Advertisement

Bupivacaine Toxicity Increases Transmural Dispersion of Repolarization, Developing of a Brugada-like Pattern and Ventricular Arrhythmias, Which is Reversed by Lipid Emulsion Administration. Study in an Experimental Porcine Model

  • C. De Diego
  • M. ZaballosEmail author
  • O. Quintela
  • R. Sevilla
  • D. Callejo
  • J. González-Panizo
  • Mª. J. Anadón
  • J. Almendral
Article

Abstract

Unintentional administration of bupivacaine may be associated with electrocardiogram changes that promote the development cardiac arrhythmias. Ventricular repolarization markers (corrected QT, QT dispersion, Tpeak–Tend and Tpeak–Tend dispersion) are useful to predict cardiac arrhythmias. We aim to investigate the effects of bupivacaine on the transmural dispersion of repolarization and their reversion following intravenous lipid emulsion (ILE) administration. Fourteen pigs were anaesthetized with thiopental and sevoflurane and underwent tracheal intubation. After instrumentation, a 4 mg kg-bolus of bupivacaine was administrated followed by an infusion of 100 µg kg−1 min−1. QT interval, QTc:QT corrected by heart rate, Tpeak-to-Tend interval and QT and Tpeak-to-Tend dispersion were determined in a sequential fashion: after bupivacaine (at 1 min, 5 min and 10 min) and after ILE (1.5 mL kg−1 over 1 min followed by an infusion of 0.25 mL kg−1 min−1). Three additional animals received only ILE (control group). Bupivacaine significantly prolonged QT interval (∆:36%), QT dispersion (∆:68%), Tpeak-to-Tend (∆:163%) and Tpeak-to-Tend dispersion (∆:98%), from baseline to 10 min. Dispersion of repolarization was related to lethal arrhythmias [three events, including asystole, sustained ventricular tachycardia (VT)] and repeated non-sustained VT (4/14, 28%). A Brugada-like-ECG pattern was visualized at V1–4 leads in 5/14 pigs (35%). ILE significantly decreased the alterations induced by bupivacaine, with the termination of VT within 10 min. No ECG changes were observed in control group. Bupivacaine toxicity is associated with an increase of transmural dispersion of repolarization, the occurrence of a Brugada-like pattern and malignant VA. ILE reverses the changes in dispersion of repolarization, favouring the disappearance of the Brugada-like pattern and VT.

Keywords

Bupivacaine Transmural dispersion of repolarisation Brugada-like Lipid emulsions 

Notes

Acknowledgements

We thank Conn Hastings, PhD, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

This work was supported by a research Grant from the Ministry of Economy, Industry and Competitiveness of Spain, and Fondos FEDER. Reference: 11/00575.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflicts of interest related with this manuscript.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Albright, G. A. (1979). Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology, 51, 285–287.CrossRefGoogle Scholar
  2. 2.
    Antzelevitch, C., Di Diego, J. M., & Argenziano, M. (2017). Tpeak–Tend as a predictor of ventricular arrhythmogenesis. International Journal of Cardiology, 15, 75–76.CrossRefGoogle Scholar
  3. 3.
    Antzelevitch, C., & Oliva, A. (2006). Amplification of spatial dispersion of repolarization underlies sudden cardiac death associated with catecholaminergic polymorphic VT, long QT, short QT and Brugada syndromes. Journal of Internal Medicine, 259, 48–58.CrossRefGoogle Scholar
  4. 4.
    Antzelevitch, C., Sicouri, S., Di Diego, J. M., Burashnikov, A., Viskin, S., Shimizu, W., et al. (2007). Does Tpeak–Tend provide an index of transmural dispersion of repolarization? Heart Rhythm, 4, 1114–1116.CrossRefGoogle Scholar
  5. 5.
    Bardsley, H., Gristwood, R., Baker, H., Watson, N., & Nimmo, W. (1998). A comparison of the cardiovascular effects of levobupivacaine and rac-bupivacaine following intravenous administration to healthy volunteers. British Journal of Clinical Pharmacology, 46, 245–249.CrossRefGoogle Scholar
  6. 6.
    Boschert, K., Flecknell, P. A., Fosse, R. T., Framstad, T., Ganter, M., Sjøstrand, U., et al. (1996). Ketamine and its use in pigs. Laboratory Animals, 30, 209–219.CrossRefGoogle Scholar
  7. 7.
    Candela, D., Louart, G., Bousquet, P. J., Muller, L., Nguyen, M., Boyer, J. C., et al. (2010). Reversal of bupivacaine-induced cardiac electrophysiologic changes by two lipid emulsions in anesthetized and mechanically ventilated piglets. Anesthesia & Analgesia, 110, 1473–1479.CrossRefGoogle Scholar
  8. 8.
    Castle, N. A. (1990). Bupivacaine inhibits the transient outward K+ current but not the inward rectifier in rat ventricular myocytes. Journal of Pharmacology and Experimental Therapeutics, 255, 1038–1046.Google Scholar
  9. 9.
    Castro Hevia, J., Antzelevitch, C., Tornés Bárzaga, F., Dorantes Sánchez, M., Dorticós Balea, F., Zayas Molina, R., et al. (2006). Tpeak–Tend and Tpeak–Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. Journal of the American College of Cardiology, 47, 1828–1834.CrossRefGoogle Scholar
  10. 10.
    Clarkson, C. W., & Hondeghem, L. M. (1985). Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology, 62, 396–405.CrossRefGoogle Scholar
  11. 11.
    Di Gregorio, G., Neal, J. M., Rosenquist, R. W., & Weinberg, G. L. (2010). Clinical presentation of local anesthetic systemic toxicity: A review of published cases, 1979 to 2009. Regional Anesthesia and Pain Medicine, 35, 181–187.CrossRefGoogle Scholar
  12. 12.
    El-Boghdadly, K., Pawa, A., & Chin, K. J. (2018). Local anesthetic systemic toxicity: Current perspectives. Local and Regional Anesthesia, 8, 35–44.CrossRefGoogle Scholar
  13. 13.
    Fettiplace, M. R., & Weinberg, G. (2018). The mechanisms underlying lipid resuscitation therapy. Regional Anesthesia and Pain Medicine, 43, 138–149.CrossRefGoogle Scholar
  14. 14.
    Hoegberg, L. C., Bania, T. C., Lavergne, V., Bailey, B., Turgeon, A. F., Thomas, S. H., et al. (2016). Systematic review of the effect of intravenous lipid emulsion therapy for local anesthetic toxicity. Clinical Toxicology, 54, 167–193.CrossRefGoogle Scholar
  15. 15.
    Holmstrom, A., & Akeson, J. (2003). Cerebral blood flow at 0.5 and 1.0 minimal alveolar concentrations of desflurane or sevoflurane compared with isoflurane in normoventilated pigs. Journal of Neurosurgical Anesthesiology, 15, 90–97.CrossRefGoogle Scholar
  16. 16.
    Huang, Y. F., Pryor, M. E., Mather, L. E., & Veering, B. T. (1998). Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesthesia & Analgesia, 86, 797–804.CrossRefGoogle Scholar
  17. 17.
    Kasten, G. W. (1986). Amide local anesthetic alterations of effective refractory period temporal dispersion: relationship to ventricular arrhythmias. Anesthesiology, 65, 61–66.CrossRefGoogle Scholar
  18. 18.
    Lefrant, J. Y., de La Coussaye, J. E., Ripart, J., Muller, L., Lalourcey, L., Peray, P. A., et al. (2001). The comparative electrophysiologic and hemodynamic effects of a large dose of ropivacaine and bupivacaine in anesthetized and ventilated piglets. Anesthesia & Analgesia, 93, 1598–1605.CrossRefGoogle Scholar
  19. 19.
    Letsas, K. P., Weber, R., Astheimer, K., Kalusche, D., & Arentz, T. (2010). Tpeak–Tend interval and Tpeak–Tend/QT ratio as markers of ventricular tachycardia inducibility in subjects with Brugada ECG phenotype. Europace, 12, 271–274.CrossRefGoogle Scholar
  20. 20.
    Ok, S. H., Hong, J. M., Lee, S. H., & Sohn, J. T. (2018). Lipid emulsion for treating local anesthetic systemic toxicity. International Journal of Medical Sciences, 14, 713–722.CrossRefGoogle Scholar
  21. 21.
    Phillips, N., Priestley, M., Denniss, A. R., & Uther, J. B. (2003). Brugada-type electrocardiographic pattern induced by epidural bupivacaine. Anesthesia & Analgesia, 97, 264–267.CrossRefGoogle Scholar
  22. 22.
    Rossner, K. L., & Freese, K. J. (1997). Bupivacaine inhibition of L-type calcium current in ventricular cardiomyocytes of hamster. Anesthesiology, 87, 926–934.CrossRefGoogle Scholar
  23. 23.
    Schwoerer, A. P., Zenouzi, R., Ehmke, H., & Friederich, P. (2011). Bupivacaine destabilizes action potential duration in cellular and computational models of long QT syndrome 1. Anesthesia & Analgesia, 113, 1365–1373.CrossRefGoogle Scholar
  24. 24.
    Sintra Grilo, L., Carrupt, P. A., Abriel, H., & Daina, A. (2011). Block of the hERG channel by bupivacaine: Electrophysiological and modeling insights towards stereochemical optimization. European Journal of Medicinal Chemistry, 46, 3486–3498.CrossRefGoogle Scholar
  25. 25.
    Topilski, I., Rogowski, O., Rosso, R., Justo, D., Copperman, Y., Glikson, M., et al. (2007). The morphology of the QT interval predicts torsade de pointes during acquired bradyarrhythmias. Journal of the American College of Cardiology, 23, 320–328.CrossRefGoogle Scholar
  26. 26.
    Tse, G., Gong, M., Wong, W. T., Georgopoulos, S., Letsas, K. P., Vassiliou, V. S., et al. (2017). The T(peak) - T(end) interval as an electrocardiographic risk marker of arrhythmic and mortality outcomes: A systematic review and meta-analysis. Heart Rhythm, 14, 1131–1137.CrossRefGoogle Scholar
  27. 27.
    Tse, G., Li, K. H. C., Li, G., Liu, T., Bazoukis, G., Wong, W. T., et al. (2018). Higher dispersion measures of conduction and repolarization in type 1 compared to non-type 1 brugada syndrome patients: An electrocardiographic study from a single center. Front Cardiovasc Med, 4, 132.CrossRefGoogle Scholar
  28. 28.
    Valenzuela, C., Snyders, D. J., Bennett, P. B., Tamargo, J., & Hondeghem, L. M. (1995). Stereoselective block of cardiac sodium channels by bupivacaine in guinea pig ventricular myocytes. Circulation, 15, 3014–3024.CrossRefGoogle Scholar
  29. 29.
    Vernooy, K., Sicouri, S., Dumaine, R., Hong, K., Oliva, A., Burashnikov, E., et al. (2006). Genetic and biophysical basis for bupivacaine-induced ST segment elevation and VT/VF. Anesthesia unmasked Brugada syndrome. Heart Rhythm, 3, 1074–1078.CrossRefGoogle Scholar
  30. 30.
    Yan, G. X., & Antzelevitch, C. (1998). Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome. Circulation, 98, 1928–1936.CrossRefGoogle Scholar
  31. 31.
    Zaballos, M., Sevilla, R., González, J., Callejo, D., de Diego, C., Almendral, J., et al. (2016). Analysis of the temporal regression of the QRS widening induced by bupivacaine after Intralipid administration. Study in an experimental porcine model. Revista Española de Anestesiología y Reanimación, 63, 13–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyHospital Universitario de TorreviejaAlicanteSpain
  2. 2.Department of ToxicologyComplutense UniversityMadridSpain
  3. 3.Department of AnaesthesiologyHospital Universitario Gregorio MarañónMadridSpain
  4. 4.Department of ChemistryInstituto Nacional de Toxicología y Ciencias ForensesMadridSpain
  5. 5.Cardiology DepartmentRoyal Papworth Hospital NHS Trust-Cambridge University Health Partners CambridgeCambridgeUK
  6. 6.CEU San Pablo UniversityMadridSpain
  7. 7.Grupo Hospital de MadridMadridSpain

Personalised recommendations