Advertisement

Nano-medicine and Vascular Endothelial Dysfunction: Options and Delivery Strategies

  • Gaurav Taneja
  • Akash Sud
  • Narayan Pendse
  • Bishnu Panigrahi
  • Ashish Kumar
  • Arun K. SharmaEmail author
Article

Abstract

The endothelium is a thin innermost layer of flat cells which release various mediators including endothelin-1 (ET-1), prostanoids, von Willebrand factor (vWF) and endothelium-derived relaxing factor (EDRF; nitric oxide) to regulate vascular tone. Endothelial nitric oxide synthase (eNOS) is a key enzyme that generates nitric oxide (NO). NO maintains vascular homeostasis and cardiac functions by influencing major vascular protective properties such as anti-platelet, anti-proliferative, anti-migratory, antioxidant and anti-inflammatory action in vessels. Abnormal endothelial production and release of NO lead to vascular endothelial dysfunction (VED) and further leads to pathogenesis in myocardial and other tissues. Numerous pharmacological agents such as angiotensin-converting enzyme inhibitors, statins, calcium channel blockers, ET-1 receptor antagonists, insulin sensitizers, antioxidants and supplements like tetrahydrobiopterin, arginine and folate have been implicated in the treatment of VED, but their therapeutic potency was restricted due to some unavoidable adverse effects. The new era with advances in nanotechnology and its ability to target a specific disease, nano-medicine explored an innovative gateway for advanced therapy for VED. The present commentary reveals the various available, pipeline nano-medicine, their interaction with endothelium and in other associated pathological conditions and their delivery strategies for target-specific treatment of VED.

Keywords

Vascular endothelial dysfunction Nano-medicine Nanoparticle eNOS Cardiovascular disorders 

Abbreviations

ACE-1

Angiotensin-converting enzyme 1

ADMA

Asymmetric dimethylarginine

AGE

Advanced glycation end product

Akt

Protein kinase B

BH4

Tetrahydrobiopterin

CAD

Coronary artery disease

CDK

Cyclin-dependent kinase

CETP

Cholesteryl ester transfer protein

CVD

Cardiovascular disease

CXCL12

C-X-C motif chemokine 12

DAMPs

Endogenous damage-associated molecular patterns

EAhy926 cells

Endothelial-like cells

ECs

Endothelial cells

EDRF

Endothelium-derived relaxing factor

eNOS

Endothelial nitric oxide synthase

ET-1

Endothelin-1

FAD

Flavin adenine dinucleotide

FMN

Flavin mononucleotide

GGTase-I

Geranylgeranyltransferase-1

GLP-1

Glucagon-like peptide 1

Hif-1α

Hypoxia-inducible factor-1α

HMG-CoA

3-Hydroxy 3-methylglutaryl coenzyme A

HO-1

Heme oxygenase-1

HUVECs

Human umbilical vein endothelial cells

ICAM-1

Intercellular adhesion molecule 1

IGF-1R

Insulin-like growth factor 1 receptor

IL-6

Interleukin-6

JAK

Janus kinase

LOX-1

Lectin-like oxidized low-density lipoprotein receptor-1

LPS

Lipopolysaccharide

MCP-1

Monocyte chemoattractant protein

MNBs

Magnetic nano-beads

MRI

Magnetic resonance imaging

mTOR

Mammalian target of rapamycin

NADPH

Nicotinamide adenine dinucleotide phosphate

NFk-β

Nuclear factor kappa-β

NO

Nitric oxide

NPs

Nanoparticles

PAK1

p21 protein (Cdc42/Rac)-activated kinase 1

PAMPs

Pathogen-associated molecular patterns

PECAM

Platelet-endothelial cell adhesion molecule-1

PET–MRI

Positron emission tomography–magnetic resonance imaging

PIK3R2

Phosphatidylinositol 3-kinase regulatory subunit beta receptor

PI3K

Phosphatidylinositol-3-kinases

PKA

Protein kinase A

PLGA-PEG

Poly(lactide-co-glycolide)–poly(ethylene glycol) polymer

PPAR

Peroxisome proliferator-activated receptor

PRRs

Pattern recognition receptors

PTPase

Protein tyrosine phosphatase

ROS

Reactive oxygen species

SPIONs

Superparamagnetic iron oxide NPs

SPRED-I

Sprouty-related protein I

S1P

Sphingosine-1-phosphate

TLRs

Toll-like receptors

TNF-α

Tumor necrosis factor-α

USIOPs

Ultra-small superparamagnetic iron oxide particles

VCAM-1

Vascular cell adhesion molecule 1

VED

Vascular endothelial dysfunction

VEGF-A

Vascular endothelial growth factor-A

VSMCs

Vascular smooth muscle cells

vWF

Von Willebrand factor

Notes

Acknowledgements

The authors are grateful to the authority of the Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India, for providing the necessary facilities.

