Toxic Effects of Particulate Matter Derived from Dust Samples Near the Dzhidinski Ore Processing Mill, Eastern Siberia, Russia

  • Katherine E. Zychowski
  • Abigail Wheeler
  • Bethany Sanchez
  • Molly Harmon
  • Christina R. Steadman Tyler
  • Guy Herbert
  • Selita N. Lucas
  • Abdul-Mehdi Ali
  • Sumant Avasarala
  • Nitesh Kunda
  • Paul Robinson
  • Pavan Muttil
  • Jose M. Cerrato
  • Barry Bleske
  • Olga Smirnova
  • Matthew J. CampenEmail author


Ambient particulate matter (PM) is associated with increased mortality and morbidity, an effect influenced by the metal components of the PM. We characterized five sediment samples obtained near a tungsten–molybdenum ore-processing complex in Zakamensk, Russia for elemental composition and PM toxicity with regard to pulmonary, vascular, and neurological outcomes. Elemental and trace metals analysis of complete sediment and PM10 (the respirable fraction, < 10 µm mass mean aerodynamic diameter) were performed using inductively coupled plasma optical emission spectrometry (ICP-OES) and mass spectrometry (ICP-MS). Sediment samples and PM10 consisted largely of silicon and iron and silicon and sodium, respectively. Trace metals including manganese and uranium in the complete sediment, as well as copper and lead in the PM10 were observed. Notably, metal concentrations were approximately 10 × higher in the PM10 than in the sediment. Exposure to 100 µg of PM10 via oropharyngeal aspiration in C56BL/6 mice resulted in pulmonary inflammation across all groups. In addition, mice exposed to three of the five PM10 samples exhibited impaired endothelial-dependent relaxation, and correlative analysis revealed associations between pulmonary inflammation and levels of lead and cadmium. A tendency for elevated cortical ccl2 and Tnf-α mRNA expression was induced by all samples and significant upregulation was noted following exposure to PM10 samples Z3 and Z4, respectively. Cortical Nqo1 mRNA levels were significantly upregulated in mice exposed to PM10 Z2. In conclusion, pulmonary exposure to PM samples from the Zakamensk region sediments induced varied pulmonary and systemic effects that may be influenced by elemental PM composition. Further investigation is needed to pinpoint putative drivers of neurological outcomes.


Cardiovascular Toxicology Neuroinflammation Particulate matter Respiratory toxicology PM10 



This work has been supported by RFBR (Grant No. 16-05-01041) and NIEHS (Grant No. ES026673). Katherine E. Zychowski received funding support from NIGMS (Grant No. K12GM088021) through the ASERT-IRACDA program at UNM and NIEHS (Grant No. K99ES029104). We thank Dr. Jesse Denson for editing this manuscript. A special thank you to Vladimir Belogolovov for collection of the dust samples. The BRO-Baikal is a civil society focused on the protection of Lake Baikal and its tributaries based in Ulan-Ude, the capital of the Republic of Buryatia, Russia. Their US partner is the Southwest Research and Information Center (SRIC), is focused on human and natural resource impacts of mining including the prevention of air and water contamination from residual mining waste and remediation of mines in the arid southwestern US. This fantastic collaboration made this work possible.

Supplementary material

12012_2019_9507_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 KB)


  1. 1.
    Aragon, M., Erdely, A., Bishop, L., Salmen, R., Weaver, J., Liu, J., Hall, P., Eye, T., Kodali, V., & Zeidler-Erdely, P. (2016). MMP-9-dependent serum-borne bioactivity caused by multiwalled carbon nanotube exposure induces vascular dysfunction via the CD36 scavenger receptor. Toxicological Sciences, 150, 488–498.CrossRefGoogle Scholar
  2. 2.
