Advertisement

Endothelial Cells: From Dysfunction Mechanism to Pharmacological Effect in Cardiovascular Disease

  • Habib Haybar
  • Saeid Shahrabi
  • Hadi Rezaeeyan
  • Reza Shirzad
  • Najmaldin Saki
Article
  • 21 Downloads

Abstract

Endothelial cells (ECs) are the innermost layer of blood vessels that play important roles in homeostasis and vascular function. However, recent evidence suggests that the onset of inflammation and the production of reactive oxygen species impair the function of ECs and are a main factor in the development of cardiovascular disease (CVD). In this study, we investigated the effects of inflammatory markers, oxidative stress, and treatment on ECs in CVD patients. This review article is based on the material obtained from PubMed up to 2018. The key search terms used were “Cardiovascular Disease,” “Endothelial Cell Dysfunction,” “Inflammation,” “Treatment,” and “Oxidative Stress.” The generation of reactive oxygen species (ROS) as well as reduced nitric oxide (NO) production by ECs impairs the function of blood vessels. Therefore, treatment of CVD patients leads to the expression of transcription factors activating anti-oxidant mechanisms and NO production. In contrast, NO production by inflammatory agents can cause ECs repair due to differentiation of endothelial progenitor cells (EPCs). Therefore, identifying the molecular pathways leading to the differentiation of EPCs through mediation of factors induced by inflammatory factors can be effective in regenerative medicine for ECs repair.

Keywords

Cardiovascular diseases Endothelial cell dysfunction Inflammation Oxidative stress 

Abbreviations

NF-kB

Nuclear factor kappa-light-chain-enhancer of activated B cells

Mo

Monocyte

EC

Endothelial cell

MQ

Macrophage

Plt

Platelet

CVD

Cardiovascular disease

HF

Heart failure

ROS

Reactive oxygen species

NO

Nitric oxide

VEGF

Vascular endothelial growth factor

LDL

Low-density lipoprotein

SCR-A

Scavenger receptor-A

ER

Endoplasmic reticulum

Notes

Acknowledgements

We wish to thank all our colleagues in Allied Health Sciences School, Ahvaz Jundishapur University of Medical Sciences.

