Skip to main content

Advertisement

Log in

Cardioprotective Effects of Oroxylum indicum Extract Against Doxorubicin and Cyclophosphamide-Induced Cardiotoxicity

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Administration of Chemotherapeutics, especially doxorubicin (DOX) and cyclophosphamide (CPS), is commonly associated with adverse effects such as myelosuppression and cardiotoxicity. At this time, few approved therapeutic options are currently available for the management of chemotherapy-associated cardiotoxicity. Thus, identification of novel therapeutics with potent cardioprotective properties and minimal adverse effects are pertinent in treating Doxorubicin and Cyclophosphamide-induced cardiotoxicity. Oroxylum indicum extract (OIE, Sabroxy®) is a natural product known to possess several beneficial biological functions including antioxidant, anti-inflammatory and cytoprotective effects. We therefore set to investigate the cardioprotective effects of OIE against Doxorubicin and Cyclophosphamide-induced cardiotoxicity and explore the potential cardioprotective mechanisms involved. Adult male mice were treated with DOX and CPS in combination, OIE alone, or a combination of OIE and DOX & CPS. Swimming test was performed to assess cardiac function. Markers of oxidative stress were assessed by levels of reactive oxygen species (ROS), nitrite, hydrogen peroxide, catalase, and glutathione content. The activity of interleukin converting enzyme and cyclooxygenase was determined as markers of inflammation. Mitochondrial function was assessed by measuring Complex-I activity. Apoptosis was assessed by Caspase-3 and protease activity. Mice treated with DOX and CPS exhibited reduced swim rate, increased oxidative stress, increased inflammation, and apoptosis in the heart tissue. These cardiotoxic effects were significantly reduced by co-administration of OIE. Furthermore, computational molecular docking studies revealed potential binding of DOX and CPS to tyrosine hydroxylase which validated our in vivo findings regarding the inhibition of tyrosine hydroxylase activity. Our current findings indicated that OIE counteracts Doxorubicin and Cyclophosphamide-induced cardiotoxicity—through inhibition of ROS-mediated apoptosis and by blocking the effect on tyrosine hydroxylase. Taken together, our findings suggested that OIE possesses cardioprotective effects to counteract potentially fatal cardiac complications associated with chemotherapy treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dhesi, S., Chu, M. P., Blevins, G., Paterson, I., Larratt, L., Oudit, G. Y., & Kim, D. H. (2013). Cyclophosphamide-induced cardiomyopathy: A case report, review, and recommendations for management. Journal of Investigative Medicine High Impact Case Reports, 1(1), 2324709613480346. https://doi.org/10.1177/2324709613480346

    Article  PubMed  PubMed Central  Google Scholar 

  2. Swain, S. M. (1999). Doxorubicin-induced cardiomyopathy. New England Journal of Medicine, 340(8), 654 (author reply 655)

  3. Chen, Y., Jungsuwadee, P., Vore, M., Butterfield, D. A., & St Clair, D. K. (2007). Collateral damage in cancer chemotherapy: Oxidative stress in nontargeted tissues. Molecular Interventions, 7(3), 147–156. https://doi.org/10.1124/mi.7.3.6

    Article  CAS  PubMed  Google Scholar 

  4. Kluza, J. M., Marchetti, P., Gallego, M.-A., Lancel, S., Fournier, C., Loyens, A., et al. (2004). Mitochondrial proliferation during apoptosis induced by anticancer agents: Effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene, 23(42), 7018–7030.

    Article  CAS  Google Scholar 

  5. Vichaya, E. G., Chiu, G. S., Krukowski, K., Lacourt, T. E., Kavelaars, A., Dantzer, R., Heijnen, C. J., & Walker, A. K. (2015). Mechanisms of chemotherapy-induced behavioral toxicities. Frontiers in Neuroscience, 9, 131.

    Article  Google Scholar 

  6. Chen, T., Shen, H.-M., Deng, Z.-Y., Yang, Z.-Z., Zhao, R.-L., Wang, L., et al. (2017). A herbal formula, SYKT, reverses doxorubicin-induced myelosuppression and cardiotoxicity by inhibiting ROS-mediated apoptosis. Molecular Medicine Reports, 15(4), 2057–2066. https://doi.org/10.3892/mmr.2017.6272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Menon, S., Lawrence, L., & Sivaram, V. P. (2019). Oroxylum indicum root bark extract prevents doxorubicin-induced cardiac damage by restoring redox balance. Journal of Ayurveda and Integrative Medicine, 10(3), 159–165. https://doi.org/10.1016/j.jaim.2017.06.007

