooth muscle tissues: Regulating cell phenotype with the scaffold. Experimental Cell Research, 251(2), 318–328.PubMedGoogle Scholar
  103. 103.
    Kim, J. K., Xu, Y., Xu, X., Keene, D. R., Gurusiddappa, S., Liang, X., Wary, K. K., & Hook, M. (2005). A novel binding site in collagen type III for integrins alpha1beta1 and alpha2beta1. Journal of Biological Chemistry, 280(37), 32512–32520.PubMedGoogle Scholar
  104. 104.
    Kim, Y. B., Yu, J., Lee, S. Y., Lee, M. S., Ko, S. G., Ye, S. K., Jong, H. S., Kim, T. Y., Bang, Y. J., & Lee, J. W. (2005). Cell adhesion status-dependent histone acetylation is regulated through intracellular contractility-related signaling activities. Journal of Biological Chemistry, 280(31), 28357–28364.PubMedGoogle Scholar
  105. 105.
    Kleinman, H. K., & Martin, G. R. (2005). Matrigel: Basement membrane matrix with biological activity. Seminars in Cancer Biology, 15(5), 378–386.PubMedGoogle Scholar
  106. 106.
    Knight, C. G., Morton, L. F., Onley, D. J., Peachey, A. R., Messent, A. J., Smethurst, P. A., Tuckwell, D. S., Farndale, R. W., & Barnes, M. J. (1998). Identification in collagen type I of an integrin alpha2 beta1-binding site containing an essential GER sequence. Journal of Biological Chemistry, 273(50), 33287–33294.PubMedGoogle Scholar
  107. 107.
    Knight, C. G., Morton, L. F., Peachey, A. R., Tuckwell, D. S., Farndale, R. W., & Barnes, M. J. (2000). The collagen-binding A-domains of integrins alpha(1)beta(1) and alpha(2)beta(1) recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. Journal of Biological Chemistry, 275(1), 35–40.PubMedGoogle Scholar
  108. 108.
    Kolodney, M. S., & Elson, E. L. (1995). Contraction due␣to␣microtubule disruption is associated with increased phosphorylation of myosin regulatory light chain. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10252–10256.PubMedGoogle Scholar
  109. 109.
    Kong, H. J., Wong, E., & Mooney, D. J. (2003). Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules, 36(12), 4582–4588.Google Scholar
  110. 110.
    Korff, T., & Augustin, H. G. (1999). Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. Journal of Cell Science, 112(Pt 19), 3249–3258.PubMedGoogle Scholar
  111. 111.
    Kumar, S., Maxwell, I. Z., Heisterkamp, A., Polte, T. R., Lele, T. P., Salanga, M., Mazur, E., & Ingber, D. E. (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal, 90(10), 3762–3773.PubMedGoogle Scholar
  112. 112.
    Langer, R., & Vacanti, J. P. (1993). Tissue engineering. Science, 260(5110), 920–926.PubMedGoogle Scholar
  113. 113.
    Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. Chemical Reviews, 101(7), 1869–1879.PubMedGoogle Scholar
  114. 114.
    Lehoux, S., Esposito, B., Merval, R., & Tedgui, A. (2005). Differential regulation of vascular focal adhesion kinase by steady stretch and pulsatility. Circulation, 111(5), 643–649.PubMedGoogle Scholar
  115. 115.
    Lehoux, S., & Tedgui, A. (1998). Signal transduction of mechanical stresses in the vascular wall. Hypertension, 32(2), 338–345.PubMedGoogle Scholar
  116. 116.
    Li, C., & Xu, Q. (2000). Mechanical stress-initiated signal transductions in vascular smooth muscle cells. Cell Signal, 12(7), 435–445.PubMedGoogle Scholar
  117. 117.
    Lin, Y. C., Ho, C. H., & Grinnell, F. (1998). Decreased PDGF receptor kinase activity in fibroblasts contracting stressed collagen matrices. Experimental Cell Research, 240(2), 377–387.PubMedGoogle Scholar
  118. 118.
    Liu, V. A., & Bhatia, S. N. (2002). Three-dimensional photopatterning of hydrogels containing living cells. Biomedical Microdevices, 4(4), 257–266.Google Scholar
  119. 119.