Author Contributions

NS conceived the manuscript and revised it. HH, SS, HR, and RS wrote the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Mannella, P., Simoncini, T., Caretto, M., & Genazzani, A. (2018). Dehydroepiandrosterone and cardiovascular disease. Dehydroepiandrosterone, 108, 333.CrossRefGoogle Scholar
  2. 2.
    Haybar, H., Jalali, M., & Zayeri, Z. (2018). What genetic tell us about cardiovascular disease in diabetic patients. Cardiovascular & Haematological Disorders-Drug Targets (Formerly Current Drug Targets-Cardiovascular & Hematological Disorders), 18(2), 147–152.CrossRefGoogle Scholar
  3. 3.
    Bauer, A. J., & Martin, K. A. (2017). Coordinating regulation of gene expression in cardiovascular disease: Interactions between chromatin modifiers and transcription factors. Frontiers in Cardiovascular Medicine, 4, 19.CrossRefGoogle Scholar
  4. 4.
    Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO Molecular Medicine, 6(9), 1105–1120.CrossRefGoogle Scholar
  5. 5.
    Siti, H. N., Kamisah, Y., & Kamsiah, J. (2015). The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular Pharmacology, 71, 40–56.CrossRefGoogle Scholar
  6. 6.
    Mo, J., Yang, R., Li, F., Zhang, X., He, B., Zhang, Y., et al. (2018). Scutellarin protects against vascular endothelial dysfunction and prevents atherosclerosis via antioxidation. Phytomedicine, 42, 66–74.CrossRefGoogle Scholar
  7. 7.
    Gevaert, A. B., Lemmens, K., Vrints, C. J., & Van Craenenbroeck, E. M. (2017). Targeting endothelial function to treat heart failure with preserved ejection fraction: The promise of exercise training. Oxidative Medicine and Cellular Longevity.  https://doi.org/10.1155/2017/4865756.CrossRefGoogle Scholar
  8. 8.
    Davignon, J., & Ganz, P. (2004). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 suppl 1):III-I27–III-32.Google Scholar
  9. 9.
    Aird, W. C. (2007). Phenotypic heterogeneity of the endothelium: II. Representative vascular beds. Circulation Research, 100(2), 174–190.CrossRefGoogle Scholar
  10. 10.
    Djohan, A. H., Sia, C.-H., Lee, P. S., & Poh, K.-K. (2018). Endothelial progenitor cells in heart failure: An authentic expectation for potential future use and a lack of universal definition. Journal of Cardiovascular Translational Research, 11(5), 393–402.CrossRefGoogle Scholar
  11. 11.
    Del Papa, N. (2018). The role of endothelial progenitors in the repair of vascular damage in systemic sclerosis. Frontiers in Immunology, 9, 1383.CrossRefGoogle Scholar
  12. 12.
    Edwards, N., Langford-Smith, A. W., Wilkinson, F. L., & Alexander, M. Y. (2018). Endothelial progenitor cells: New targets for therapeutics for inflammatory conditions with high cardiovascular risk. Frontiers in Medicine, 5, 200.CrossRefGoogle Scholar
  13. 13.
    Baghai, T. C., Varallo-Bedarida, G., Born, C., Häfner, S., Schüle, C., Eser, D., et al. (2018). Classical risk factors and inflammatory biomarkers: One of the missing biological links between cardiovascular disease and major depressive disorder. International Journal of Molecular Sciences, 19(6), 1740.CrossRefGoogle Scholar
  14. 14.
    Miller, L. E. (2018). Methylsulfonylmethane decreases inflammatory response to tumor necrosis factor-α in cardiac cells. American Journal of Cardiovascular Disease, 8(3), 31.Google Scholar
  15. 15.
    Trial, J., Cieslik, K. A., & Entman, M. L. (2016). Phosphocholine-containing ligands direct CRP induction of M2 macrophage polarization independent of T cell polarization: Implication for chronic inflammatory states. Immunity, Inflammation and Disease, 4(3), 274–288.CrossRefGoogle Scholar
  16. 16.