    Aragon, M. J., Chrobak, I., Brower, J., Roldan, L., Fredenburgh, L. E., McDonald, J. D., & Campen, M. J. (2015). Inflammatory and vasoactive effects of serum following inhalation of varied complex mixtures. Cardiovascular Toxicology, 16(2), 1–9.Google Scholar
  3. 3.
    Aragon, M. J., Topper, L., Tyler, C. R., Sanchez, B., Zychowski, K., Young, T., Herbert, G., Hall, P., Erdely, A., & Eye, T. 2017. Serum-borne bioactivity caused by pulmonary multiwalled carbon nanotubes induces neuroinflammation via blood–brain barrier impairment. Proceedings of the National Academy of Sciences United States of America, 114, E1968–E1976.CrossRefGoogle Scholar
  4. 4.
    Bajpai, R., Waseem, M., & Kaw, J. L. (1993). Pulmonary response to cadmium and nickel coated fly ash. Journal of Environmental Pathology, Toxicology and Oncology, 13, 251–257.Google Scholar
  5. 5.
    Bell, M. L., Ebisu, K., Peng, R. D., Samet, J. M., & Dominici, F. (2009). Hospital admissions and chemical composition of fine particle air pollution. American Journal of Respiratory and Critical Care Medicine, 179, 1115–1120.CrossRefGoogle Scholar
  6. 6.
    Block, M. L., & Calderón-Garcidueñas, L. (2009). Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32, 506–516.CrossRefGoogle Scholar
  7. 7.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  8. 8.
    Brook, R. D., Brook, J. R., Urch, B., Vincent, R., Rajagopalan, S., & Silverman, F. (2002). Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults. Circulation, 105, 1534–1536.CrossRefGoogle Scholar
  9. 9.
    Brook, R. D., Rajagopalan, S., Pope, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., & Mittleman, M. A. (2010). Particulate matter air pollution and cardiovascular disease. Circulation, 121, 2331–2378.CrossRefGoogle Scholar
  10. 10.
    Campbell, A., Araujo, J. A., Li, H., Sioutas, C., & Kleinman, M. (2009). Particulate matter induced enhancement of inflammatory markers in the brains of apolipoprotein E knockout mice. Journal of Nanoscience and Nanotechnology, 9, 5099–5104.CrossRefGoogle Scholar
  11. 11.
    Campbell, A., Oldham, M., Becaria, A., Bondy, S. C., Meacher, D., Sioutas, C., Misra, C., Mendez, L. B., & Kleinman, M. (2005). Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology, 26, 133–140.CrossRefGoogle Scholar
  12. 12.
    Campen, M. J., Nolan, J. P., Schladweiler, M. C. J., Kodavanti, U. P., Costa, D. L., & Watkinson, W. P. (2002). Cardiac and thermoregulatory effects of instilled particulate matter-associated transition metals in healthy and cardiopulmonary-compromised rats. Journal of Toxicology and Environmental Health Part A, 65, 1615–1631.CrossRefGoogle Scholar
  13. 13.
    Campen, M. J., Nolan, J. P., Schladweiler, M. C. J., Kodavanti, U. P., Evansky, P. A., Costa, D. L., & Watkinson, W. P. (2001). Cardiovascular and thermoregulatory effects of inhaled PM-associated transition metals: A potential interaction between nickel and vanadium sulfate. Toxicological Sciences, 64, 243–252.CrossRefGoogle Scholar
  14. 14.
    Christophersen, D. V., Jacobsen, N. R., Jensen, D. M., Kermanizadeh, A., Sheykhzade, M., Loft, S., Vogel, U., Wallin, H., & Møller, P. (2016). Inflammation and vascular effects after repeated intratracheal instillations of carbon black and lipopolysaccharide. PLoS ONE, 11, e0160731.CrossRefGoogle Scholar
  15. 15.
    Costa, D. L., & Dreher, K. L. (1997). Bioavailable transition metals in particulate matter mediate cardiopulmonary injury in healthy and compromised animal models. Environmental Health Perspectives, 105, 1053.Google Scholar
  16. 16.