Compliance with Ethical Standards

Conflict of interest

No conflict of interest is declared.

References

  1. 1.
    Sena, C. M., Pereira, A. M., & Seiça, R. (2013). Endothelial dysfunction—A major mediator of diabetic vascular disease. Biochimica et Biophysica Acta, 1832, 2216–2231.PubMedCrossRefGoogle Scholar
  2. 2.
    Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., Sethi, G., et al. (2013). The vascular endothelium and human disease. International Journal of Biological Sciences, 9, 1057–1069.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ignarro, L. J. (2002). Visiting professorial lecture: Nitric oxide in the regulation of vascular function: an historical overview. Journal of Cardiac Surgery, 17, 301–306.PubMedCrossRefGoogle Scholar
  4. 4.
    Momi, S., Monopoli, A., Alberti, P. F., Falcinelli, E., Corazzi, T., Conti, V., et al. (2012). Nitric oxide enhances the anti-inflammatory and anti-atherogenic activity of atorvastatin in a mouse model of accelerated atherosclerosis. Cardiovascular Research, 94, 428–438.PubMedCrossRefGoogle Scholar
  5. 5.
    Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: Regulation and function. European Heart Journal, 33, 829–837.PubMedCrossRefGoogle Scholar
  6. 6.
    Su, J. B. (2015). Vascular endothelial dysfunction and pharmacological treatment. World Journal of Cardiology, 7, 719–741.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    El Assar, M., Angulo, J., Santos-Ruiz, M., Ruiz de Adana, J. C., Pindado, M. L., Sánchez-Ferrer, A., et al. (2016). Asymmetric dimethylarginine (ADMA) elevation and arginase up-regulation contribute to endothelial dysfunction related to insulin resistance in rats and morbidly obese humans. The Journal of Physiology, 594, 3045–3060.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Min, Y., Caster, J. M., Eblan, M. J., & Wang, A. Z. (2015). Clinical translation of nanomedicine. Chemical Reviews, 115, 11147–11190.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pourmand, A., Pourmand, M. R., Wang, J., & Shesser, R. (2012). Application of nanomedicine in emergency medicine; Point-of-care testing and drug delivery in twenty-first century. Daru, 20, 26.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Brede, C., & Labhasetwar, V. (2013). Applications of nanoparticles in the detection and treatment of kidney diseases. Advances in Chronic Kidney Disease, 20, 454–465.PubMedCrossRefGoogle Scholar
  11. 11.
    Chinen, A. B., Guan, C. M., Ferrer, J. R., Barnaby, S. N., Merkel, T. J., & Mirkin, C. A. (2015). Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chemical Reviews, 115, 10530–10574.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Barua, S., & Mitragotri, S. (2014). Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 9, 223–243.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zhang, Y., & Yang, W. X. (2016). Tight junction between endothelial cells: The interaction between nanoparticles and blood vessels. Beilstein Journal of Nanotechnology, 7, 675–684.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gupta, P., Garcia, E., Sarkar, A., Kapoor, S., Rafiq, K., Chand, H. S., et al. (2018). Nanoparticle based treatment for cardiovascular diseases. Cardiovascular & Hematological Disorders Drug Targets.  https://doi.org/10.2174/1871529X18666180508113253.CrossRefGoogle Scholar
  15. 15.
    Rizvi, S. A. A., & Saleh, A. M. (2018). Applications of nanoparticle systems in drug delivery technology. Saudi Pharmaceutical Journal, 26, 64–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Jahan, S. T., Sadat, S. M. A., Walliser, M., & Haddadi, A. (2017). Targeted therapeutic nanoparticles: An immense promise to fight against cancer. Journal of drug delivery, 2017, 9090325.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., & Rajput, S. K. (2016). Synthesis and preliminary therapeutic evaluation of copper nanoparticles against diabetes mellitus and -induced micro (renal) and macro vascular (vascular endothelial and cardiovascular) abnormalities in rats. RSC Advances, 6, 36870–36880.CrossRefGoogle Scholar