    Yin, J., Xia, W., Zhang, Y., Ding, G., Chen, L., Yang, G., et al. (2018). Role of dihydroartemisinin in regulating prostaglandin E2 synthesis cascade and inflammation in endothelial cells. Heart and Vessels, 33(11), 1411–1422.CrossRefGoogle Scholar
  17. 17.
    Gomez, I., Foudi, N., Longrois, D., & Norel, X. (2013). The role of prostaglandin E2 in human vascular inflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), 89(2–3), 55–63.CrossRefGoogle Scholar
  18. 18.
    Han, L., Dai, L., Zhao, Y.-F., Li, H.-Y., Liu, O., Lan, F., et al. (2018). CD40L promotes development of acute aortic dissection via induction of inflammation and impairment of endothelial cell function. Aging (Albany NY), 10(3), 371.CrossRefGoogle Scholar
  19. 19.
    Haybar, H., & Zayeri, Z. D. (2017). The value of using polymorphisms in anti-platelet therapy. Frontiers in Biology, 12(5), 349–356.CrossRefGoogle Scholar
  20. 20.
    Zeiher, A. M. (2002). CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation, 106(8), 981–986CrossRefGoogle Scholar
  21. 21.
    Popa, M., Tahir, S., Elrod, J., Kim, S. H., Leuschner, F., Kessler, T., et al. (2018). Role of CD40 and ADAMTS13 in von Willebrand factor-mediated endothelial cell–platelet–monocyte interaction. Proceedings of the National Academy of Sciences of the United States of America, 115, E5556–E5565.CrossRefGoogle Scholar
  22. 22.
    Wu, T., Peng, Y., Yan, S., Li, N., Chen, Y., & Lan, T. (2018). Andrographolide ameliorates atherosclerosis by suppressing pro-inflammation and ROS generation-mediated foam cell formation. Inflammation, 41(5), 1681–1689.CrossRefGoogle Scholar
  23. 23.
    Zheng, L., Wu, T., Zeng, C., Li, X., Li, X., Wen, D., et al. (2016). SAP deficiency mitigated atherosclerotic lesions in ApoE−/− mice. Atherosclerosis, 244, 179–187.CrossRefGoogle Scholar
  24. 24.
    Pirillo, A., Norata, G. D., & Catapano, A. L. (2013). LOX-1, OxLDL, and atherosclerosis. Mediators of Inflammation.  https://doi.org/10.1155/2013/152786.CrossRefGoogle Scholar
  25. 25.
    Horio, E., Kadomatsu, T., Miyata, K., Arai, Y., Hosokawa, K., Doi, Y., et al. (2014). Role of endothelial cell-derived Angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression significance. Arteriosclerosis, Thrombosis, and Vascular Biology, 34(4), 790–800.CrossRefGoogle Scholar
  26. 26.
    Cui, X.-B., Luan, J.-N., Dong, K., Chen, S., Wang, Y., Watford, W. T., et al. (2018). RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 38(4), e36–e47.CrossRefGoogle Scholar
  27. 27.
    Gong, D.-M., Zhang, Y.-L., Chen, D.-Y., Hong, L.-J., Han, F., Liu, Q.-B., et al. (2018). Endothelial GPR124 exaggerates the pathogenesis of atherosclerosis by activating inflammation. Cellular Physiology and Biochemistry, 45(2), 547–557.CrossRefGoogle Scholar
  28. 28.
    Hernanz, R., Martinez-Revelles, S., Palacios, R., Martin, A., Cachofeiro, V., Aguado, A., et al. (2015). Toll-like receptor 4 contributes to vascular remodelling and endothelial dysfunction in angiotensin II-induced hypertension. British Journal of Pharmacology, 172(12), 3159–3176.CrossRefGoogle Scholar
  29. 29.
    Varejckova, M., Gallardo-Vara, E., Vicen, M., Vitverova, B., Fikrova, P., Dolezelova, E., et al. (2017). Soluble endoglin modulates the pro-inflammatory mediators NF-κB and IL-6 in cultured human endothelial cells. Life Sciences, 175, 52–60.CrossRefGoogle Scholar
  30. 30.
    Pawlak, K., Mysliwiec, M., & Pawlak, D. (2015). Endocan—The new endothelial activation marker independently associated with soluble endothelial adhesion molecules in uraemic patients with cardiovascular disease. Clinical Biochemistry, 48(6), 425–430.CrossRefGoogle Scholar
  31. 31.
    Li, X., Wang, L., Fang, P., Sun, Y., Jiang, X., Wang, H., et al. (2018). Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.RA118.002752.CrossRefGoogle Scholar
  32. 32.
    Taleb, A., Ahmad, K. A., Ihsan, A. U., Qu, J., Lin, N., Hezam, K., et al. (2018). Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomedicine & Pharmacotherapy, 102, 689–698.CrossRefGoogle Scholar
  33. 33.
    Hu, M., Xing, C., & Song, L. (2017). Arsenite induces vascular endothelial cell dysfunction by activating IRE1a/XBP1s/HIF1a-dependent ANGII signaling. Toxicological Sciences, 160(2), 315–328.CrossRefGoogle Scholar
  34. 34.
    Huang, M., Wei, R., Wang, Y., Su, T., Li, P., & Chen, X. (2018). The uremic toxin hippurate promotes endothelial dysfunction via the activation of Drp1-mediated mitochondrial fission. Redox Biology, 16, 303–313.CrossRefGoogle Scholar
  35. 35.
    Kamiński, T. W., Pawlak, K., Karbowska, M., Myśliwiec, M., & Pawlak, D. (2017). Indoxyl sulfate—The uremic toxin linking hemostatic system disturbances with the prevalence of cardiovascular disease in patients with chronic kidney disease. BMC Nephrology, 18(1), 35.CrossRefGoogle Scholar
  36. 36.
    Chaisakul, J., Rusmili, M. R. A., Hodgson, W. C., Hatthachote, P., Suwan, K., Inchan, A., et al. (2017). A pharmacological examination of the cardiovascular effects of Malayan krait (Bungarus candidus) venoms. Toxins, 9(4), 122.CrossRefGoogle Scholar
  37. 37.
    Chuaiphichai, S., Starr, A., Nandi, M., Channon, K. M., & McNeill, E. (2016). Endothelial cell tetrahydrobiopterin deficiency attenuates LPS-induced vascular dysfunction and hypotension. Vascular Pharmacology, 77, 69–79.CrossRefGoogle Scholar
  38. 38.
    Lu, Q., Sakhatskyy, P., Grinnell, K., Newton, J., Ortiz, M., Wang, Y., et al. (2011). Cigarette smoke causes lung vascular barrier dysfunction via oxidative stress-mediated inhibition of RhoA and focal adhesion kinase. American Journal of Physiology-Lung Cellular and Molecular Physiology, 301(6), L847–L857.CrossRefGoogle Scholar
  39. 39.
    Tsai, K. L., Hung, C. H., Chan, S. H., Hsieh, P. L., Ou, H. C., Cheng, Y. H., et al. (2018). Chlorogenic acid protects against oxLDL-induced oxidative damage and mitochondrial dysfunction by modulating SIRT1 in endothelial cells. Molecular Nutrition & Food Research, 62(11), 1700928.CrossRefGoogle Scholar
  40. 40.
    Tsai, K.-L., Hung, C.-H., Chan, S.-H., Shih, J.-Y., Cheng, Y.-H., Tsai, Y.-J., et al. (2016). Baicalein protects against oxLDL-caused oxidative stress and inflammation by modulation of AMPK-alpha. Oncotarget, 7(45), 72458.CrossRefGoogle Scholar
  41. 41.
    Du Plooy, C. S., Mels, C. M. C., Huisman, H. W., & Kruger, R. (2017). The association of endothelin-1 with markers of oxidative stress in a biethnic South African cohort: The SABPA study. Hypertension Research, 40(2), 189.CrossRefGoogle Scholar
  42. 42.
    Cominacini, L., Pasini, A. F., Garbin, U., Pastorino, A., Rigoni, A., Nava, C., et al. (2003). The platelet-endothelium interaction mediated by lectin-like oxidized low-density lipoprotein receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells. Journal of the American College of Cardiology, 41(3), 499–507.CrossRefGoogle Scholar
  43. 43.
    Luo, W., Wang, Y., Yang, H., Dai, C., Hong, H., Li, J., et al. (2018). Heme oxygenase-1 ameliorates oxidative stress-induced endothelial senescence via regulating endothelial nitric oxide synthase activation and coupling. Aging, 10(7), 1722–1744.CrossRefGoogle Scholar
  44. 44.
    Heine, C. L., Kolesnik, B., Schmidt, R., Werner, E. R., Mayer, B., & Gorren, A. C. (2014). Interaction between neuronal nitric-oxide synthase and tetrahydrobiopterin revisited: Studies on the nature and mechanism of tight pterin binding. Biochemistry, 53(8), 1284–1295.CrossRefGoogle Scholar