    Article  PubMed  Google Scholar 

  8. Hajra, S., Basu, A., Singha Roy, S., Patra, A. R., & Bhattacharya, S. (2017). Attenuation of doxorubicin-induced cardiotoxicity and genotoxicity by an indole-based natural compound 3,3’-diindolylmethane (DIM) through activation of Nrf2/ARE signaling pathways and inhibiting apoptosis. Free Radical Research, 51(9–10), 812–827. https://doi.org/10.1080/10715762.2017.1381694

    Article  CAS  PubMed  Google Scholar 

  9. He, H., Luo, Y., Qiao, Y., Zhang, Z., Yin, D., Yao, J., et al. (2018). Curcumin attenuates doxorubicin-induced cardiotoxicity via suppressing oxidative stress and preventing mitochondrial dysfunction mediated by 14–3-3γ. Food & Function, 9(8), 4404–4418. https://doi.org/10.1039/c8fo00466h

    Article  CAS  Google Scholar 

  10. Harminder, V. S., & Chaudhary, Y. (2011). A review on the taxonomy, ethnobotany, chemistry and pharmacology of Oroxylum indicum Vent. Indian Journal of Pharmaceutical Sciences, 73(5), 483–490. https://doi.org/10.4103/0250-474X.98981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hemantha, H. P., Ramanujam, R., & Majeed, M. (2021). An unambiguous and practical synthesis of Oroxylin A: a commonly misidentified flavone. Natural Product Resarch, 35(9), 1413–1420. https://doi.org/10.1080/14786419.2019.1650359

    Article  CAS  Google Scholar 

  12. Pondugula, S. R., Majrashi, M., Almaghrabi, M., Ramesh, S., Abbott, K. L., Govindarajulu, M., et al. (2021b). Oroxylum Indicum ameliorates chemotherapy induced cognitive impairment. PLoS ONE, 16(6), e0252522. https://doi.org/10.1371/journal.pone.0252522. eCollection 2021 using the current dose and dosage.

  13. Pondugula, S. R., Salamat, J. M., Abbott, K. L., Flannery, P. C., Majrashi, M., Almaghrabi, M., et al. (2021c) Oroxylum indicum extract, at a physiologically relevant dosage, does not induce hepatotoxicity in C57BL/6J mice. Natural Product Communications, 16 (5), 1934578X211016966.

  14. Muralikrishnan, D., & Mohanakumar, K. (1998). Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity in mice1. The FASEB journal, 12(10), 905–912.

    Article  CAS  Google Scholar 

  15. Grippo, A. J., Moffitt, J. A., Sgoifo, A., Jepson, A. J., Bates, S. L., Chandler, D. L., et al. (2012). The integration of depressive behaviors and cardiac dysfunction during an operational measure of depression: Investigating the role of negative social experiences in an animal model. Psychosomatic Medicine, 74(6), 612–619. https://doi.org/10.1097/PSY.0b013e31825ca8e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ramesh, S., Bhattacharya, D., Majrashi, M., Morgan, M., Prabhakar Clement, T., & Dhanasekaran, M. (2018). Evaluation of behavioral parameters, hematological markers, liver and kidney functions in rodents exposed to Deepwater Horizon crude oil and Corexit. Life Sciences, 199, 34–40. https://doi.org/10.1016/j.lfs.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  17. Majrashi, M., Almaghrabi, M., Fadan, M., Fujihashi, A., Lee, W., Deruiter, J., Clark, C. R., & Dhanasekaran, M. (2018). Dopaminergic neurotoxic effects of 3-TFMPP derivatives. Life Sciences, 209, 357–369.

    Article  CAS  Google Scholar 

  18. Pondugula, S. R., Majrashi, M., Almaghrabi, M., Abbott, K., Govindarajulu, M., Ramesh, S. et al. (2020). Predictable hematological markers associated with cognitive decline in valid rodent models of cognitive impairment. Toxicology Mechanisms and Methods, 30(6), 454–461. https://doi.org/10.1080/15376516.2020.1760984

    Article  CAS  PubMed  Google Scholar 

  19. Katz, D. P., Majrashi, M., Ramesh, S., Govindarajulu, M., Bhattacharya, D., Bhattacharya, S, Shlghom, A., Bradford, C., Suppiramaniam, V., Deruiter, J., Clark, C. R., & Dhanasekaran, M. (2018). Comparing the dopaminergic neurotoxic effects of benzylpiperazine and benzoylpiperazine. Toxicology Mechanisms and Methods, 28(3), 177–186. https://doi.org/10.1080/15376516.2017.1376024