  18. 18.
    Sharma, A. K., Kumar, A., Kumar, S., Mukherjee, S., Nagpal, D., Nagaich, U., et al. (2017). Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury. RSC Advances, 7, 35938–35949.CrossRefGoogle Scholar
  19. 19.
    Sharma, A. K., Kumar, A., Taneja, G., Nagaich, U., Deep, A., Datusalia, A. K., et al. (2018). Combined and individual strategy of exercise generated preconditioning and low dose copper nanoparticles serve as superlative approach to ameliorate ISO-induced myocardial infarction in rats. Pharmacological Reports, 70, 789–795.PubMedCrossRefGoogle Scholar
  20. 20.
    Favero, G., Paganelli, C., Buffoli, B., Rodella, L. F., & Rezzani, R. (2014). Endothelium and its alterations in cardiovascular diseases: Life style intervention. Biomed Research International, 2014, 801896.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Shah, D. I., & Singh, M. (2006). Involvement of Rho-kinase in experimental vascular endothelial dysfunction. Molecular and Cellular Biochemistry, 283, 191–199.PubMedCrossRefGoogle Scholar
  22. 22.
    Yilmaz, B., Yilmaz, P., Ordueri, E., Celik-Ozenci, C., & Tasatargil, A. (2014). Poly(ADP-ribose) polymerase inhibition improves endothelin-1-induced endothelial dysfunction in rat thoracic aorta. Upsala Journal of Medical Sciences, 119, 215–222.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Thiebaut, P. A., Besnier, M., Gomez, E., & Richard, V. (2016). Role of protein tyrosine phosphatase 1B in cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 101, 50–57.PubMedCrossRefGoogle Scholar
  24. 24.
    Balakumar, P., Kaur, T., & Singh, M. (2008). Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology, 245, 49–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Taneja, G., Mahadevan, N., & Balakumar, P. (2013). Fish oil blunted nicotine-induced vascular endothelial abnormalities possibly via activation of PPARγ-eNOS-NO signals. Cardiovascular Toxicology, 13, 110–122.PubMedCrossRefGoogle Scholar
  26. 26.
    Daiber, A., Steven, S., Weber, A., Shuvaev, V. V., Muzykantov, V. R., Laher, I., et al. (2017). Targeting vascular (endothelial) dysfunction. British Journal of Pharmacology, 174, 1591–1619.PubMedCrossRefGoogle Scholar
  27. 27.
    Guven, A., & Tolun, F. (2012). Effects of smokeless tobacco “Maras Powder” use on nitric oxide and cardiovascular risk parameters. International Journal of Medical Sciences, 9, 786–792.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Tsou, T. C., Tsai, F. Y., Hsieh, Y. W., Li, L. A., Yeh, S. C., & Chang, L. W. (2005). Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicology and Applied Pharmacology, 208, 277–284.PubMedCrossRefGoogle Scholar
  29. 29.
    Bell, S., Daskalopoulou, M., Rapsomanki, E., George, J., Britton, A., Bobak, M., et al. (2017). Association between clinically recorded alcohol consumption and initial presentation of 12 cardiovascular diseases: Population-based cohort study using linked health records. BMJ, 356, 909.CrossRefGoogle Scholar
  30. 30.
    Papaharalambus, C. A., & Griendling, K. K. (2007). Basic mechanisms of oxidative stress and reactive oxygen species in cardiovascular injury. Trends in Cardiovascular Medicine, 17, 48–54.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Castellon, X., & Bogdanova, V. (2016). Chronic inflammatory diseases and endothelial dysfunction. Aging and Disease, 7, 81–89.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Kiseleva, R. Y., Greineder, C. F., Villa, C. H., Marcos-Contreras, O. A., Hood, E. D., Shuvaev, V. V., et al. (2018). Vascular endothelial effects of collaborative binding to platelet/endothelial cell adhesion molecule-1 (PECAM-1). Science Reports, 8, 1510.CrossRefGoogle Scholar
  33. 33.
    Maruhashi, T., Kihara, Y., & Higashi, Y. (2018). Assessment of endothelium-independent vasodilation: From methodology to clinical perspectives. Journal of Hypertension, 36, 1460–1467.PubMedCrossRefGoogle Scholar