    Liu, B. P., Chrzanowska-Wodnicka, M., & Burridge, K. (1998). Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhesion and Communication, 5(4), 249–255.PubMedCrossRefGoogle Scholar
  120. 120.
    Lo, C. M., Wang, H. B., Dembo, M., & Wang, Y. L. (2000). Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 79(1), 144–152.PubMedCrossRefGoogle Scholar
  121. 121.
    Maniotis, A. J., Chen, C. S., & Ingber, D. E. (1997). Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proceedings of the National Academy of Sciences of the United States of America, 94(3), 849–854.PubMedGoogle Scholar
  122. 122.
    Mann, B. K., Gobin, A. S., Tsai, A. T., Schmedlen, R. H., & West, J. L. (2001). Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials, 22(22), 3045–3051.PubMedGoogle Scholar
  123. 123.
    Mann, B. K., & West, J. L. (2002). Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. Journal of Biomedical Material Research, 60(1), 86–93.Google Scholar
  124. 124.
    Martens, P. J., Bryant, S. J., & Anseth, K. S. (2003). Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules, 4(2), 283–292.PubMedGoogle Scholar
  125. 125.
    Matthews, B. D., Overby, D. R., Mannix, R., & Ingber, D. E. (2006). Cellular adaptation to mechanical stress: Role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. Journal of Cell Science, 119(Pt 3), 508–518.PubMedGoogle Scholar
  126. 126.
    McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., & Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6(4), 483–495.PubMedGoogle Scholar
  127. 127.
    Mooney, D., Hansen, L., Vacanti, J., Langer, R., Farmer, S., & Ingber, D. (1992). Switching from differentiation to growth in hepatocytes: Control by extracellular matrix. Journal of Cell Physiology, 151(3), 497–505.Google Scholar
  128. 128.
    Munevar, S., Wang, Y., & Dembo, M. (2001). Traction force microscopy of migrating normal and H-ras transformed 3T3 fibroblasts. Biophysical Journal, 80(4), 1744–1757.PubMedGoogle Scholar
  129. 129.
    Munevar, S., Wang, Y. L., & Dembo, M. (2001). Distinct roles of frontal and rear cell-substrate adhesions in fibroblast migration. Molecular Biology of the Cell, 12(12), 3947–3954.PubMedGoogle Scholar
  130. 130.
    Nehls, V., & Herrmann, R. (1996). The configuration of fibrin clots determines capillary morphogenesis and endothelial cell migration. Microvascular Research, 51(3), 347–364.PubMedGoogle Scholar
  131. 131.
    Netti, P. A., Berk, D. A., Swartz, M. A., Grodzinsky, A. J., & Jain, R. K. (2000). Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Research, 60(9), 2497–2503.PubMedGoogle Scholar
  132. 132.
    Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23(22), 4307–4314.PubMedGoogle Scholar
  133. 133.
    Nicolas, A., Geiger, B., & Safran, S. A. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proceedings of the National Academy of Sciences of the United States of America, 101(34), 12520–12525.PubMedGoogle Scholar
  134. 134.
    Nikolovski, J., Kim, B. S., & Mooney, D. J. (2003). Cyclic strain inhibits switching of smooth muscle cells to an osteoblast-like phenotype. FASEB Journal, 17, 455–457.Google Scholar
  135. 135.
    Nobes, C. D., & Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell, 81(1), 53–62.PubMedGoogle Scholar
  136. 136.
    Numaguchi, K., Eguchi, S., Yamakawa, T., Motley, E. D., & Inagami, T. (1999). Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circulation Research, 85(1), 5–11.PubMedGoogle Scholar
  137. 137.
    Ogut, O., & Brozovich, F. V. (2003). Regulation of force in vascular smooth muscle. Journal of Molecular Cellular Cardiology, 35(4), 347–355.Google Scholar
  138. 138.
    Oldberg, A., Franzen, A., & Heinegard, D. (1986). Cloning and sequence analysis of rat bone sialoprotein (osteopontin). cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proceedings of the National Academy of Sciences of the United States of America, 83(23), 8819–8823.PubMedGoogle Scholar
  139. 139.