    Article  CAS  PubMed  Google Scholar 

  20. Al Saqr, A., Majrashi, M., Alrbyawi, H., Govindarajulu, M., Fujihashi, A., Gottumukkala, S., Poudel, I., Arnold, R. D., Babu, R. J., & Dhanasekaran, M. (2020). Elucidating the anti-melanoma effect and mechanisms of Hispolon. Life Sciences, 256, 117702. https://doi.org/10.1016/j.lfs.2020.117702

    Article  CAS  PubMed  Google Scholar 

  21. Majrashi, M., Fujihashi, A., Almaghrabi, M., Fadan, M., Fahoury, E., Ramesh, S., Govindarajulu, M., Beamon, H., Bradford, C. N., Bolden-Tiller, O., & Dhanasekaran, M. (2020). Augmented oxidative stress and reduced mitochondrial function in ageing goat testis. Veterinary Medicine and Science, 6, 766–774.

    Article  CAS  Google Scholar 

  22. Ahuja, M., Buabeid, M., Abdel-Rahman, E., Majrashi, M., Parameshwaran, K., Amin, R., et al. (2017). Immunological alteration & toxic molecular inductions leading to cognitive impairment & neurotoxicity in transgenic mouse model of Alzheimer’s disease. Life Sciences, 177, 49–59. https://doi.org/10.1016/j.lfs.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  23. Vermeer, L. M., Higgins, C. A., Roman, D. L., & Doorn, J. A. (2013). Real-time monitoring of tyrosine hydroxylase activity using a plate reader assay. Analytical Biochemistry, 432(1), 11–15. https://doi.org/10.1016/j.ab.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  24. Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508(1), 1–12. https://doi.org/10.1016/j.abb.2010.12.017

    Article  CAS  PubMed  Google Scholar 

  25. Vrana, K. E., Walker, S. J., Rucker, P., & Liu, X. (1994). A carboxyl terminal leucine zipper is required for tyrosine hydroxylase tetramer formation. Journal of Neurochemistry, 63(6), 2014–2020. https://doi.org/10.1046/j.1471-4159.1994.63062014.x

    Article  CAS  PubMed  Google Scholar 

  26. Joerger, M., Huitema, A. D. R., Richel, D. J., Dittrich, C., Pavlidis, N., Briasoulis, E., et al. (2007). Population pharmacokinetics and pharmacodynamics of doxorubicin and cyclophosphamide in breast cancer patients. Clinical Pharmacokinetics, 46(12), 1051–1068. https://doi.org/10.2165/00003088-200746120-00005

    Article  CAS  PubMed  Google Scholar 

  27. Ma, B., Yeo, W., Hui, P., Ho, W. M., & Johnson, P. J. (2002). Acute toxicity of adjuvant doxorubicin and cyclophosphamide for early breast cancer—A retrospective review of Chinese patients and comparison with an historic Western series. Radiotherapy and Oncology, 62(2), 185–189. https://doi.org/10.1016/s0167-8140(02)00003-8

    Article  CAS  PubMed  Google Scholar 

  28. Tsutani, Y., Saeki, T., Aogi, K., Ohsumi, S., & Takashima, S. (2005). Toxicity of doxorubicin and cyclophosphamide (60 mg/600 mg/m2) in adjuvant chemotherapy for breast cancer. Gan to Kagaku Ryoho, 32(6), 809–813.

    PubMed  Google Scholar 

  29. Begum, M. M., Islam, A., Begum, R., Uddin, M. S., Rahman, M. S., Alam, S., Akter, W., Das, M., Rahman, M. S., & Imon, A. (2019). Ethnopharmacological inspections of organic extract of Oroxylum indicum in rat models: A promising natural gift. Evidence-Based Complementary and Alternative Medicine: ECAM, 2019, 1562038.

    Article  Google Scholar 

  30. Das, B. K., Al-Amin, M. M., Russel, S. M., Kabir, S., Bhattacherjee, R., & Hannan, J. M. (2014). Phytochemical screening and evaluation of analgesic activity of Oroxylum indicum. Indian Journal of Pharmaceutical Sciences, 76, 571–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Karnati, M., Chandra, R. H., Veeresham, C., & Kishan, B. (2013). Anti-arthritic activity of root bark of Oroxylum indicum (L.) vent against adjuvant-induced arthritis. Pharmacognosy Research, 5, 121–128.

    Article  Google Scholar 

  32. Pondugula, S. R., Salamat, J. M., Abbott, K. L., Flannery, P. C., Majrashi, M., Almaghrabi, M., et al. (2021a). Oroxylum indicum extract, at a physiologically relevant dosage, does not induce hepatotoxicity in C57BL/6J mice. Natural Product Communications, 16(5), 1934578X211016966.

    Article  CAS  Google Scholar 

  33. Reduan, M. F. H., Hamid, F. F. A., Nordin, M. L., Shaari, R., Hamdan, R. H., Chung, E. L. T., Peng, T. L., Kamaruzaman, I. N. A., & Noralidin, N. (2020). Acute oral toxicity study of ethanol extract of Oroxylum indicum leaf in mice. The Thai Journal of Veterinary Medicine, 50, 573–581.

    Google Scholar 

  34. Deori, K., & Yadav, A. K. (2016). Anthelmintic effects of Oroxylum indicum stem bark extract on juvenile and adult stages of Hymenolepis diminuta (Cestoda), an in vitro and in vivo study. Parasitology Research, 115, 1275–1285.

    Article  Google Scholar 

  35. Menon, et al. (2017). Oroxylum indicum root bark extract prevents doxorubicin-induced cardiac damage by restoring redox balance. https://doi.org/10.1016/j.jaim.2017.06.007

  36. Mahoney, S. E., Davis, J. M., Murphy, E. A., McClellan, J. L., Gordon, B., & Pena, M. M. (2013). Effects of 5-fluorouracil chemotherapy on fatigue: Role of MCP-1. Brain, Behavior, and Immunity, 27, 155–161. https://doi.org/10.1016/j.bbi.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  37. Dougherty, J. P., Springer, D. A., Cullen, M. J., & Gershengorn, M. C. (2019). Evaluation of the effects of chemotherapy-induced fatigue and pharmacological interventions in multiple mouse behavioral assays. Behavioural Brain Research, 360, 255–261. https://doi.org/10.1016/j.bbr.2018.12.011

    Article  CAS  PubMed  Google Scholar 

  38. Wang, H.-W., Ahmad, M., Jadayel, R., Najjar, F., Lagace, D., & Leenen, F. H. H. (2019). Inhibition of inflammation by minocycline improves heart failure and depression-like behaviour in rats after myocardial infarction. PLoS ONE, 14(6), e0217437–e0217437. https://doi.org/10.1371/journal.pone.0217437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Songbo, M., Lang, H., Xinyong, C., Bin, X., Ping, Z., & Liang, S. (2019). Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicology Letters, 307, 41–48. https://doi.org/10.1016/j.toxlet.2019.02.013

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X., Hu, C., Kong, C.-Y., Song, P., Wu, H.-M., Xu, S.-C., et al. (2020). FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death & Differentiation, 27(2), 540–555. https://doi.org/10.1038/s41418-019-0372-z

    Article  CAS  Google Scholar 

  41. Syed, F. M., Hahn, H. S., Odley, A., Guo, Y., Vallejo, J. G., Lynch, R. A., et al. (2005). Proapoptotic effects of caspase-1/interleukin-converting enzyme dominate in myocardial ischemia. Circulation Research, 96(10), 1103–1109. https://doi.org/10.1161/01.RES.0000166925.45995.ed

    Article  CAS  PubMed  Google Scholar 

  42. Bakhle, Y. S. (2001). COX-2 and cancer: A new approach to an old problem. British Journal of Pharmacology, 134(6), 1137–1150. https://doi.org/10.1038/sj.bjp.0704365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ricci, M. S., & Zong, W.-X. (2006). Chemotherapeutic approaches for targeting cell death pathways. The Oncologist, 11(4), 342–357. https://doi.org/10.1634/theoncologist.11-4-342

    Article  CAS  PubMed  Google Scholar 

  44. Urra, F. A., Muñoz, F., Lovy, A., & Cárdenas, C. (2017). The mitochondrial Complex(I)ty of cancer. Frontiers in Oncology, 7, 118–118. https://doi.org/10.3389/fonc.2017.00118

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mladěnka, P., Applová, L., Patočka, J., Costa, V. M., Remiao, F., Pourová, J., et al. (2018). Comprehensive review of cardiovascular toxicity of drugs and related agents. Medicinal Research Reviews, 38(4), 1332–1403. https://doi.org/10.1002/med.21476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satyanarayana R. Pondugula or Muralikrishnan Dhanasekaran.

Additional information

Handling editor: Jianyong Ma

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pondugula, S.R., Harshan, A., Ramesh, S. et al. Cardioprotective Effects of Oroxylum indicum Extract Against Doxorubicin and Cyclophosphamide-Induced Cardiotoxicity. Cardiovasc Toxicol 22, 67–77 (2022). https://doi.org/10.1007/s12012-021-09701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09701-x

Keywords

Navigation