Advertisement

Assessment of Pregabalin-Induced Cardiotoxicity in Rats: Mechanistic Role of Angiotensin 1–7

  • Zeinab M. AwwadEmail author
  • Samar O. El-Ganainy
  • Ahmed I. ElMallah
  • Shaimaa M. Khedr
  • Mahmoud M. Khattab
  • Aiman S. El-Khatib
Article
  • 48 Downloads

Abstract

Pregabalin (PRG) possesses great therapeutic benefits in the treatment of epilepsy, neuropathic pain, and fibromyalgia. However, clinical data have reported incidence or exacerbation of heart failure following PRG administration. Experimental data exploring cardiac alterations and its underlying mechanisms are quite scarce. The aim of the present work was to investigate the effect of PRG on morphometric, echocardiographic, neurohumoral, and histopathological parameters in rats. It was hypothesized that alterations in cardiac renin angiotensin system (RAS) might be involved in PRG-induced cardiotoxicity. To further emphasize the role of RAS in the mechanism of PRG-induced cardiotoxicity, the protective potential of diminazene aceturate (DIZE), an ACE2 activator, was investigated. Results showed 44% decrease in ejection fraction and sevenfold increase in plasma N-terminal pro-brain natriuretic peptide. Histopathological examination also showed prominent vacuolar changes and edema in cardiomyocytes. In addition, PRG significantly increased angiotensin II (Ang II), angiotensin converting enzyme (ACE) and angiotensin II type 1 receptor (AT1R) levels, while decreased angiotensin 1–7 (Ang 1–7), angiotensin converting enzyme 2 (ACE2), and Mas receptor (MasR) cardiac levels. DIZE co-administration showed prominent protection against PRG-induced echocardiographic, neurohumoral, and histopathological alterations in rats. In addition, downregulation of ACE/Ang II/AT1R and upregulation of ACE2/Ang 1–7/MasR axes were noted in DIZE co-treated rats. These findings showed, for the first time, the detailed cardiac deleterious effects of PRG in rats. The underlying pathophysiological mechanism is probably mediated via altered balance between the RAS axes in favor to the ACE/Ang II/AT1R pathway. Accordingly, ACE2 activators might represent promising therapeutic agents for PRG-induced cardiotoxicity.

Graphic Abstract

Keywords

Pregabalin Diminazene aceturate Cardiotoxicity Angiotensin 1–7 

Notes

Acknowledgements

The authors are thoroughly thankful to Prof. Dr. Maha A. El-Demellawy (City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt) for her efforts in echocardiography. The authors are also grateful to Prof. Dr. Ghada M. Mourad (Center of Excellence for Research in Regenerative Medicine Applications, CERRMA, Faculty of Medicine in Alexandria, Alexandria, Egypt) for her help in histopathological examination.

Funding

This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international and national guidelines for the care and use of animals were followed. The experiments with animals were approved by the Ethics Committee for Animal Experimentation at Faculty of Pharmacy, Cairo University, Egypt (Permit number: PT 1979).