  34. 34.
    Zimmer, S., Steinmetz, M., Asdonk, T., Motz, I., Coch, C., Hartmann, E., et al. (2011). Activation of endothelial toll-like receptor 3 impairs endothelial function. Circulation Research, 108, 1358–1366.PubMedCrossRefGoogle Scholar
  35. 35.
    Witztum, J. L., & Lichtman, A. H. (2014). The influence of innate and adaptive immune responses on atherosclerosis. Annual Review of Pathology, 9, 73–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Sharma, A. K., Taneja, G., Khanna, D., & Rajput, S. K. (2015). Reactive oxygen species: Friend or foe? RSC Advances, 5, 57267–57276.CrossRefGoogle Scholar
  37. 37.
    Baltatu, O. C., Iliescu, R., Zaugg, C. E., Reckelhoff, J. F., Louie, P., Schumacher, C., et al. (2012). Antidiuretic effects of the endothelin receptor antagonist avosentan. Frontiers in Physiology, 3, 103.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Golomb, B. A., & Evans, M. A. (2008). Statin adverse effects: A review of the literature and evidence for a mitochondrial mechanism. American Journal of Cardiovascular Drugs, 8, 373–418.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Shahbazian, H., & Rezaii, I. (2013). Diabetic kidney disease; Review of the current knowledge. Journal of Renal Injury Prevention, 2, 73–80.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Izzo, J. L. Jr., & Weir, M. R. (2011). Angiotensin-converting enzyme inhibitors. The Journal of Clinical Hypertension (Greenwich), 13, 667–675.CrossRefGoogle Scholar
  41. 41.
    Gong, R., & Chen, G. (2016). Preparation and application of functionalized nano drug carriers. Saudi Pharmaceutical Journal, 24, 254–257.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kamaly, N., Xiao, Z., Valencia, P. M., Radovic-Moreno, A. F., & Farokhzad, O. C. (2012). Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chemical Society Reviews, 41, 2971–3010.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Katsuki, S., Matoba, T., Koga, J. I., Nakano, K., & Egashira, K. (2017). Anti-inflammatory nano-medicine for cardiovascular disease. Frontiers in Cardiovascular Medicine, 4, 87.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Pelaz, B., Alexiou, C., Alvarez-Puebla, R. A., Alves, F., Andrews, A. M., Ashraf, S., et al. (2017). Diverse applications of nanomedicine. ACS Nano, 11, 2313–2381PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Catalan-Figueroa, J., Palma-Florez, S., Alvarez, G., Fritz, H. F., Jara, M. O., & Morales, J. O. (2016). Nanomedicine and nanotoxicology: The pros and cons for neurodegeneration and brain cancer. Nanomedicine (London), 11, 171–187.CrossRefGoogle Scholar
  46. 46.
    Shuvaev, V. V., Brenner, J. S., & Muzykantov, V. R. (2015). Targeted endothelial nanomedicine for common acute pathological conditions. Journal of Controlled Release, 219, 576–595.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gwinn, M. R., & Vallyathan, V. (2006). Nanoparticles: Health effects—pros and cons. Environmental Health Perspectives, 114, 1818–1825.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Peynshaert, K., Manshian, B. B., Joris, F., Braeckmans, K., De Smedt, S. C., Demeester, J., et al. (2014). Exploiting intrinsic nanoparticle toxicity: The pros and cons of nanoparticle-induced autophagy in biomedical research. Chemical Reviews, 114, 7581–7609.PubMedCrossRefGoogle Scholar
  49. 49.
    Jatana, S., Palmer, B. C., Phelan, S. J., & DeLouise, L. A. (2017). Immunomodulatory effects of nanoparticles on skin allergy. Scientific Reports, 7, 3979.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tasciotti, E., Cabrera, F. J., Evangelopoulos, M., Martinez, J. O., Thekkedath, U. R., Kloc, M., et al. (2016). The emerging role of nanotechnology in cell and organ transplantation. Transplantation, 100, 1629–1638.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Salvador-Morales, C., Zhang, L., Langer, R., & Farokhzad, O. C. (2009). Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30, 2231–2240.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Shi, J., Xiao, Z., Votruba, A. R., Vilos, C., & Farokhzad, O. C. (2011). Differentially charged hollow core/shell lipid-polymer-lipid hybrid nanoparticles for small interfering RNA delivery. Angewandte Chemie International Edition England, 50, 7027–7031.CrossRefGoogle Scholar
  53. 53.
    Gao, W., Langer, R., & Farokhzad, O. C. (2010). Poly (ethylene glycol) with observable shedding. Angewandte Chemie International Edition England, 49, 6567–6571.CrossRefGoogle Scholar
  54. 54.
    Xiao, Z., Levy-Nissenbaum, E., Alexis, F., Lupták, A., Teply, B. A., Chan, J. M., et al. (2012). Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano, 6, 696–704.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Valencia, P. M., Pridgen, E. M., Perea, B., Gadde, S., Sweeney, C., Kantoff, P. W., et al. (2013). Synergistic cytotoxicity of irinotecan and cisplatin in dual-drug targeted polymeric nanoparticles. Nanomedicine (London), 8, 687–698.CrossRefGoogle Scholar
  56. 56.
    Leuschner, F., Dutta, P., Gorbatov, R., Novobrantseva, T. I., Donahoe, J. S., Courties, G., et al. (2011). Therapeutic siRNA silencing in inflammatory monocytes in mice. Nature Biotechnology, 29, 1005–1010.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ambesh, P., Campia, U., Obiagwu, C., Bansal, R., Shetty, V., Hollander, G., et al. (2017). Nanomedicine in coronary artery disease. Indian Heart Journal, 69, 244–251.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Broz, P., Ben-Haim, N., Grzelakowski, M., Marsch, S., Meier, W., & Hunziker, P. (2008). Inhibition of macrophage phagocytotic activity by a receptor-targeted polymer vesicle-based drug delivery formulation of pravastatin. Journal of Cardiovascular Pharmacology, 51, 246–252.PubMedCrossRefGoogle Scholar
  59. 59.
    Maracle, C. X., Agca, R., Helder, B., Meeuwsen, J. A. L., Niessen, H. W. M., Biessen, E. A. L., et al. (2018). Noncanonical NF-κB signaling in microvessels of atherosclerotic lesions is associated with inflammation, atheromatous plaque morphology and myocardial infarction. Atherosclerosis, 270, 33–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Rhee, J. W., & Wu, J. C. (2013). Advances in nanotechnology for the management of coronary artery disease. Trends in Cardiovascular Medicine, 23, 39–45.PubMedCrossRefGoogle Scholar
  61. 61.
    Peters, D., Kastantin, M., Kotamraju, V. R., Karmali, P. P., Gujraty, K., Tirrell, M., et al. (2009). Targeting atherosclerosis by using modular, multifunctional micelles. Proceedings of the National Academy of Sciences USA, 106, 9815–9819.CrossRefGoogle Scholar
  62. 62.
    Di Franco, S., Amarelli, C., Montalto, A., Loforte, A., & Musumeci, F. (2018). Biomaterials and heart recovery: Cardiac repair, regeneration and healing in the MCS era: A state of the “heart.”. Journal of Thoracic Disease, 10, 2346–2362.CrossRefGoogle Scholar
  63. 63.
    Kim, J. I., Kim, J. Y., & Park, C. H. (2018). Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Scientific Reports, 8, 3424.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hampton, T. (2018). Smart artificial beta cells may help treat diabetes. JAMA, 319, 11–12.PubMedCrossRefGoogle Scholar
  65. 65.
    Chen, Z., Wang, J., Sun, W., Archibong, E., Kahkoska, A. R., Zhang, X., et al. (2018). Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 14, 86–93.PubMedCrossRefGoogle Scholar
  66. 66.
    Luo, Y. Y., Xiong, X. Y., Tian, Y., Li, Z. L., Gong, Y. C., & Li, Y. P. (2016). A review of biodegradable polymeric systems for oral insulin delivery. Drug Delivery, 23, 1882–1891.PubMedCrossRefGoogle Scholar
  67. 67.
    DiSanto, R. M., Subramanian, V., & Gu, Z. (2015). Recent advances in nanotechnology for diabetes treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 7, 548–564.PubMedGoogle Scholar
  68. 68.
    Kesharwani, P., Gorain, B., Low, S. Y., Tan, S. A., Ling, E. C. S., Lim, Y. K., et al. (2018). Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Research and Clinical Practice, 136, 52–77.PubMedCrossRefGoogle Scholar