    Opas, M. (1989). Expression of the differentiated phenotype by epithelial cells in␣vitro is regulated by both biochemistry and mechanics of the substratum. Developmental Biology, 131(2), 281–293.PubMedGoogle Scholar
  140. 140.
    Palazzo, A. F., Cook, T. A., Alberts, A. S., & Gundersen, G. G. (2001). mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biology, 3(8), 723–729.PubMedGoogle Scholar
  141. 141.
    Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., & Horwitz, A. F. (1997). Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature, 385(6616), 537–540.PubMedGoogle Scholar
  142. 142.
    Paszek, M. J., & Weaver, V. M. (2004). The tension mounts: mechanics meets morphogenesis and malignancy. Journal of Mammary Gland Biology and Neoplasia, 9(4), 325–342.PubMedGoogle Scholar
  143. 143.
    Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., & Weaver, V. M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedGoogle Scholar
  144. 144.
    Pelham, R. J. Jr., & Wang, Y. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proceedings of the National Academy of Sciences of the United States of America, 94(25), 13661–13665.PubMedGoogle Scholar
  145. 145.
    Pelham, R. J. Jr., & Wang, Y. L. (1998). Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biological Bulletin, 194(3), 348–349; discussion 349–350.Google Scholar
  146. 146.
    Petersen, O. W., Ronnov-Jessen, L., Howlett, A. R., & Bissell, M. J. (1992). Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 9064–9068.PubMedGoogle Scholar
  147. 147.
    Petit, V., & Thiery, J. P. (2000). Focal adhesions: Structure and dynamics. Biologie Cellulaire, 92(7), 477–494.Google Scholar
  148. 148.
    Peyton, S. R., & Putnam, A. J. (2005). Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. Journal of Cell Physiology, 204(1), 198–209.Google Scholar
  149. 149.
    Peyton, S. R., Raub, C. B., Keschrumrus, V. P., & Putnam, A. J. (2006). The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials, 27(28), 4881–4893.Google Scholar
  150. 150.
    Pierschbacher, M. D., Ruoslahti, E., Sundelin, J., Lind, P., & Peterson, P. A. (1982). The cell attachment domain of fibronectin. Determination of the primary structure. Journal of Biological Chemistry, 257(16), 9593–9597.PubMedGoogle Scholar
  151. 151.
    Polte, T. R., Eichler, G. S., Wang, N., & Ingber, D. E. (2004). Extracellular matrix controls myosin light chain phosphorylation and cell contractility through modulation of cell shape and cytoskeletal prestress. American Journal of Physiology Cell Physiology, 286(3), C518–C528.PubMedGoogle Scholar
  152. 152.
    Powell, C. A., Smiley, B. L., Mills, J., & Vandenburgh, H. H. (2002). Mechanical stimulation improves tissue-engineered human skeletal muscle. American Journal of Physiology Cell Physiology, 283(5), C1557–C1565.PubMedGoogle Scholar
  153. 153.
    Putnam, A. J., Cunningham, J. J., Dennis, R. G., Linderman, J. J., & Mooney, D. J. (1998). Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. Journal of Cell Science, 111(Pt 22), 3379–3387.PubMedGoogle Scholar
  154. 154.
    Putnam, A. J., Cunningham, J. J., Pillemer, B. B., & Mooney, D. J. (2003). External mechanical strain regulates membrane targeting of Rho GTPases by controlling microtubule assembly. American Journal of Physiology Cell Physiology, 284(3), C627–C639.PubMedGoogle Scholar
  155. 155.
    Putnam, A. J., Schultz, K., & Mooney, D. J. (2001). Control of microtubule assembly by extracellular matrix and externally applied strain. American Journal of Physiology Cell Physiology, 280(3), C556–C564.PubMedGoogle Scholar
  156. 156.
    Pytela, R., Pierschbacher, M. D., Argraves, S., Suzuki, S., & Ruoslahti, E. (1987). Arginine-glycine-aspartic acid adhesion receptors. Methods Enzymology, 144, 475–489.Google Scholar
  157. 157.
    Raeber, G. P., Lutolf, M. P., & Hubbell, J. A. (2005). Molecularly engineered PEG hydrogels: A novel model system for proteolytically mediated cell migration. Biophysical Journal, 89(2), 1374–1388.PubMedGoogle Scholar
  158. 158.
    Ratcliffe, A., & Niklason, L. E. (2002). Bioreactors and bioprocessing for tissue engineering. Annals of the New York Academy of Sciences, 961, 210–215.PubMedCrossRefGoogle Scholar
  159. 159.
    Ren, X. D., Kiosses, W. B., & Schwartz, M. A. (1999). Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO Journal, 18(3), 578–585.PubMedGoogle Scholar
  160. 160.
    Reusch, P., Wagdy, H., Reusch, R., Wilson, E., & Ives, H. E. (1996). Mechanical strain increases smooth muscle and decreases nonmuscle myosin expression in rat vascular smooth muscle cells. Circulation Research, 79(5), 1046–1053.PubMedGoogle Scholar
  161. 161.
    Reyes, C. D., & Garcia, A. J. (2004). Alpha2beta1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. Journal of Biomedical Materials Research A, 69(4), 591–600.Google Scholar
  162. 162.
    Rezania, A., & Healy, K. E. (1999). Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces. Journal of Orthopedic Research, 17(4), 615–623.Google Scholar
  163. 163.
    Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.PubMedGoogle Scholar
  164. 164.
    Ruoslahti, E., & Pierschbacher, M. D. (1987). New perspectives in cell adhesion: RGD and integrins. Science, 238(4826), 491–497.PubMedGoogle Scholar
  165. 165.
    Sastry, S. K., & Burridge, K. (2000). Focal adhesions: A nexus for intracellular signaling and cytoskeletal dynamics. Experimental Cell Research, 261(1), 25–36.PubMedGoogle Scholar
  166. 166.
    Schoenwaelder, S. M., & Burridge, K. (1999). Bidirectional signaling between the cytoskeleton and integrins. Current Opinion in Cell Biology, 11(2), 274–286.PubMedGoogle Scholar
  167. 167.
    Shemesh, T., Geiger, B., Bershadsky, A. D., & Kozlov, M. M. (2005). Focal adhesions as mechanosensors: A physical mechanism. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12383–12388.PubMedGoogle Scholar
  168. 168.
    Shyy, J. Y., & Chien, S. (1997). Role of integrins in cellular responses to mechanical stress and adhesion. Current Opinion in Cell Biology, 9(5), 707–713.PubMedGoogle Scholar
  169. 169.
    Shyy, J. Y., & Chien, S. (2002). Role of integrins in endothelial mechanosensing of shear stress. Circulation Research, 91(9), 769–775.PubMedGoogle Scholar
  170. 170.
    Sieminski, A. L., Hebbel, R. P., & Gooch, K. J. (2004). The relative magnitudes of endothelial force generation and matrix stiffness modulate capillary morphogenesis in␣vitro. Experimental Cell Research, 297(2), 574–584.PubMedGoogle Scholar
  171. 171.
    Sikavitsas, V. I., Temenoff, J. S., & Mikos, A. G. (2001). Biomaterials and bone mechanotransduction. Biomaterials, 22(19), 2581–2593.PubMedGoogle Scholar
  172. 172.
    Sordella, R., Jiang, W., Chen, G. C., Curto, M., & Settleman, J. (2003). Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell, 113(2), 147–158.PubMedGoogle Scholar
  173. 173.
    Staatz, W. D., Fok, K. F., Zutter, M. M., Adams, S. P., Rodriguez, B. A., & Santoro, S. A. (1991). Identification of a tetrapeptide recognition sequence for the alpha 2 beta 1 integrin in collagen. Journal of Biological Chemistry, 266(12), 7363–7367.PubMedGoogle Scholar
  174. 174.
    Stamenovic, D., Fredberg, J. J., Wang, N., Butler, J. P., & Ingber, D. E. (1996). A microstructural approach to cytoskeletal mechanics based on tensegrity. Journal of Theoretical Biology, 181(2), 125–136.PubMedGoogle Scholar
  175. 175.
    Stamenovic, D., & Ingber, D. E. (2002). Models of cytoskeletal mechanics of adherent cells. Biomechanics and Modeling in Mechanobiology, 1(1), 95–108.PubMedGoogle Scholar
  176. 176.
    Stamenovic, D., Mijailovich, S. M., Tolic-Norrelykke, I. M., Chen, J., & Wang, N. (2002). Cell prestress. II. Contribution of microtubules. American Journal of Physiology Cell Physiology, 282(3), C617–C624.PubMedGoogle Scholar
  177. 177.
    Stegemann, J. P., Hong, H., & Nerem, R. M. (2005). Mechanical, biochemical, and extracellular matrix effects on vascular smooth muscle cell phenotype. Journal of Applied Physiology, 98(6), 2321–2327.PubMedGoogle Scholar
  178. 178.
    Stegemann, J. P., & Nerem, R. M. (2003). Phenotype modulation in vascular tissue engineering using biochemical and mechanical stimulation. Annals of Biomedical Engineering, 31(4), 391–402.PubMedGoogle Scholar
  179. 179.
    Thyberg, J. (1998). Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histology and Histopathology, 13(3), 871–891.PubMedGoogle Scholar
  180. 180.
    Thyberg, J., Blomgren, K., Hedin, U., & Dryjski, M. (1995). Phenotypic modulation of smooth muscle cells during the formation of neointimal thickenings in the rat carotid artery after balloon injury: an electron-microscopic and stereological study. Cell Tissue Research, 281(3), 421–433.PubMedGoogle Scholar
  181. 181.
    Turner, C. H., & Pavalko, F. M. (1998). Mechanotransduction and functional response of the skeleton to physical stress: The mechanisms and mechanics of bone adaptation. Journal of Orthopedic Science, 3(6), 346–355.Google Scholar
  182. 182.
    Urech, L., Bittermann, A. G., Hubbell, J. A., & Hall, H. (2005). Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in␣vitro. Biomaterials, 26(12), 1369–1379.PubMedGoogle Scholar
  183. 183.
    Vailhe, B., Lecomte, M., Wiernsperger, N., & Tranqui, L. (1998). The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis, 2(4), 331–344.PubMedGoogle Scholar
  184. 184.
    Walker, G. A., Masters, K. S., Shah, D. N., Anseth, K. S., & Leinwand, L. A. (2004). Valvular myofibroblast activation by transforming growth factor-beta: Implications for pathological extracellular matrix remodeling in heart valve disease. Circulation Research, 95(3), 253–260.PubMedGoogle Scholar
  185. 185.
    Wang, Y., Botvinick, E. L., Zhao, Y., Berns, M. W., Usami, S., Tsien, R. Y., & Chien, S. (2005). Visualizing the mechanical activation of Src. Nature, 434(7036), 1040–1045.PubMedGoogle Scholar
  186. 186.
    Wang, N., Butler, J. P., & Ingber, D. E. (1993). Mechanotransduction across the cell surface and through the cytoskeleton. Science, 260(5111), 1124–1127.PubMedGoogle Scholar
  187. 187.
    Wang, H. B., Dembo, M., Hanks, S. K., & Wang, Y. (2001). Focal adhesion kinase is involved in mechanosensing during fibroblast migration. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11295–11300.PubMedGoogle Scholar
  188. 188.
    Wang, N., Naruse, K., Stamenovic, D., Fredberg, J. J., Mijailovich, S. M., Tolic-Norrelykke, I. M., Polte, T., Mannix, R., & Ingber, D. E. (2001). Mechanical behavior in living cells consistent with the tensegrity model. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7765–7770.PubMedGoogle Scholar
  189. 189.
    Wang, N., & Stamenovic, D. (2002). Mechanics of vimentin intermediate filaments. Journal of Muscle Research and Cell Motility, 23(5–6), 535–540.PubMedGoogle Scholar
  190. 190.
    Wang, N., & Suo, Z. (2005). Long-distance propagation of forces in a cell. Biochemical and Biophysical Research Communication, 328(4), 1133–1138.Google Scholar
  191. 191.
    Wang, N., Tolic-Norrelykke, I. M., Chen, J., Mijailovich, S. M., Butler, J. P., Fredberg, J. J., & Stamenovic, D. (2002). Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. American Journal of Physiology Cell Physiology, 282(3), C606–C616.PubMedGoogle Scholar
  192. 192.