References

  1. 1.
    Shneker, B. F., & McAuley, J. W. (2005). Pregabalin: A new neuromodulator with broad therapeutic indications. Annals of Pharmacotherapy,39, 2029–2037.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gajraj, N. M. (2007). Pregabalin: Its pharmacology and use in pain management. Anesthesia and Analgesia,105, 1805–1815.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Dworkin, R., Corbin, A., Young, J., Sharma, U., LaMoreaux, L., Bockbrader, H., et al. (2003). Pregabalin for the treatment of postherpetic neuralgia: A randomized, placebo-controlled trial. Neurology,60, 1274–1283.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pande, A. C., Crockatt, J. G., Feltner, D. E., Janney, C. A., Smith, W. T., Weisler, R., et al. (2003). Pregabalin in generalized anxiety disorder: A placebo-controlled trial. American Journal of Psychiatry,160, 533–540.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mease, P. J., Russell, I. J., Arnold, L. M., Florian, H., Young, J. P., Martin, S. A., et al. (2008). A randomized, double-blind, placebo-controlled, phase III trial of pregabalin in the treatment of patients with fibromyalgia. The Journal of Rheumatology,35, 502–514.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Ho, J. M. W., Macdonald, E. M., Luo, J., Gomes, T., Antoniou, T., Mamdani, M. M., et al. (2017). Pregabalin and heart failure: A population-based study. Pharmacoepidemiology and Drug Safety,26, 1087–1092.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Murphy, N., Mockler, M., Ryder, M., Ledwidge, M., & McDonald, K. (2007). Decompensation of chronic heart failure associated with pregabalin in patients with neuropathic pain. Journal of Cardiac Failure,13, 227–229.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Robert Lee Page, I., Cantu, M., Lindenfeld, J., Hergott, L. J., & Lowes, B. D. (2008). Possible heart failure exacerbation associated with pregabalin: Case discussion and literature review. Journal of Cardiovascular Medicine,9, 922–925.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Taylor, C. P., Angelotti, T., & Fauman, E. (2007). Pharmacology and mechanism of action of pregabalin: The calcium channel α2–δ (alpha2–delta) subunit as a target for antiepileptic drug discovery. Epilepsy Research,73, 137–150.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Alp, R., Citil, M., Uzun, M., Alp, S., Topcu, B., Uzlu, E., et al. (2008). Effects of therapeutic doses of Pregabalin on QTc interval in conscious rabbits. European Review for Medical and Pharmacological Sciences,12, 223–228.PubMedGoogle Scholar
  11. 11.
    Verdecchia, P., Angeli, F., Mazzotta, G., Gentile, G., & Reboldi, G. (2008). The renin angiotensin system in the development of cardiovascular disease: Role of aliskiren in risk reduction. Vascular Health and Risk Management,4, 971–981.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Li, X. C., Zhang, J., & Zhuo, J. L. (2017). The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacological Research,125, 21–38.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Patel, V. B., Zhong, J.-C., Grant, M. B., & Oudit, G. Y. (2016). Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circulation Research,118, 1313–1326.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jiang, F., Yang, J., Zhang, Y., Dong, M., Wang, S., Zhang, Q., et al. (2014). Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nature Reviews Cardiology,11, 413–426.PubMedCrossRefGoogle Scholar
  15. 15.
    Kulemina, L. V., & Ostrov, D. A. (2011). Prediction of off-target effects on angiotensin-converting enzyme 2. Journal of Biomolecular Screening,16, 878–885.PubMedCrossRefGoogle Scholar
  16. 16.
    Macedo, L. M., da Silva Souza, Á. P., De Maria, M. L. D. A., Borges, C. L., de Almeida Soares, C. M., Pedrino, G. R., et al. (2016). Cardioprotective effects of diminazene aceturate in pressure-overloaded rat hearts. Life Sciences,155, 63–69.PubMedCrossRefGoogle Scholar
  17. 17.
    Qi, Y., Zhang, J., Cole-Jeffrey, C. T., Shenoy, V., Espejo, A., Hanna, M., et al. (2013). Diminazene aceturate enhances angiotensin-converting enzyme 2 activity and attenuates ischemia-induced cardiac pathophysiology. Hypertension,62, 746–752.PubMedCrossRefGoogle Scholar
  18. 18.
    Velkoska, E., Patel, S. K., Griggs, K., & Burrell, L. M. (2016). Diminazene aceturate improves cardiac fibrosis and diastolic dysfunction in rats with kidney disease. PLoS ONE,11, e0161760.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Seto, Y., Takase, M., Tsuji, Y., & To, H. (2017). Pregabalin reduces cisplatin-induced mechanical allodynia in rats. Journal of Pharmacological Sciences,134, 175–180.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Singh, H., Arora, R., Arora, S., & Singh, B. (2017). Ameliorative potential of Alstonia scholaris (Linn.) R. Br. against chronic constriction injury-induced neuropathic pain in rats. BMC Complementary and Alternative Medicine,17, 63.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zhang, J., Wei, C., Wang, H., Tang, S., Jia, Z., Wang, L., et al. (2013). Protective effect of qiliqiangxin capsule on energy metabolism and myocardial mitochondria in pressure overload heart failure rats. Evidence-Based Complementary and Alternative Medicine,2013, 378298.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Tang, Y., Wang, M., Le, X., Meng, J., Huang, L., Yu, P., et al. (2011). Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats. Phytomedicine,18, 1024–1030.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Wu, R., Wang, H.-L., Yu, H.-L., Cui, X.-H., Xu, M.-T., Xu, X., et al. (2016). Doxorubicin toxicity changes myocardial energy metabolism in rats. Chemico-Biological Interactions,244, 149–158.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Patten, R. D., & Hall-Porter, M. R. (2009). Small animal models of heart failure: Development of novel therapies, past and present. Circulation: Heart Failure,2, 138–144.Google Scholar
  25. 25.