  45. 45.
    Kuzuya, M., Ramos, M. A., Kanda, S., Koike, T., Asai, T., Maeda, K., et al. (2001). VEGF protects against oxidized LDL toxicity to endothelial cells by an intracellular glutathione-dependent mechanism through the KDR receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 21(5), 765–770.CrossRefGoogle Scholar
  46. 46.
    Minhajat, R., Nilasari, D., & Bakri, S. (2015). The role of endothelial progenitor cell in cardiovascular disease risk factors. Acta Medica Indonesiana, 47(4), 340–347.Google Scholar
  47. 47.
    Xu, J., Liu, X., Jiang, Y., Chu, L., Hao, H., Liua, Z., et al. (2008). MAPK/ERK signalling mediates VEGF-induced bone marrow stem cell differentiation into endothelial cell. Journal of Cellular and Molecular Medicine, 12(6a), 2395–2406.CrossRefGoogle Scholar
  48. 48.
    Wang, S., Miao, J., Qu, M., Yang, G.-Y., & Shen, L. (2017). Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochemical and Biophysical Research Communications, 493(1), 64–70.CrossRefGoogle Scholar
  49. 49.
    Huynh, D. N., Bessi, V. L., Ménard, L., Piquereau, J., Proulx, C., Febbraio, M., et al. (2017). Adiponectin has a pivotal role in the cardioprotective effect of CP-3 (iv), a selective CD36 azapeptide ligand, after transient coronary artery occlusion in mice. The FASEB Journal, 32(2), 807–818.CrossRefGoogle Scholar
  50. 50.
    Kotla, S., & Rao, G. N. (2015). Reactive oxygen species (ROS) Mediate p300-dependent STAT1 protein interaction with peroxisome proliferator-activated receptor (PPAR)-γ in CD36 protein expression and foam cell formation. Journal of Biological Chemistry, 290(51), 30306–30320.CrossRefGoogle Scholar
  51. 51.
    Yang, X., Yao, H., Chen, Y., Sun, L., Li, Y., Ma, X., et al. (2015). Inhibition of glutathione production induces macrophage CD36 expression and enhances cellular oxLDL uptake. Journal of Biological Chemistry.  https://doi.org/10.1074/jbc.M115.654582.CrossRefGoogle Scholar
  52. 52.
    Sun, H.-J., Xu, D.-Y., Sun, Y.-X., Xue, T., Zhang, C.-X., Zhang, Z.-X., et al. (2017). CO-releasing molecules-2 attenuates ox-LDL-induced injury in HUVECs by ameliorating mitochondrial function and inhibiting Wnt/β-catenin pathway. Biochemical and Biophysical Research Communications, 490(3), 629–635.CrossRefGoogle Scholar
  53. 53.
    Zhang, G.-Q., Tao, Y.-K., Bai, Y.-P., Yan, S.-T., & Zhao, S.-P. (2018). Inhibitory effects of simvastatin on oxidized low-density lipoprotein-induced endoplasmic reticulum stress and apoptosis in vascular endothelial cells. Chinese Medical Journal, 131(8), 950.CrossRefGoogle Scholar
  54. 54.
    Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233.CrossRefGoogle Scholar
  55. 55.
    Ceolotto, G., Giannella, A., Albiero, M., Kuppusamy, M., Radu, C., Simioni, P., et al. (2017). miR-30c-5p regulates macrophage-mediated inflammation and pro-atherosclerosis pathways. Cardiovascular Research, 113(13), 1627–1638.CrossRefGoogle Scholar
  56. 56.
    Yang, S., Mi, X., Chen, Y., Feng, C., Hou, Z., Hui, R., et al. (2018). MicroRNA-216a induces endothelial senescence and inflammation via Smad3/IκBα pathway. Journal of Cellular and Molecular Medicine, 22(5), 2739–2749.CrossRefGoogle Scholar
  57. 57.
    Chen, T., Gao, F., Feng, S., Yang, T., & Chen, M. (2015). MicroRNA-370 inhibits the progression of non-small cell lung cancer by downregulating oncogene TRAF4. Oncology Reports, 34(1), 461–468.CrossRefGoogle Scholar
  58. 58.
    Tang, F., Yang, T.-L., Zhang, Z., Li, X.-G., Zhong, Q.-Q., Zhao, T.-T., et al. (2017). MicroRNA-21 suppresses ox-LDL-induced human aortic endothelial cells injuries in atherosclerosis through enhancement of autophagic flux: Involvement in promotion of lysosomal function. Experimental Cell Research, 359(2), 374–383.CrossRefGoogle Scholar
  59. 59.
    Yang, S., Li, J., Chen, Y., Zhang, S., Feng, C., Hou, Z., et al. (2018) MicroRNA-216a promotes M1 macrophages polarization and atherosclerosis progression by activating telomerase via the Smad3/NF-κB pathway. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease.  https://doi.org/10.1016/j.bbadis.2018.06.016.CrossRefGoogle Scholar
  60. 60.
    Chen, Z., Wang, K., Huang, J., Zheng, G., Lv, Y., Luo, N., et al. (2018). Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cellular Physiology and Biochemistry, 45(1), 397–405.CrossRefGoogle Scholar
  61. 61.
    Li, C., Li, S., Zhang, F., Wu, M., Liang, H., Song, J., et al. (2018). Endothelial microparticles-mediated transfer of microRNA-19b promotes atherosclerosis via activating perivascular adipose tissue inflammation in apoE−/− mice. Biochemical and Biophysical Research Communications, 495(2), 1922–1929.CrossRefGoogle Scholar
  62. 62.
    Liu, H., Wu, H., Wang, W., Zhao, Z., Liu, X., & Wang, L. (2017). Regulation of miR-92a on vascular endothelial aging via mediating Nrf2-KEAP1-ARE signal pathway. European Review for Medical and Pharmacological Sciences, 21(11), 2734–2742.Google Scholar
  63. 63.
    Liu, G., Li, Y., & Gao, X. (2016). microRNA-181a is upregulated in human atherosclerosis plaques and involves in the oxidative stress-induced endothelial cell dysfunction through direct targeting Bcl-2. European Review for Medical and Pharmacological Sciences, 20(14), 3092–3100.Google Scholar
  64. 64.
    Wang, L., Yuan, Y., Li, J., Ren, H., Cai, Q., Chen, X., et al. (2015). MicroRNA-1 aggravates cardiac oxidative stress by post-transcriptional modification of the antioxidant network. Cell Stress and Chaperones, 20(3), 411–420.CrossRefGoogle Scholar
  65. 65.
    Tabuchi, T., Satoh, M., Itoh, T., & Nakamura, M. (2012). MicroRNA-34a regulates the longevity-associated protein SIRT1 in coronary artery disease: Effect of statins on SIRT1 and microRNA-34a expression. Clinical Science, 123(3), 161–171.CrossRefGoogle Scholar
  66. 66.
    Li, Y., Wang, K., Feng, Y., Fan, C., Wang, F., Yan, J., et al. (2014). Novel role of silent information regulator 1 in acute endothelial cell oxidative stress injury. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(11), 2246–2256.CrossRefGoogle Scholar
  67. 67.
    Guan, X., Wang, L., Liu, Z., Guo, X., Jiang, Y., Lu, Y., et al. (2016). miR-106a promotes cardiac hypertrophy by targeting mitofusin 2. Journal of Molecular and Cellular Cardiology, 99, 207–217.CrossRefGoogle Scholar
  68. 68.
    Jensen, H. A., & Mehta, J. L. (2016). Endothelial cell dysfunction as a novel therapeutic target in atherosclerosis. Expert Review of Cardiovascular Therapy, 14(9), 1021–1033.CrossRefGoogle Scholar
  69. 69.
    Niture, S. K., Khatri, R., & Jaiswal, A. K. (2014). Regulation of Nrf2—An update. Free Radical Biology and Medicine, 66, 36–44.CrossRefGoogle Scholar
  70. 70.
    Mao, H., Tao, T., Wang, X., Liu, M., Song, D., Liu, X., et al. (2018). Zedoarondiol attenuates endothelial cells injury induced by oxidized low-density lipoprotein via Nrf2 activation. Cellular Physiology and Biochemistry, 48(4), 1468–1479.CrossRefGoogle Scholar
  71. 71.
    Lin, X.-P., Cui, H.-J., Yang, A.-L., Luo, J.-K., & Tang, T. (2018). Astragaloside IV improves vasodilatation function by regulating the PI3K/Akt/eNOS signaling pathway in rat aorta endothelial cells. Journal of Vascular Research, 55, 169–176.CrossRefGoogle Scholar
  72. 72.
    Yang, L., Liu, J., & Qi, G. (2017). Mechanism of the effect of saikosaponin on atherosclerosis in vitro is based on the MAPK signaling pathway. Molecular Medicine Reports, 16(6), 8868–8874.CrossRefGoogle Scholar
  73. 73.
    Kang, S. J., Lee, Y. J., Kang, S. G., Cho, S., Yoon, W., Lim, J. H., et al. (2017). Caspase-4 is essential for saikosaponin a-induced apoptosis acting upstream of caspase-2 and γ-H2AX in colon cancer cells. Oncotarget, 8(59), 100433.CrossRefGoogle Scholar
  74. 74.
    Lou, L., Zhou, J., Liu, Y., Wei, Y., Zhao, J., Deng, J., et al. (2016). Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Experimental and Therapeutic Medicine, 11(5), 2054–2060.CrossRefGoogle Scholar
  75. 75.
    Huang, D.-Y., Li, H.-X., Zhang, L.-N., Lv, Y.-H., Cui, H.-D., & Zheng, J.-H. (2010). Scutellarin promotes in vitro angiogenesis in human umbilical vein endothelial cells. Biochemical and Biophysical Research Communications, 400(1), 151–156.CrossRefGoogle Scholar
  76. 76.
    Parmar, K. M., Nambudiri, V., Dai, G., Larman, H. B., Gimbrone, M. A., & García-Cardeña, G. (2005). Statins exert endothelial atheroprotective effects via the KLF2 transcription factor. Journal of Biological Chemistry, 280(29), 26714–26719.CrossRefGoogle Scholar
  77. 77.
    Lapchak, P. A. (2007). The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: Synergism with tissue plasminogen activator. Experimental Neurology, 205(2), 407–413.CrossRefGoogle Scholar
  78. 78.
    Ju, W.-Z., Zhao, Y., Liu, F., Wu, T., Zhang, J., Liu, S.-J., et al. (2015). Clinical tolerability and pharmacokinetics of Erigerontis hydroxybenzene injection: Results of a randomized phase I study in healthy Chinese volunteers. Phytomedicine, 22(2), 319–325.CrossRefGoogle Scholar
  79. 79.
    Xing, S.-S., Li, J., Chen, L., Yang, Y.-F., He, P.-L., Li, J., et al. (2018). Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mechanisms of Ageing and Development, 175, 1–6.CrossRefGoogle Scholar
  80. 80.
    Li, H., Sze, S., Tong, Y., & Ng, T. (2009). Production of Th1-and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. Journal of Ethnopharmacology, 123(2), 257–266.CrossRefGoogle Scholar
  81. 81.
    Wang, M., Jin, X., Ren, X., Zhu, Y., Liu, Z., & Gao, X. (2015). Comparative in vitro dissolution of two commercially available Er-Zhi-Wan herbal medicinal products. Indian Journal of Pharmaceutical Sciences, 77(4), 391.CrossRefGoogle Scholar
  82. 82.
    Jing, C., Guo, M., Bao, X., Li, T., Lin, J., Lu, X., et al. (2017). Pitavastatin up-regulates enos production by suppressing mir-155 expression in lipopolysaccharide-stimulated human umbilical vein endothelial cells. Cardiovascular Therapeutics, 35(5), e12282.CrossRefGoogle Scholar
  83. 83.
    Tsujimoto, A., Takemura, G., Mikami, A., Aoyama, T., Ohno, T., Maruyama, R., et al. (2006). A therapeutic dose of the lipophilic statin pitavastatin enhances oxidant-induced apoptosis in human vascular smooth muscle cells. Journal of Cardiovascular Pharmacology, 48(4), 160–165.CrossRefGoogle Scholar
  84. 84.
    Jiang, P., Mukthavavam, R., Chao, Y., Bharati, I. S., Fogal, V., Pastorino, S., et al. (2014). Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs. Journal of Translational Medicine, 12(1), 13.CrossRefGoogle Scholar
  85. 85.
    Zhang, J.-J., Zhang, Y.-Z., Peng, J.-J., Li, N.-S., Xiong, X.-M., Ma, Q.-L., et al. (2018). Atorvastatin exerts inhibitory effect on endothelial senescence in hyperlipidemic rats through a mechanism involving down-regulation of miR-21-5p/203a-3p. Mechanisms of Ageing and Development, 169, 10–18.CrossRefGoogle Scholar
  86. 86.
    Woodcock, J., & Khan, M. A. (2014). FDA analysis of atorvastatin products refutes report of methyl ester impurities. Therapeutic Innovation & Regulatory Science, 48(5), 554–556.CrossRefGoogle Scholar
  87. 87.
    Alvarez, E., Rodiño-Janeiro, B. K., Ucieda-Somoza, R., & González-Juanatey, J. R. (2010). Pravastatin counteracts angiotensin II-induced upregulation and activation of NADPH oxidase at plasma membrane of human endothelial cells. Journal of Cardiovascular Pharmacology, 55(2), 203–212.CrossRefGoogle Scholar
  88. 88.
    Nemoto, S., Taguchi, K., Matsumoto, T., Kamata, K., & Kobayashi, T. (2012). Pravastatin normalizes ET-1-induced contraction in the aorta of type 2 diabetic OLETF rats by suppressing the KSR1/ERK complex. American Journal of Physiology-Heart and Circulatory Physiology, 303(7), H893–H902.CrossRefGoogle Scholar
  89. 89.
    Hu, M., Cheung, B. M., & Tomlinson, B. (2012). Safety of statins: An update. Therapeutic Advances in Drug Safety, 3(3), 133–144.CrossRefGoogle Scholar
  90. 90.
    Li, R., Xiang, C., Zhang, X., Guo, A., & Ye, M. (2010). Chemical analysis of the Chinese herbal medicine turmeric (Curcuma longa L.). Current Pharmaceutical Analysis, 6(4), 256–268.CrossRefGoogle Scholar
  91. 91.
    Zhao, J., Yang, P., Li, F., Tao, L., Ding, H., Rui, Y., et al. (2012). Therapeutic effects of astragaloside IV on myocardial injuries: Multi-target identification and network analysis. PLoS ONE, 7(9), e44938.CrossRefGoogle Scholar
  92. 92.
    Singh, H., Shelat, A. A., Singh, A., Boulos, N., Williams, R. T., & Guy, R. K. (2014). A screening-based approach to circumvent tumor microenvironment-driven intrinsic resistance to BCR-ABL + inhibitors in Ph + acute lymphoblastic leukemia. Journal of Biomolecular Screening, 19(1), 158–167.CrossRefGoogle Scholar
  93. 93.
    Wang, J., Qi, H., Zhang, X., Si, W., Xu, F., Hou, T., et al. (2018). Saikosaponin D from Radix Bupleuri suppresses triple-negative breast cancer cell growth by targeting β-catenin signaling. Biomedicine & Pharmacotherapy, 108, 724–733.CrossRefGoogle Scholar
  94. 94.
    Pereira, C. A., Carneiro, F. S., Matsumoto, T., & Tostes, R. C. (2018). Bonus effects of anti-diabetic drugs: Possible beneficial effects on endothelial dysfunction, vascular inflammation and atherosclerosis. Basic & Clinical Pharmacology & Toxicology.  https://doi.org/10.1111/bcpt.13054 CrossRefGoogle Scholar
  95. 95.
    Zhu, Z., Fu, C., Li, X., Song, Y., Li, C., Zou, M., et al. (2011). Prostaglandin E2 promotes endothelial differentiation from bone marrow-derived cells through AMPK activation. PLoS ONE, 6(8), e23554.CrossRefGoogle Scholar
  96. 96.
    Alexandru, N., Andrei, E., Dragan, E., & Georgescu, A. (2015). Interaction of platelets with endothelial progenitor cells in the experimental atherosclerosis: Role of transplanted endothelial progenitor cells and platelet microparticles. Biology of the Cell, 107(6), 189–204.CrossRefGoogle Scholar
  97. 97.
    Alexandru, N., Popov, D., Dragan, E., Andrei, E., & Georgescu, A. (2013). Circulating endothelial progenitor cell and platelet microparticle impact on platelet activation in hypertension associated with hypercholesterolemia. PLoS ONE, 8(1), e52058.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Atherosclerosis Research CenterAhvaz Jundishapur University of Medical SciencesAhvazIran
  2. 2.Department of Biochemistry and Hematology, Faculty of MedicineSemnan University of Medical SciencesSemnanIran
  3. 3.Thalassemia and Hemoglobinopathy Research Center, Research Institute of HealthAhvaz Jundishapur University of Medical SciencesAhvazIran

Personalised recommendations