    Wang, F., Weaver, V. M., Petersen, O. W., Larabell, C. A., Dedhar, S., Briand, P., Lupu, R., & Bissell, M. J. (1998). Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proceedings of the National Academy of Sciences of the United States of America, 95(25), 14821–14826.PubMedGoogle Scholar
  193. 193.
    Weaver, V. M., Petersen, O. W., Wang, F., Larabell, C. A., Briand, P., Damsky, C., & Bissell, M. J. (1997). Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in␣vivo by integrin blocking antibodies. Journal of Cell Biology, 137(1), 231–245.PubMedGoogle Scholar
  194. 194.
    Wehrle-Haller, B., & Imhof, B. (2002). The inner lives of focal adhesions. Trends in Cell Biology, 12(8), 382–389.PubMedGoogle Scholar
  195. 195.
    Wilson, E., Sudhir, K. & Ives, H. E. (1995). Mechanical strain of rat vascular smooth muscle cells is sensed by specific extracellular matrix/integrin interactions. Journal of Clinical Investigation, 96(5), 2364–2372.PubMedCrossRefGoogle Scholar
  196. 196.
    Wittmann, T., & Waterman-Storer, C. M. (2001). Cell motility: Can Rho GTPases and microtubules point the way?. Journal of Cell Science, 114(Pt 21), 3795–3803.PubMedGoogle Scholar
  197. 197.
    Wolff, J. (1992). Das Gasetz der Transformation der Knochen. Berlin: Verlag August Hirschwald.Google Scholar
  198. 198.
    Wong, J. Y., Velasco, A., Rajagopalan, P., & Pham, Q. (2003). Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir, 19(5), 1908–1913.Google Scholar
  199. 199.
    Wozniak, M. A., Desai, R., Solski, P. A., Der, C. J., & Keely, P. J. (2003). ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. Journal of Cell Biology, 163(3), 583–595.PubMedGoogle Scholar
  200. 200.
    Wozniak, M. A., Modzelewska, K., Kwong, L., & Keely, P. J. (2004). Focal adhesion regulation of cell behavior. Biochimica et Biophysica Acta, 1692(2–3), 103–119.PubMedGoogle Scholar
  201. 201.
    Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V., & Janmey, P. A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motility and the Cytoskeleton, 60(1), 24–34.PubMedGoogle Scholar
  202. 202.
    Zaari, N., Rajagopalan, P., Kim, S. K., Engler, A. J., & Wong, J. Y. (2004). Photopolymerization in microfluidic gradient generators: Microscale control of substrate compliance to manipulate cell response. Advanced Materials, 16(23–24), 2133.Google Scholar
  203. 203.
    Zaman, M. H., Kamm, R. D., Matsudaira, P., & Lauffenburger, D. A. (2005). Computational model for cell migration in three-dimensional matrices. Biophysical Journal, 89(2), 1389–1397.PubMedGoogle Scholar
  204. 204.
    Zaman, M. H., Trapani, L. M., Siemeski, A., Mackellar, D., Gong, H., Kamm, R. D., Wells, A., Lauffenburger, D. A., & Matsudaira, P. (2006). Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 103(29), 10889–10894.PubMedGoogle Scholar
  205. 205.
    Zhang, Q., Magnusson, M. K., & Mosher, D. F. (1997). Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Molecular Biology of the Cell, 8(8), 1415–1425.PubMedGoogle Scholar
  206. 206.
    Zhong, C., Chrzanowska-Wodnicka, M., Brown, J., Shaub, A., Belkin, A. M., & Burridge, K. (1998). Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. Journal of Cell Biology, 141(2), 539–551.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • Shelly R. Peyton
    • 1
  • Cyrus M. Ghajar
    • 2
  • Chirag B. Khatiwala
    • 1
  • Andrew J. Putnam
    • 1
    • 2
  1. 1.Department of Chemical Engineering and Materials ScienceThe Henry Samueli School of Engineering, University of CaliforniaIrvineUSA
  2. 2.Department of Biomedical EngineeringThe Henry Samueli School of Engineering, University of CaliforniaIrvineUSA

Personalised recommendations