    Cung, H., Aragon, M. J., Zychowski, K., Anderson, J. R., Nawarskas, J., Roldan, C., Sood, A., Qualls, C., & Campen, M. J. (2015). Characterization of a novel endothelial biosensor assay reveals increased cumulative serum inflammatory potential in stabilized coronary artery disease patients. Journal of Translational Medicine, 13, 99.CrossRefGoogle Scholar
  17. 17.
    Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L., & Samet, J. M. (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA, 295, 1127–1134.CrossRefGoogle Scholar
  18. 18.
    Dominici, F., Peng, R. D., Ebisu, K., Zeger, S. L., Samet, J. M., & Bell, M. L. (2007). Does the effect of PM10 on mortality depend on PM nickel and vanadium content? A reanalysis of the NMMAPS data. Environmental Health Perspectives, 115, 1701.CrossRefGoogle Scholar
  19. 19.
    Dreher, K. L., Jaskot, R. H., Lehmann, J. R., Richards, J. H., Ghio, J. K. M. A. J., & Costa, D. L. (1997). Soluble transition metals mediate residual oil fly ash induced acute lung injury. Journal of Toxicology and Environmental Health Part A, 50, 285–305.CrossRefGoogle Scholar
  20. 20.
    Dye, J. A., Lehmann, J. R., McGee, J. K., Winsett, D. W., Ledbetter, A. D., Everitt, J. I., Ghio, A. J., & Costa, D. L. (2001). Acute pulmonary toxicity of particulate matter filter extracts in rats: Coherence with epidemiologic studies in Utah Valley residents. Environmental Health Perspectives, 109, 395.Google Scholar
  21. 21.
    Haberzettl, P., Bhatnagar, A., & Conklin, D. J. 2014. Particulate matter and oxidative stress–pulmonary and cardiovascular targets and consequences. In Laher I (Eds.), Systems biology of free radicals and antioxidants (pp. 1557–1586). Berlin: Springer.CrossRefGoogle Scholar
  22. 22.
    Harmon, M. E., Lewis, J., Miller, C., Hoover, J., Ali, A.-M. S., Shuey, C., Cajero, M., Lucas, S., Zychowski, K., & Pacheco, B. 2017. Residential proximity to abandoned uranium mines and serum inflammatory potential in chronically exposed Navajo communities. Journal of Exposure Science and Environmental Epidemiology, 27(4), 365CrossRefGoogle Scholar
  23. 23.
    Imetkhenov, A., Dorzhiev, T., Maksarova, D., & Manketova, A. 2015. Effects of technogenic pollution of the Dzhidinsky tungsten-molybdenum plant on the health of the children of Zakamensk (Republic of Buryatia). Bulletin of Buryat State University, pp. 1–2.Google Scholar
  24. 24.
    Kasimov, N. S., Kosheleva, N. E., & Timofeev, I. V. (2016). Ecological and geochemical assessment of woody vegetation in tungsten-molybdenum mining area (Buryat Republic, Russia). In IOP Publishing, p. 012026.Google Scholar
  25. 25.
    Keil, D., Buck, B., Goossens, D., Teng, Y., Leetham, M., Murphy, L., Pollard, J., Eggers, M., McLaurin, B., & Gerads, R. (2016). Immunotoxicological and neurotoxicological profile of health effects following subacute exposure to geogenic dust from sand dunes at the Nellis Dunes Recreation Area, Las Vegas, NV. Toxicology and Applied Pharmacology, 291, 1–12.CrossRefGoogle Scholar
  26. 26.
    Kleinman, M. T., Araujo, J. A., Nel, A., Sioutas, C., Campbell, A., Cong, P. Q., Li, H., & Bondy, S. C. (2008). Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicology Letters, 178, 127–130.CrossRefGoogle Scholar
  27. 27.
    Kodavanti, U. P., Hauser, R., Christiani, D. C., Meng, Z. H., McGee, J., Ledbetter, A., Richards, J., & Costa, D. L. (1998). Pulmonary responses to oil fly ash particles in the rat differ by virtue of their specific soluble metals. Toxicological Sciences, 43, 204–212.Google Scholar
  28. 28.
    Kodavanti, U. P., Schladweiler, M. C. J., Richards, J. R., & Costa, D. L. (2001). Acute lung injury from intratracheal exposure to fugitive residual oil fly ash and its constituent metals in normoand spontaneously hypertensive rats. Inhalation Toxicology, 13, 37–54.CrossRefGoogle Scholar
  29. 29.
    Levesque, S., Taetzsch, T., Lull, M. E., Johnson, J. A., McGraw, C., & Block, M. L. (2013). The role of MAC1 in diesel exhaust particle-induced microglial activation and loss of dopaminergic neuron function. Journal of Neurochemistry, 125, 756–765.CrossRefGoogle Scholar
  30. 30.
    Levesque, S., Taetzsch, T., Lull, M. E., Kodavanti, U., Stadler, K., Wagner, A., Johnson, J. A., Duke, L., Kodavanti, P., & Surace, M. J. (2011). Diesel exhaust activates and primes microglia: Air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environmental Health Perspectives, 119, 1149.CrossRefGoogle Scholar
  31. 31.
    Lippmann, M., Ito, K., Hwang, J.-S., Maciejczyk, P., & Chen, L.-C. (2006). Cardiovascular effects of nickel in ambient air. Environmental Health Perspectives, 114, 1662.CrossRefGoogle Scholar
  32. 32.
    Liu, Q., Babadjouni, R., Radwanski, R., Cheng, H., Patel, A., Hodis, D. M., He, S., Baumbacher, P., Russin, J. J., & Morgan, T. E. (2016). Stroke damage is exacerbated by nano-size particulate matter in a mouse model. PLoS ONE, 11, e0153376.CrossRefGoogle Scholar
  33. 33.
    Livak, K. J., & Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25, 402–408.CrossRefGoogle Scholar
  34. 34.
    MohanKumar, S. M. J., Campbell, A., Block, M., & Veronesi, B. (2008). Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology, 29, 479–488.CrossRefGoogle Scholar
  35. 35.
    Nadmitov, B., Hong, S., Kang, S. I., Chu, J. M., Gomboev, B., Janchivdorj, L., Lee, C.-H., & Khim, J. S. (2015). Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009). Environmental Science and Pollution Research, 22, 2856–2867.CrossRefGoogle Scholar
  36. 36.
    Niu, J., Liberda, E. N., Qu, S., Guo, X., Li, X., Zhang, J., Meng, J., Yan, B., Li, N., & Zhong, M. (2013). The role of metal components in the cardiovascular effects of PM2. 5. PLoS ONE, 8, e83782.CrossRefGoogle Scholar
  37. 37.
    Paffett, M. L., Zychowski, K. E., Sheppard, L., Robertson, S., Weaver, J. M., Lucas, S. N., & Campen, M. J. 2015. Ozone inhalation impairs coronary artery dilation via intracellular oxidative stress: Evidence for serum-borne factors as drivers of systemic toxicity. Toxicological Sciences, 146(2), 244–253.CrossRefGoogle Scholar
  38. 38.
    Peters, A., Veronesi, B., Calderón-Garcidueñas, L., Gehr, P., Chen, L. C., Geiser, M., Reed, W., Rothen-Rutishauser, B., Schürch, S., & Schulz, H. (2006). Translocation and potential neurological effects of fine and ultrafine particles a critical update. Particle and Fibre Toxicology, 3, 13.CrossRefGoogle Scholar
  39. 39.
    Sapkota, A., Chelikowsky, A. P., Nachman, K. E., Cohen, A. J., & Ritz, B. (2012). Exposure to particulate matter and adverse birth outcomes: A comprehensive review and meta-analysis. Air Quality, Atmosphere and Health, 5, 369–381.CrossRefGoogle Scholar
  40. 40.
    Silverman, J., Suckow, M. A., & Murthy, S. 2014. The IACUC handbook. Boca Raton: CRC Press.CrossRefGoogle Scholar
  41. 41.
    Smirnova, O. K., Doroshkevich, C. G., & Dampilova, B. V. 2013. Assessment of trends of changes in the content of toxic elements in the soils of the city of Zakamensk after the conservation of the Dzhidnsky tungsten-molybdenum plant. Geodynamics and mineralogy of Northeast Asia. Materials of the IV All-Russian Scientific and Practical Conference. Ulan-Ude: Publishing house “Ecos”, pp. 327–330.Google Scholar
  42. 42.
    Timofeev, I. V., Kasimov, N. S., & Kosheleva, N. E. (2016). Soil cover geochemistry of mining landscapes in the South-East of Transbaikalia (City of Zakamensk). Geography and Natural Resources, 37, 200–211.CrossRefGoogle Scholar
  43. 43.
    Ubugunov, V., Dorzhonova, V., & Ubugunov, L. (2014). Cd extraction potential of Thlaspi caerulescens in extracontinental climate conditions (Zakamensk, Buryatia, Russia). Journal of Geochemical Exploration, 144, 380–386.CrossRefGoogle Scholar
  44. 44.
    Woodward, N. C., Levine, M. C., Haghani, A., Shirmohammadi, F., Saffari, A., Sioutas, C., Morgan, T. E., & Finch, C. E. (2017). Toll-like receptor 4 in glial inflammatory responses to air pollution in vitro and in vivo. Journal of neuroinflammation, 14, 84.CrossRefGoogle Scholar
  45. 45.
    Wu, S., Deng, F., Hao, Y., Shima, M., Wang, X., Zheng, C., Wei, H., Lv, H., Lu, X., & Huang, J. (2013). Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study. Journal of hazardous materials, 260, 183–191.CrossRefGoogle Scholar
  46. 46.
    Yoo, G. Y., & Kim, I. A. 2008. Development and application of a climate change vulnerability index (pp. 1–88). Sejong: Korea Environment Institute.Google Scholar
  47. 47.
    Zychowski, K. E., Sanchez, B., Pedrosa, R. P., Lorenzi-Filho, G., Drager, L. F., Polotsky, V. Y., & Campen, M. J. (2016). Serum from obstructive sleep apnea patients induces inflammatory responses in coronary artery endothelial cells. Atherosclerosis, 254, 59–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Katherine E. Zychowski
    • 1
  • Abigail Wheeler
    • 1
  • Bethany Sanchez
    • 1
  • Molly Harmon
    • 1
  • Christina R. Steadman Tyler
    • 2
  • Guy Herbert
    • 1
  • Selita N. Lucas
    • 1
  • Abdul-Mehdi Ali
    • 3
  • Sumant Avasarala
    • 3
  • Nitesh Kunda
    • 1
  • Paul Robinson
    • 4
  • Pavan Muttil
    • 1
  • Jose M. Cerrato
    • 3
  • Barry Bleske
    • 5
  • Olga Smirnova
    • 6
  • Matthew J. Campen
    • 1
    Email author
  1. 1.Department of Pharmaceutical SciencesUniversity of New Mexico-Health Sciences CenterAlbuquerqueUSA
  2. 2.Bioscience DivisionLos Alamos National LaboratoriesLos AlamosUSA
  3. 3.Department of Civil EngineeringUniversity of New MexicoAlbuquerqueUSA
  4. 4.Southwest Research and Information CenterAlbuquerqueUSA
  5. 5.Pharmacy Practice and Administrative SciencesUniversity of New Mexico-Health Sciences CenterAlbuquerqueUSA
  6. 6.Geological Institute, Siberian BranchRussian Academy of SciencesMoscowRussia

Personalised recommendations