  69. 69.
    Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., & Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics, 9, 53.PubMedCentralCrossRefPubMedGoogle Scholar
  70. 70.
    Cui, F., Qian, F., Zhao, Z., Yin, L., Tang, C., & Yin, C. (2009). Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules, 10, 1253–1258.PubMedCrossRefGoogle Scholar
  71. 71.
    Woldu, M. A., & Lenjisa, J. L. (2014). Nanoparticles and the new era in diabetes management. International Journal of Basic & Clinical Pharmacology, 3, 277–284.CrossRefGoogle Scholar
  72. 72.
    IDF. (2018). Diabetes atlas-8th ed. Retrieved Aug 14, 2018, from http://www.diabetesatlas.org/.
  73. 73.
    Solini, A., Giannini, L., Seghieri, M., Vitolo, E., Taddei, S., Ghiadoni, L., et al. (2017). Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: A pilot study. Cardiovascular Diabetology, 16, 138.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Samadder, A., & Khuda-Bukhsh, A. R. (2014). Nanotechnological approaches in diabetes treatment: A new horizon. World Journal of Translational Medicine, 3, 84–95.CrossRefGoogle Scholar
  75. 75.
    Cetin, M., & Sahin, S. (2016). Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug Delivery, 23, 2796–2805.PubMedCrossRefGoogle Scholar
  76. 76.
    Narang, J., Malhotra, N., Singhal, C., Singh, G., & Pundir, C. S. (2018). Prussian blue nanocubes/carbon nanospheres heterostructure composite for biosensing of metformin. International Journal of Nanomedicine, 13, 117–120.PubMedCentralCrossRefPubMedGoogle Scholar
  77. 77.
    Sharma, A. K., Thanikachalam, P. V., & Rajput, S. K. (2016). Albiglutide: Is a better hope against diabetes mellitus? Biomedicine & Pharmacotherapy, 77, 120–128.CrossRefGoogle Scholar
  78. 78.
    Beloqui, A., Alhouayek, M., Carradori, D., Vanvarenberg, K., Muccioli, G. G., Cani, P. D., et al. (2016). A mechanistic study on nanoparticle-mediated glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells. Molecular Pharmaceutics, 13, 4222–4230.PubMedCrossRefGoogle Scholar
  79. 79.
    Jean, M., Alameh, M., De Jesus, D., Thibault, M., Lavertu, M., Darras, V., et al. (2012). Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. European Journal of Pharmaceutical Sciences, 45, 138–149.PubMedCrossRefGoogle Scholar
  80. 80.
    O’Sullivan, E. S., Vegas, A., Anderson, D. G., & Weir, G. C. (2011). Islets transplanted in immunoisolation devices: A review of the progress and the challenges that remain. Endocrine Reviews, 32, 827–844.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Ghosh, K., Kanapathipillai, M., Korin, N., McCarthy, J. R., & Ingber, D. E. (2012). Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. Nano Letters, 12, 203–208.PubMedCrossRefGoogle Scholar
  82. 82.
    Shaheen, T. I., El-Naggar, M. E., Hussein, J. S., El-Bana, M., Emara, E., El-Khayat, Z., et al. (2016). Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomedicine & Pharmacotherapy, 83, 865–875.CrossRefGoogle Scholar
  83. 83.
    Kim, Ah, Lee, H., Park, S., Lee, J. H., Lee, S., Ihm, B. W., et al. (2009). Enhanced protection of Ins-1 beta cells from apoptosis under hypoxia by delivery of DNA encoding secretion signal peptide-linked exendin-4. Journal of Drug Targeting, 17, 242–248.PubMedCrossRefGoogle Scholar
  84. 84.
    Goikuria, H., Vandenbroeck, K., & Alloza, I. (2018). Inflammation in human carotid atheroma plaques. Cytokine & Growth Factor Reviews, 39, 62–70.CrossRefGoogle Scholar
  85. 85.
    Han, Y., Jing, J., Tu, S., Tian, F., Xue, H., Chen, W., et al. (2014). ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. The International Journal of Cardiovascular Imaging, 30, 253–261.PubMedCrossRefGoogle Scholar
  86. 86.
    Duivenvoorden, R., Tang, J., Cormode, D. P., Mieszawska, A. J., Izquierdo-Garcia, D., Ozcan, C., et al. (2014). A statin-loaded reconstituted high-density lipoprotein nanoparticle inhibits atherosclerotic plaque inflammation. Nature Communications, 5, 3065.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Cho, B. H., Park, J. R., Nakamura, M. T., Odintsov, B. M., Wallig, M. A., & Chung, B. H. (2010). Synthetic dimyristoylphosphatidylcholine liposomes assimilating into high-density lipoprotein promote regression of atherosclerotic lesions in cholesterol-fed rabbits. Experimental Biology and Medicine (Maywood), 235, 1194–1203.CrossRefGoogle Scholar
  88. 88.
    Winter, P. M., Neubauer, A. M., Caruthers, S. D., Harris, T. D., Robertson, J. D., Williams, T. A., et al. (2006). Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 2103–2109.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang, J., Zu, Y., Dhanasekara, C. S., Li, J., Wu, D., Fan, Z., et al. (2017). Detection and treatment of atherosclerosis using nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology.  https://doi.org/10.1002/wnan.1412 CrossRefPubMedGoogle Scholar
  90. 90.
    Nakashiro, S., Matoba, T., Umezu, R., Koga, J., Tokutome, M., Katsuki, S., et al. (2016). Pioglitazone-incorporated nanoparticles prevent plaque destabilization and rupture by regulating monocyte/macrophage differentiation in ApoE-/- mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 491–500.PubMedCrossRefGoogle Scholar
  91. 91.
    Yong, S. B., Kim, H. J., Kim, J. K., Chung, J. Y., & Kim, Y. H. (2017). Human CD64-targeted non-viral siRNA delivery system for blood monocyte gene modulation. Scientific Reports, 7, 42171.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bartneck, M., Peters, F. M., Warzecha, K. T., Bienert, M., van Bloois, L., Trautwein, C., et al. (2014). Liposomal encapsulation of dexamethasone modulates cytotoxicity, inflammatory cytokine response, and migratory properties of primary human macrophages. Nanomedicine, 10, 1209–1220.PubMedCrossRefGoogle Scholar
  93. 93.
    Myerson, J., He, L., Lanza, G., Tollefsen, D., & Wickline, S. (2011). Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for treatment and magnetic resonance imaging of acute thrombosis. Journal of Thrombosis and Haemostasis, 9, 1292–1300.PubMedCrossRefGoogle Scholar
  94. 94.
    Pendyala, L. K., Matsumoto, D., Shinke, T., Iwasaki, T., Sugimoto, R., Hou, D., et al. (2012). Nobori stent shows less vascular inflammation and early recovery of endothelial function compared with Cypher stent. JACC Cardiovascular Interventions, 5, 436–444.PubMedCrossRefGoogle Scholar
  95. 95.
    Danenberg, H. D., Fishbein, I., Gao, J., Mönkkönen, J., Reich, R., Gati, I., et al. (2002). Macrophage depletion by clodronate-containing liposomes reduces neointimal formation after balloon injury in rats and rabbits. Circulation, 106, 599–605.PubMedCrossRefGoogle Scholar
  96. 96.
    Danenberg, H. D., Golomb, G., Groothuis, A., Gao, J., Epstein, H., Swaminathan, R. V., et al. (2003). Liposomal alendronate inhibits systemic innate immunity and reduces in-stent neointimal hyperplasia in rabbits. Circulation, 108, 2798–2804.PubMedCrossRefGoogle Scholar
  97. 97.
    Kolodgie, F. D., John, M., Khurana, C., Farb, A., Wilson, P. S., Acampado, E., et al. (2002). Sustained reduction of in-stent neointimal growth with the use of a novel systemic nanoparticle paclitaxel. Circulation, 106, 1195–1198.PubMedCrossRefGoogle Scholar
  98. 98.
    Joner, M., Morimoto, K., Kasukawa, H., Steigerwald, K., Merl, S., Nakazawa, G., et al. (2008). Site-specific targeting of nanoparticle prednisolone reduces in-stent restenosis in a rabbit model of established atheroma. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1960–1966.PubMedCrossRefGoogle Scholar
  99. 99.
    Chan, J. M., Rhee, J.-W., Drum, C. L., Bronson, R. T., Golomb, G., Langer, R., et al. (2011). In vivo prevention of arterial restenosis with paclitaxel-encapsulated targeted lipid–polymeric nanoparticles. Proceedings of the National Academy of Sciences USA, 108, 19347–19352.CrossRefGoogle Scholar
  100. 100.
    Hashi, C. K., Zhu, Y., Yang, G.-Y., Young, W. L., Hsiao, B. S., Wang, K., et al. (2007). Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proceedings of the National Academy of Sciences USA, 104, 11915–11920.CrossRefGoogle Scholar
  101. 101.
    Mangge, H., Almer, G., Stelzer, I., Reininghaus, E., & Prassl, R. (2014). Laboratory medicine for molecular imaging of atherosclerosis. Clinica Chimica Acta, 437, 19–24.CrossRefGoogle Scholar
  102. 102.
    Chung, B. L., Toth, M. J., Toth, K., Kamaly, N., Sei, Y. J., Becraft, J., et al. (2015). Nanomedicines for endothelial disorders. Nano Today, 10, 759–776.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Liao, J. K. (2013). Linking endothelial dysfunction with endothelial cell activation. Journal of Clinical Investigation, 123, 540–541.PubMedCrossRefGoogle Scholar
  104. 104.
    Khodabandehlou, K., Masehi-Lano, J. J., Poon, C., Wang, J., & Chung, E. J. (2017). Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Experimental Biology and Medicine (Maywood), 242, 799–812.CrossRefGoogle Scholar
  105. 105.
    Lobatto, M. E., Fuster, V., Fayad, Z. A., & Mulder, W. J. (2011). Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews Drug Discovery, 10, 835–852.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Lobatto, M. E., Fayad, Z. A., Silvera, S., Vucic, E., Calcagno, C., Mani, V., et al. (2010). Multimodal clinical imaging to longitudinally assess nano-medical anti-inflammatory treatment in experimental atherosclerosis. Molecular Pharmaceutics, 7, 2020–2029.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Cicha, I. (2016). Strategies to enhance nanoparticle-endothelial interactions under flow. Journal of Cellular Biotehnology, 1, 191–208.CrossRefGoogle Scholar
  108. 108.
    Kelly, K. A., Allport, J. R., Tsourkas, A., Shinde-Patil, V. R., Josephson, L., & Weissleder, R. (2005). Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circulation Research, 96, 327–336.PubMedCrossRefGoogle Scholar
  109. 109.
    Bhowmick, T., Berk, E., Cui, X., Muzykantov, V. R., & Muro, S. (2012). Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1. Journal of Controlled Release, 157, 485–492.PubMedCrossRefGoogle Scholar
  110. 110.
    Reynolds, P. R., Larkman, D. J., Haskard, D. O., Hajnal, J. V., Kennea, N. L., George, A. J., et al. (2006). Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology, 241, 469–476.PubMedCrossRefGoogle Scholar
  111. 111.
    Elbialy, N. S., Fathy, M. M., & Khalil, W. M. (2015). Doxorubicin loaded magnetic gold nanoparticles for in vivo targeted drug delivery. International Journal of Pharmaceutics, 490, 190–199.PubMedCrossRefGoogle Scholar
  112. 112.
    Zhang, Y., Li, W., Ou, L., Wang, W., Delyagina, E., Lux, C., et al. (2012). Targeted delivery of human VEGF gene via complexes of magnetic nanoparticle-adenoviral vectors enhanced cardiac regeneration. PLoS ONE, 7, 39490.CrossRefGoogle Scholar
  113. 113.
    Ma, Y. H., Wu, S. Y., Wu, T., Chang, Y. J., Hua, M. Y., & Chen, J. P. (2009). Magnetically targeted thrombolysis with recombinant tissue plasminogen activator bound to polyacrylic acid-coated nanoparticles. Biomaterials, 30, 3343–3351.PubMedCrossRefGoogle Scholar
  114. 114.
    Ma, H. L., Qi, X. R., Ding, W. X., Ding, W. X., Maitani, Y., & Nagai, T. (2008). Magnetic targeting after femoral artery administration and biocompatibility assessment of superparamagnetic iron oxide nanoparticles. Journal of Biomedical Materials Research Part A, 84, 598–606.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Gaurav Taneja
    • 1
  • Akash Sud
    • 1
  • Narayan Pendse
    • 1
  • Bishnu Panigrahi
    • 1
  • Ashish Kumar
    • 2
  • Arun K. Sharma
    • 3
    Email author
  1. 1.Fortis Healthcare LtdGurugramIndia
  2. 2.Department of Pharmaceutical Science, Amity Institute of PharmacyAmity UniversityNoidaIndia
  3. 3.Cardiovascular Division, Department of Pharmacology, Amity Institute of PharmacyAmity UniversityGurugramIndia

Personalised recommendations