    Don-Wauchope, A. C., & McKelvie, R. S. (2015). Evidence based application of BNP/NT-proBNP testing in heart failure. Clinical Biochemistry,48, 236–246.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Langenickel, T., Pagel, I., Höhnel, K., Dietz, R., & Willenbrock, R. (2000). Differential regulation of cardiac ANP and BNP mRNA in different stages of experimental heart failure. American Journal of Physiology-Heart and Circulatory Physiology,278, H1500–H1506.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Albayrak, F., Bayir, Y., Halici, Z., Kabalar, E., Bayram, E., Ozturk, C., et al. (2009). Preventive effect of amiodarone during acute period in isoproterenol-induced myocardial injury in Wistar rats. Cardiovascular Toxicology,9, 161–168.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Romano, M. M. D., Pazin-Filho, A., O’Connel, J. L., Simões, M. V., Schmidt, A., Campos, É. C., et al. (2012). Early detection of doxorubicin myocardial injury by ultrasonic tissue characterization in an experimental animal model. Cardiovascular Ultrasound,10, 40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Erdoğan, G., Ceyhan, D., & Güleç, S. (2011). Possible heart failure associated with pregabalin use: Case report. The Journal of The Turkish Society of Algology,23, 80–83.Google Scholar
  30. 30.
    Aksakal, E., Bakirci, E. M., Emet, M., & Uzkeser, M. (2012). Complete atrioventricular block due to overdose of pregabalin. The American Journal of Emergency Medicine,30, e1–e4.CrossRefGoogle Scholar
  31. 31.
    Kittana, N. (2018). Angiotensin-converting enzyme 2–Angiotensin 1–7/1-9 system: Novel promising targets for heart failure treatment. Fundamental & Clinical Pharmacology,32, 14–25.CrossRefGoogle Scholar
  32. 32.
    De Mello, W. C. (2017). Local renin angiotensin aldosterone systems and cardiovascular diseases. Medical Clinics of North America,101, 117–127.PubMedCrossRefGoogle Scholar
  33. 33.
    Gomes, E. R., Santos, R. A., & Guatimosim, S. (2012). Angiotensin-(1–7)-mediated signaling in cardiomyocytes. International Journal of Hypertension,2012, 493129.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Averill, D. B., Ishiyama, Y., Chappell, M. C., & Ferrario, C. M. (2003). Cardiac angiotensin-(1–7) in ischemic cardiomyopathy. Circulation,108, 2141–2146.PubMedCrossRefGoogle Scholar
  35. 35.
    Burrell, L. M., Risvanis, J., Kubota, E., Dean, R. G., MacDonald, P. S., Lu, S., et al. (2005). Myocardial infarction increases ACE2 expression in rat and humans. European Heart Journal,26, 369–375.PubMedCrossRefGoogle Scholar
  36. 36.
    Ohtsuki, M., Morimoto, S.-I., Izawa, H., Ismail, T. F., Ishibashi-Ueda, H., Kato, Y., et al. (2010). Angiotensin converting enzyme 2 gene expression increased compensatory for left ventricular remodeling in patients with end-stage heart failure. International Journal of Cardiology,145, 333–334.PubMedCrossRefGoogle Scholar
  37. 37.
    Verma, V., Singh, N., & Singh Jaggi, A. (2014). Pregabalin in neuropathic pain: Evidences and possible mechanisms. Current Neuropharmacology,12, 44–56.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fong, T., & Lee, A. J. (2014). Pregabalin-associated heart failure decompensation in a patient with a history of stage I heart failure. Annals of Pharmacotherapy,48, 1077–1081.PubMedCrossRefGoogle Scholar
  39. 39.
    Aritomi, S., Niinuma, K., Kawakami, M., Nakamura, T., Konda, T., Shiozaki, M., et al. (2012). Cilnidipine, an L-/N-type calcium channel blocker, changes the circulating angiotensin-(1–7)/angiotensin II ratio. Journal of Hypertension: Open Access,1, 102.Google Scholar
  40. 40.
    Konoshita, T., Makino, Y., Kimura, T., Fujii, M., Wakahara, S., Arakawa, K., et al. (2010). A new-generation N/L-type calcium channel blocker leads to less activation of the renin–angiotensin system compared with conventional L type calcium channel blocker. Journal of Hypertension,28, 2156–2160.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Aritomi, S., Harada, E., Sugino, K., Nishimura, M., Nakamura, T., & Takahara, A. (2015). Comparison of the cardioprotective and renoprotective effects of the L/N-type calcium channel blocker, cilnidipine, in adriamycin-treated spontaneously-hypertensive rats. Clinical and Experimental Pharmacology and Physiology,42, 344–352.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Dhalla, N. S., & Müller, A. L. (2010). Protein kinases as drug development targets for heart disease therapy. Pharmaceuticals,3, 2111–2145.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    De Mello, W. C. (2015). Intracellular angiotensin (1–7) increases the inward calcium current in cardiomyocytes. On the role of PKA activation. Molecular and Cellular Biochemistry,407, 9–16.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Velkoska, E., Patel, S. K., & Burrell, L. M. (2016). Angiotensin converting enzyme 2 and diminazene: Role in cardiovascular and blood pressure regulation. Current Opinion in Nephrology and Hypertension,25, 384–395.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Castardeli, C., Sartório, C. L., Pimentel, E. B., Forechi, L., & Mill, J. G. (2018). The ACE 2 activator diminazene aceturate (DIZE) improves left ventricular diastolic dysfunction following myocardial infarction in rats. Biomedicine & Pharmacotherapy,107, 212–218.CrossRefGoogle Scholar
  46. 46.
    Coutinho, D. C., Monnerat-Cahli, G., Ferreira, A. J., & Medei, E. (2014). Activation of angiotensin-converting enzyme 2 improves cardiac electrical changes in ventricular repolarization in streptozotocin-induced hyperglycaemic rats. Europace,16, 1689–1696.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Pharmacology and Therapeutics, Faculty of Pharmacy and Drug ManufacturingPharos University in AlexandriaAlexandriaEgypt
  2. 2.Department of Pharmacology and Toxicology, Faculty of PharmacyAlexandria UniversityAlexandriaEgypt
  3. 3.Pharmaceutical and Fermentation Industries Development CenterCity of Scientific Research and Technological ApplicationsAlexandriaEgypt
  4. 4.Department of Pharmacology and Toxicology, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations