Acylated Ghrelin Protects the Hearts of Rats from Doxorubicin-Induced Fas/FasL Apoptosis by Stimulating SERCA2a Mediated by Activation of PKA and Akt

  • Ali A. ShatiEmail author
  • M. Dallak


This study investigated if the cardioprotective effect of acylated ghrelin (AG) against doxorubicin (DOX)-induced cardiac toxicity in rats involves inhibition of Fas/FasL-mediated cell death. It also investigated if such an effect is mediated by restoring Ca+2 homeostasis from the aspect of stimulation of SERCA2a receptors. Adult male Wistar rats were divided into 4 groups (20 rats/each) as control, control + AG, DOX, and DOX + AG. AG was co-administered to all rats consecutively for 35 days. In addition, isolated cardiomyocytes were cultured and treated with AG in the presence or absence of DOX with or without pre-incubation with [d-Lys3]-GHRP-6 (a AG receptor antagonist), VIII (]an Akt inhibitor), or KT-5720 (a PKA inhibitor). AG increased LVSP, dp/dtmax, and dp/dtmin in both control and DOX-treated animals and improved cardiac ultrastructural changes in DOX-treated rats. It also inhibited ROS in control rats and lowered LVEDP, intracellular levels of ROS and Ca2+, and activity of calcineurin in LVs of DOX-treated rats. Concomitantly, it inhibited LV NFAT-4 nuclear translocation and downregulated their protein levels of Fas and FasL. Mechanistically, in control or DOX-treated hearts or cells, AG upregulated the levels of SERCA2a and increased the activities of PKA and Akt, leading to increase phosphorylation of phospholamban at Ser16 and Thr17. All these effects were abolished by d-Lys3-GHRP-6, VIII, or KT-5720 and were independent of food intake or GH/IGF-1. In conclusion, AG cardioprotection against DOX involves inhibition of extrinsic cell death and restoring normal Ca+2 homeostasis.


Ghrelin Doxorubicin Fas ligand Ca+2 NFAT 



The authors would like to thank the Animal facility staff at the King Khalid University (KKU), Abha, KSA for their help in taking care of animals, providing treatment, and arranging blood tissue collection. They would like also to thank the Physiology and Biochemistry technical staff at the College of Medicine at KKU for their contribution in the recording of the cardiovascular function of the experimental groups and helping in determination of some biochemical parameters. Furthermore, the authors would like to thank Dr. Reffat Eid, the Head of the Electron Microscope unit at the College of Medicine in the KKU for his significant contribution in the histology and electron microscopy studies. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the research group program under Grant Number (R.G.P.1/40/39).


This study was funded by the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia (Grant Number R.G.P.1/40/39).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Shi, J., Abdelwahid, E., & Wei, L. (2011). Apoptosis in anthracycline cardiomyopathy. Current Pediatric Reviews, 7, 329–336.CrossRefGoogle Scholar
  2. 2.
    Thorn, C. F., Oshiro, C., Marsh, S., Hernandez-Boussard, T., McLeod, H., Klein, T. E., et al. (2011). Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenetics and Genomics, 21, 440–446.CrossRefGoogle Scholar
  3. 3.
    Wallace, K. B. (2007). Adriamycin-induced interference with cardiac mitochondrial calcium homeostasis. Cardiovascular Toxicology, 7, 101–107.CrossRefGoogle Scholar
  4. 4.
    Niu, J., Azfer, A., Wang, K., Wang, X., & Kolattukudy, P. E. (2009). Cardiac-targeted expression of soluble Fas attenuates doxorubicin-induced cardiotoxicity in mice. Journal of Pharmacology and Experimental Therapeutics, 328, 740–748.CrossRefGoogle Scholar
  5. 5.
    Kalivendi, S. V., Konorev, E. A., Cunningham, S., Vanamala, S. K., Kaji, E. H., Joseph, J., et al. (2005). Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: Role of mitochondrial reactive oxygen species and calcium. Biochemical Journal, 389, 527–539.CrossRefGoogle Scholar
  6. 6.
    Tsutamoto, T., Wada, A., Maeda, K., Mabuchi, N., Hayashi, M., Tsutsui, T., et al. (2001). Relationship between plasma levels of cardiac natriuretic peptides and soluble Fas: Plasma soluble Fas as a prognostic predictor in patients with congestive heart failure. J Card Fail., 7, 322–328.CrossRefGoogle Scholar
  7. 7.
    Yamaguchi, S., Suzuki, T., Okuyama, M., Nitobe, J., Nakamura, N., Mitsui, Y., et al. (2000). Apoptosis in rat cardiac myocytes induced by Fas ligand: Priming for Fas-mediated apoptosis with doxorubicin. Journal of Molecular and Cellular Cardiology, 32, 881–889.CrossRefGoogle Scholar
  8. 8.
    Wehrens, X. H., & Marks, A. R. (2004). Novel therapeutic approaches for heart failure by normalizing calcium cycling’. Nature Reviews Drug Discovery, 3, 565–573.CrossRefGoogle Scholar
  9. 9.
    Schmidt, U., Hajjar, R. J., Helm, P. A., Kim, C. S., Doye, A. A., & Gwathmey, J. K. (1998). Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. Journal of Molecular and Cellular Cardiology., 30, 1929–1937.CrossRefGoogle Scholar
  10. 10.
    Schmidt, U., Hajjar, R. J., Kim, C. S., Lebeche, D., Doye, A. A., & Gwathmey, J. K. (1999). Human heart failure: cAMP stimulation of SR Ca(2+)-ATPase activity and phosphorylation level of phospholamban. American Journal of Physiology, 277, H474–H480.Google Scholar
  11. 11.
    Marks, A. R. (2013). Calcium cycling proteins and heart failure: Mechanisms and therapeutics. The Journal of Clinical Investigation, 123, 46–52.CrossRefGoogle Scholar
  12. 12.
    Seth, M., Sumbilla, C., Mullen, S. P., Lewis, D., Klein, M. G., Hussain, A., et al. (2004). Sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) gene silencing and remodeling of the Ca2+ signaling mechanism in cardiac myocytes. Proceedings of the National academy of Sciences of the United States of America, 101, 16683–16688.CrossRefGoogle Scholar
  13. 13.
    Dodd, D. A., Atkinson, J. B., Olson, R. D., Buck, S., Cusack, B. J., Fleischer, S., et al. (1993). Doxorubicin cardiomyopathy is associated with a decrease in calcium release channel of the sarcoplasmic reticulum in a chronic rabbit model. J Clin Invest., 91, 1697–1705.CrossRefGoogle Scholar
  14. 14.
    Arai, M., Tomaru, K., Takizawa, T., Sekiguchi, K., Yokoyama, T., Suzuki, T., et al. (1998). Sarcoplasmic reticulum genes are selectively down-regulated in cardiomyopathy produced by doxorubicin in rabbits. Journal of Molecular and Cellular Cardiology, 30, 243–254.CrossRefGoogle Scholar
  15. 15.
    Arai, M., Yoguchi, A., Takizawa, T., Yokoyama, T., Kanda, T., Kurabayashi, M., et al. (2000). Mechanism of doxorubicin-induced inhibition of sarcoplasmic reticulum Ca21-ATPase Gene transcription. Circulation Research, 86, 8–14.CrossRefGoogle Scholar
  16. 16.
    Tada, M. (2003). Calcium cycling proteins of the cardiac sarcoplasmic reticulum. Circulation Journal, 67, 729–737.CrossRefGoogle Scholar
  17. 17.
    Vangheluwe, P., Sipido, K. R., Raeymaekers, L., & Wuytack, F. (2006). New perspectives on the role of SERCA2′s Ca2+ affinity in cardiac function. Biochimica et Biophysica Acta, 1763, 1216–1228.CrossRefGoogle Scholar
  18. 18.
    Fearnley, C. J., Roderick, H. L., & Bootman, M. D. (2011). Calcium signaling in cardiac myocytes. Cold Spring Harbor Perspectives in Biology, 3, a004242.CrossRefGoogle Scholar
  19. 19.
    Jo, S. H., Leblais, V., Wang, P. H., Crow, M. T., & Xiao, R. P. (2002). Phosphatidylinositol 3-kinase functionally compartmentalizes the concurrent G(s) signaling during beta2-adrenergic stimulation. Circulation Research, 91, 46–53.CrossRefGoogle Scholar
  20. 20.
    Gao, M. H., Tang, T., Guo, T., Miyanohara, A., Yajima, T., Pestonjamasp, K., et al. (2008). Adenylyl cyclase type VI increases Akt activity and phospholamban phosphorylation in cardiac myocytes. The Journal of Biological Chemistry., 283, 33527–33535.CrossRefGoogle Scholar
  21. 21.
    Catalucci, D., Latronico, M. V., Ceci, M., Rusconi, F., Young, H. S., Gallo, P., et al. (2009). Akt increases sarcoplasmic reticulum Ca2+ cycling by direct phosphorylation of phospholamban at Thr17. The Journal of Biological Chemistry, 284, 28180–28187.CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Chen, Y., Zhang, M., Tang, Y., Xie, Y., Huang, X., et al. (2014). Doxorubicin induces sarcoplasmic reticulum calcium regulation dysfunction via the decrease of SERCA2 and phospholamban expressions in rats. Cell Biochemistry and Biophysics, 70, 1791–1798.CrossRefGoogle Scholar
  23. 23.
    Zhang, G., Yin, X., Qi, Y., Pendyala, L., Chen, J., Hou, D., et al. (2010). Ghrelin and cardiovascular diseases. Current Cardiology Reviews, 6, 62–70.CrossRefGoogle Scholar
  24. 24.
    Eid, R. A., Alkhateeb, M. A., Eleawa, S., Al-Hashem, F. H., Al-Shraim, M., El-Kott, A. F., et al. (2018). Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Research in Cardiology, 113, 13.CrossRefGoogle Scholar
  25. 25.
    Gnanapavan, S., Kola, B., Bustin, S. A., Morris, D. G., McGee, P., Fairclough, P., et al. (2002). The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. Journal of Clinical Endocrinology and Metabolism, 87, 2988.CrossRefGoogle Scholar
  26. 26.
    Iglesias, M. J., Piñeiro, R., Blanco, M., Gallego, R., Diéguez, C., Gualillo, O., et al. (2004). Lago F growth hormone releasing peptide (ghrelin) is synthesized and secreted by cardiomyocytes. Cardiovascular Research, 62, 481–488.CrossRefGoogle Scholar
  27. 27.
    Baldanzi, G., Filigheddu, N., Cutrupi, S., Catapano, F., Bonissoni, S., Fubini, A., et al. (2002). Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. Journal of Cell Biology, 159, 1029–1037.CrossRefGoogle Scholar
  28. 28.
    Xu, Z., Lin, S., Wu, W., Tan, H., Wang, Z., Cheng, C., et al. (2008). Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms. Toxicology, 247, 133–138.CrossRefGoogle Scholar
  29. 29.
    Fang, H., Hong, Z., Zhang, J., Shen, D. F., Gao, F. F., Sugiyama, K., et al. (2012). Effects of ghrelin on the intracellular calcium concentration in rat aorta vascular smooth muscle cells. Cellular Physiology and Biochemistry., 30, 1299–1309.CrossRefGoogle Scholar
  30. 30.
    Han, D., Huang, W., Ma, S., Chen, J., Gao, L., Liu, T., et al. (2015). Ghrelin improves functional survival of engrafted adipose-derived mesenchymal stem cells in ischemic heart through PI3K/Akt signaling pathway. BioMed Research International. Scholar
  31. 31.
    Lou, H., Danelisen, I., & Singal, P. K. (2005). Involvement of mitogen-activated protein kinases in adriamycininduced cardiomyopathy. The American Journal of Physiology-Heart and Circulatory Physiology, 288, 1925–1930.CrossRefGoogle Scholar
  32. 32.
    Dallak, M. (2018). Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: Effects on DAG/PKC/JNK pathway. Biomedicine & Pharmacotherapy, 105, 299–311.CrossRefGoogle Scholar
  33. 33.
    Li, Y., Hai, J., Li, L., Chen, X., Peng, H., Cao, M., et al. (2013). Administration of ghrelin improves inflammation, oxidative stress, and apoptosis during and after non-alcoholic fatty liver disease development. Endocrin., 43, 376–386.CrossRefGoogle Scholar
  34. 34.
    Işeri, S. O., Sener, G., Saglam, B., Ercan, F., Gedik, N., & Yeğen, B. C. (2008). Ghrelin alleviates biliary obstruction-induced chronic hepatic injury in rats. Regulatory Peptides, 146, 73–79.CrossRefGoogle Scholar
  35. 35.
    Donthi, R. V., Huisamen, B., & Lochner, A. (2000). Effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovascular Drugs and Therapy, 14, 463–470.CrossRefGoogle Scholar
  36. 36.
    Pentassuglia, L., Heim, P., Lebboukh, S., Morandi, C., Xu, L., & Brink, M. (2016). Neuregulin-1β promotes glucose uptake via PI3K/Akt in neonatal rat cardiomyocytes. American Journal of Physiology Endocrinology and Metabolism, 310, E782–E794.CrossRefGoogle Scholar
  37. 37.
    Dong, J., Gao, C., Liu, J., Cao, Y., & Tian, L. (2016). TSH inhibits SERCA2a and the PKA/PLN pathway in rat cardiomyocytes. Oncotarget, 7, 39207–39215.Google Scholar
  38. 38.
    Xu, J., Han, Q., Shi, H., Liu, W., Chu, T., & Li, H. (2017). Role of PKA in the process of neonatal cardiomyocyte hypertrophy induced by urotensin II. International Journal of Molecular Medicine, 40, 499–504.CrossRefGoogle Scholar
  39. 39.
    Frutos, M. G., Cacicedo, L., Méndez, C. F., Vicent, D., González, M., & Sánchez-Franco, F. (2007). Pituitary alterations involved in the decline of growth hormone gene expression in the pituitary of aging rats. Journals of Gerontology Series A Biological Sciences and Medical Sciences, 62, 585–597.CrossRefGoogle Scholar
  40. 40.
    Buehlmeyer, K., Doering, F., Daniel, H., Petridou, A., Mougios, V., Schulz, T., et al. (2007). IGF-1 gene expression in rat colonic mucosa after different exercise volumes. Journal of Sports Science and Medicine, 6, 434–440.Google Scholar
  41. 41.
    Zhao, X., Zhang, J., Tong, N., Chen, Y., & Luo, Y. (2012). Protective effects of berberine on doxorubicin-induced hepatotoxicity in mice. Biological &/and Pharmaceutical Bulletin, 35(5), 796–800.CrossRefGoogle Scholar
  42. 42.
    Mohan, M., Kamble, S., Gadhi, P., & Kasture, S. (2010). Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food and Chemical Toxicology, 4, 436–440.CrossRefGoogle Scholar
  43. 43.
    Jensen, R. A., Acton, E. M., & Peters, H. (1984). Doxorubicin cardiotoxicity in the rat: Comparison of electrocardiogram, transmembrane potential, and structural effect. Journal of Cardiovascular Pharmacology, 6, 186–200.CrossRefGoogle Scholar
  44. 44.
    Siveski-Iliskovic, N., Kaul, N., & Singal, P. K. (1994). Probucol promotes endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. Circulation, 89, 2829–2835.CrossRefGoogle Scholar
  45. 45.
    Childs, A. C., Phaneuf, S. L., Dirks, A. J., Phillips, T., & Leeuwenburgh, C. (2002). Doxorubicin treatment in vivo causes cytochrome C release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2: Bax ratio. Cancer Research, 62, 4592–4598.Google Scholar
  46. 46.
    Miyata, S., Takemura, G., Kosai, K., Takahashi, T., Esaki, M., Li, L., et al. (2010). Anti-Fas gene therapy prevents doxorubicin-induced acute cardiotoxicity through mechanisms independent of apoptosis. American Journal of Pathology, 176, 687–698.CrossRefGoogle Scholar
  47. 47.
    Tian, S., Hirshfield, K. M., Jabbour, S., Toppmeyer, D., Haffty, B. G., Khan, A. J., et al. (2014). Serum biomarkers for the detection of cardiac toxicity after chemotherapy and radiation therapy in breast cancer patients. Frontiers in Oncology, 4, 277.CrossRefGoogle Scholar
  48. 48.
    Chatterjee, K., Zhang, J., Honbo, N., & Karlinerb, J. S. (2010). Doxorubicin cardiomyopathy. Cardiology, 115, 155–162.CrossRefGoogle Scholar
  49. 49.
    Mitry, M. A., & Edwards, J. G. (2016). Doxorubicin induced heart failure: Phenotype and molecular mechanisms. International Journal of Cardiology Heart & Vasculature., 10, 17–24.CrossRefGoogle Scholar
  50. 50.
    Warpe, V. S., Mali, V. R., Arulmozhi, S., Bodhankar, S. L., & Mahadik, K. R. (2015). Cardioprotective effect of ellagic acid on doxorubicin induced cardiotoxicity in wistar rats. Journal of Acute Medicine, 5, 1–8.CrossRefGoogle Scholar
  51. 51.
    Nagaya, N., Uematsu, M., Kojima, M., Ikeda, Y., Yoshihara, F., Shimizu, W., et al. (2001). Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation, 104, 1430–1435.CrossRefGoogle Scholar
  52. 52.
    Chen, Y., Ji, X. W., Zhang, A. Y., Lv, J. C., Zhang, J. G., & Zhao, C. H. (2014). Prognostic value of plasma ghrelin in predicting the outcome of patients with chronic heart failure. Archives of Medical Research, 45, 263–269.CrossRefGoogle Scholar
  53. 53.
    Khatib, M. N., Shankar, A., Kirubakaran, R., Agho, K., Simkhada, P., Gaidhane, S., et al. (2015). Effect of ghrelin on mortality and cardiovascular outcomes in experimental rat and mice models of heart failure: A systematic review and meta-analysis. PLoS ONE, 10, e0126697.CrossRefGoogle Scholar
  54. 54.
    Pu, W. T., Ma, Q., & Izumo, S. (2003). NFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro. Circulation Research, 92, 725–731.CrossRefGoogle Scholar
  55. 55.
    Tanaka, M., Ito, H., Adachi, S., Akimoto, H., Nishikawa, T., Kasajima, T., et al. (1994). Hypoxia induced apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circulation Research, 75, 426–433.CrossRefGoogle Scholar
  56. 56.
    Venkatesan, B., Prabhu, S. D., Venkatachalam, K., Mummidi, S., Valente, A. J., Clark, R. A., et al. (2010). WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling, 22, 809–820.CrossRefGoogle Scholar
  57. 57.
    Das, J., Ghosh, J., Manna, P., & Sil, P. C. (2011). Taurine suppresses doxorubicin-triggered oxidative stress and cardiac apoptosis in rat via up-regulation of PI3-K/Akt and inhibition of p53, p38-JNK. Biochemical Pharmacology, 81, 891–899.CrossRefGoogle Scholar
  58. 58.
    Lee, B. S., Oh, J., Kang, S. K., Park, S., Lee, S. H., Choi, D., et al. (2015). Insulin protects cardiac myocytes from doxorubicin toxicity by Sp1-mediated transactivation of surviving. PLoS ONE. Scholar
  59. 59.
    Yu, W., Sun, H., Zha, W., Cui, W., Xu, L., Min, Q., et al. (2017). Apigenin attenuates adriamycin-induced cardiomyocyte. Apoptosis via the PI3K/AKT/mTOR pathway. Evidence-Based Complementary and Alternative Medicine, 25, 90676. Scholar
  60. 60.
    Piddo, A. M., Sánchez, M. I., Sapag-Hagar, M., Corbalán, R., Foncea, R., Ebensperger, R., et al. (1996). Cyclic AMP-dependent protein kinase and mechanical heart function in ventricular hypertrophy induced by pressure overload or secondary to myocardial infarction. Journal of Molecular and Cellular Cardiology, 28, 1073–1083.CrossRefGoogle Scholar
  61. 61.
    Zakhary, D. R., Moravec, C. S., Stewart, R. W., & Bond, M. (1999). Protein kinase A (PKA)-dependent troponin-I phosphorylation and PKA regulatory subunits are decreased in human dilated cardiomyopathy. Circulation, 99, 505–510.CrossRefGoogle Scholar
  62. 62.
    Anand, I., Ferrari, R., Kalra, G., Wahi, P., Poole-Wilson, P., & Harris, P. (1989). Edema of cardiac origin: Studies of body water and sodium, renal function, hemodynamic indexes and plasma hormones in untreated congestive cardiac failure. Circulation, 80, 299–305.CrossRefGoogle Scholar
  63. 63.
    Friberg, L., Werner, S., Eggertsen, G., & Ahnve, S. (2000). Growth hormone and insulin-like growth factor-1 in acute myocardial infarction. European Heart Journal, 21, 1547–1554.CrossRefGoogle Scholar
  64. 64.
    Langer, S. W. (2014). Dexrazoxane for the treatment of chemotherapy-related side effects. Cancer Manag Res., 6, 357–363.CrossRefGoogle Scholar
  65. 65.
    Hasinoff, B. B., Kuschak, T. I., Yalowich, J. C., & Creighton, A. M. (1995). A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochemical Pharmacology, 50(7), 953–958.CrossRefGoogle Scholar
  66. 66.
    Holcenberg, J. S., Tutsch, K. D., Earhart, R. H., et al. (1986). Phase I study of ICRF-187 in pediatric cancer patients and comparison of its pharmacokinetics in children and adults. Cancer Treatment Reports, 70(6), 703–709.Google Scholar
  67. 67.
    Liesmann, J., Belt, R., Haas, C., & Hoogstraten, B. (1981). Phase I evaluation of ICRF-187 (NSC-169780) in patients with advanced malignancy. Cancer, 47(8), 1959–1962.CrossRefGoogle Scholar
  68. 68.
    Vogel, C. L., Gorowski, E., Davila, E., et al. (1987). Phase I clinical trial and pharmacokinetics of weekly ICRF-187 (NSC 169780) infusion in patients with solid tumors. Investigational New Drugs, 5(2), 187–198.Google Scholar
  69. 69.
    Marty, M., Espié, M., Llombart, A., Monnier, A., Rapoport, B. L., & Stahalova, V. (2006). Dexrazoxane Study Group multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy. Annals of Oncology, 17(4), 614–622.CrossRefGoogle Scholar
  70. 70.
    Mouridsen, H. T., Langer, S. W., Buter, J., et al. (2007). Treatment of anthracycline extravasation with Savene (dexrazoxane): Results from two prospective clinical multicentre studies. Annals of Oncology, 18(3), 546–550.CrossRefGoogle Scholar
  71. 71.
    Tebbi, C. K., London, W. B., Friedman, D., et al. (2007). Dexrazoxane-associated risk for acute myeloid leukemia/myelodysplastic syndrome and other secondary malignancies in pediatric Hodgkin’s disease. Journal of Clinical Oncology, 25, 493–500.CrossRefGoogle Scholar
  72. 72.
    Garin, M. C., Burns, C. M., Kaul, S., & Cappola, A. R. (2013). The human experience with ghrelin administration. Journal of Clinical Endocrinology and Metabolism, 98(5), 1826–1837.CrossRefGoogle Scholar
  73. 73.
    Adachi, S., Takiguchi, S., Okada, K., et al. (2010). Effects of ghrelin administration after total gastrectomy: A prospective, randomized, placebo-controlled phase II study. Gastroenterology, 138, 1312–1320.CrossRefGoogle Scholar
  74. 74.
    Hiura, Y., Takiguchi, S., Yamamoto, K., et al. (2012). Fall in plasma ghrelin concentrations after cisplatin-based chemotherapy in esophageal cancer patients. Int J Clin Oncol., 17, 316–323.CrossRefGoogle Scholar
  75. 75.
    Lambert, E., Lambert, G., Ika-Sari, C., et al. (2011). Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension, 58, 43–50.CrossRefGoogle Scholar
  76. 76.
    Vestergaard, E. T., Hansen, T. K., Gormsen, L. C., et al. (2007). Constant intravenous ghrelin infusion in healthy young men: Clinical pharmacokinetics and metabolic effects. American Journal of Physiology Endocrinology and metabolism, 292, E1829–E1836.CrossRefGoogle Scholar
  77. 77.
    Kluge, M., Schussler, P., Uhr, M., Yassouridis, A., & Steiger, A. (2007). Ghrelin suppresses secretion of luteinizing hormone in humans. The Journal of Clinical Endocrinology & Metabolism, 92, 3202–3205.CrossRefGoogle Scholar
  78. 78.
    Kluge, M., Uhr, M., Bleninger, P., Yassouridis, A., & Steiger, A. (2009). Ghrelin suppresses secretion of FSH in males. Clinical Endocrinology (Oxford), 70, 920–923.CrossRefGoogle Scholar
  79. 79.
    Huda, M. S., Mani, H., Dovey, T., et al. (2010). Ghrelin inhibits autonomic function in healthy controls, but has no effect on obese and vagotomized subjects. Clinical Endocrinology—Oxford, 73, 678–685.CrossRefGoogle Scholar
  80. 80.
    Kluge, M., Schussler, P., Bleninger, P., et al. (2008). Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Psychoneuroendocrinology, 33, 497–506.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, College of ScienceKing Khalid UniversityAbhaSaudi Arabia
  2. 2.Department of Physiology, College of MedicineKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations