Advertisement

Cardiovascular Toxicology

, Volume 19, Issue 2, pp 168–177 | Cite as

Airway Exposure to Modified Multi-walled Carbon Nanotubes Perturbs Cardiovascular Adenosinergic Signaling in Mice

  • Leslie C. Thompson
  • Nicole L. Sheehan
  • Dianne M. Walters
  • Robert M. Lust
  • Jared M. Brown
  • Christopher J. WingardEmail author
Article
  • 70 Downloads

Abstract

The broad list of commercial applications for multi-walled carbon nanotubes (MWCNT) can be further expanded with the addition of various surface chemistry modifications. For example, standard commercial grade MWCNT (C-grade) can be carboxylated (COOH) or nitrogen-doped (N-doped) to suite specific utilities. We previously reported dose-dependent expansions of cardiac ischemia/reperfusion (I/R) injury, 24 h after intratracheal instillation of C-grade, COOH, or N-doped MWCNT in mice. Here, we have tested the hypothesis that airway exposure to MWCNT perturbs cardiovascular adenosinergic signaling, which could contribute to exacerbation of cardiac I/R injury. 100 µL of Vehicle or identical suspension volumes containing 100 µg of C-grade, COOH, or N-doped MWCNT were instilled into the trachea of CD-1 ICR mice. 1 day later, we measured cyclic adenosine monophosphate (cAMP) concentrations in cardiac tissue and evaluated arterial adenosinergic smooth muscle signaling mechanisms related to nitric oxide synthase (NOS) and cyclooxygenase (COX) in isolated aortic tissue. We also verified cardiac I/R injury expansion and examined both lung histology and bronchoalveolar lavage fluid cellularity in MWCNT exposed mice. Myocardial cAMP concentrations were reduced (p < 0.05) in the C-grade group by 17.4% and N-doped group by 13.7% compared to the Vehicle group. Curve fits to aortic ring 2-Cl-Adenosine concentration responses were significantly greater in the MWCNT groups vs. the Vehicle group. Aortic constrictor responses were more pronounced with NOS inhibition and were abolished with COX inhibition. These findings indicate that addition of functional chemical moieties on the surface of MWCNT may alter the biological responses to exposure by influencing cardiovascular adenosinergic signaling and promoting cardiac injury.

Keywords

Multi-walled carbon nanotubes Cardiac ischemia/reperfusion injury Adenosine cAMP 

Notes

Acknowledgements

We would like to thank Cathy Stang and Alvin Tsang for help with tissue collection and vascular data acquisition. We thank Dr. Walter Klein of ONY, Inc. for donating the Infasurf™, Dr. Benjamin Harrison and Dr. Richard Czerw of NanoTechLabs, Inc. for providing the MWCNT used in this study. The conclusions reported in the manuscript are those of the authors and do not necessarily reflect those of the National Institute of Environment Health Sciences, East Carolina University, Bellarmine University, or the University of Colorado at Denver.

Funding

This research was supported by East Carolina University and funded through the National Institutes of Environmental Health Sciences: NIH R01 ES016246 (CJW) and U19 ES019525 (JMB and CJW).

Compliance with Ethical Standards

Conflict of interest

The authors report no conflicts of interests related to the research reported in this manuscript.

Research Involving Animals Rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were approved and in accordance with the ethical standards of the Institutional Animal Care and Use Committee at East Carolina University (Greenville, NC, USA).

References

  1. 1.
    Kuijpers, E., Bekker, C., Fransman, W., Brouwer, D., Tromp, P., Vlaanderen, J., et al. (2016). Occupational exposure to multi-walled carbon nanotubes during commercial production synthesis and handling. Annals of Occupatonal Hygiene, 60, 305–317.CrossRefGoogle Scholar
  2. 2.
    Poulsen, S. S., Knudsen, K. B., Jackson, P., Weydahl, I. E., Saber, A. T., Wallin, H., et al. (2017). Multi-walled carbon nanotube-physicochemical properties predict the systemic acute phase response following pulmonary exposure in mice. PLoS ONE, 12, e0174167.CrossRefGoogle Scholar
  3. 3.
    Ayala, P., Arenal, R., Rümmeli, M., Rubio, A., & Pichler, T. (2010). The doping of carbon nanotubes with nitrogen and their potential applications. Carbon, 48, 575–586.CrossRefGoogle Scholar
  4. 4.
    Min, C., Zhang, Q., Shen, C., Liu, D., Shen, X., Song, H., et al. (2017). Graphene oxide/carboxyl-functionalized multi-walled carbon nanotube hybrids: Powerful additives for water-based lubrication. RSC Advances, 7, 32574–32580.CrossRefGoogle Scholar
  5. 5.
    Urankar, R. N., Lust, R. M., Mann, E., Katwa, P., Wang, X., Podila, R., et al. (2012). Expansion of cardiac ischemia/reperfusion injury after instillation of three forms of multi-walled carbon nanotubes. Particle Fibre Toxicology, 9, 38.CrossRefGoogle Scholar
  6. 6.
    Sousa, J. B., & Diniz, C. (2017). The adenosinergic system as a therapeutic target in the vasculature: New ligands and challenges. Molecules.  https://doi.org/10.3390/molecules22050752.Google Scholar
  7. 7.
    Sprenger, J. U., Perera, R. K., Steinbrecher, J. H., Lehnart, S. E., Maier, L. S., Hasenfuss, G., et al. (2015). In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nature Communications, 6, 6965.CrossRefGoogle Scholar
  8. 8.
    Weber, S., Zeller, M., Guan, K., Wunder, F., Wagner, M., & El-Armouche, A. (2017). PDE2 at the crossway between cAMP and cGMP signalling in the heart. Cell Signal, 38, 76–84.CrossRefGoogle Scholar
  9. 9.
    Khaliulin, I., Bond, M., James, A. F., Dyar, Z., Amini, R., Johnson, J. L., et al. (2017). Functional and cardioprotective effects of simultaneous and individual activation of protein kinase A and Epac. British Journal of Pharmacology, 174, 438–453.CrossRefGoogle Scholar
  10. 10.
    Lochner, A., Genade, S., Tromp, E., Podzuweit, T., & Moolman, J. A. (1999). Ischemic preconditioning and the beta-adrenergic signal transduction pathway. Circulation, 100, 958–966.CrossRefGoogle Scholar
  11. 11.
    Headrick, J. P., Ashton, K. J., Rose’meyer, R. B., & Peart, J. N. (2013). Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacology & Therapeutics, 140, 92–111.CrossRefGoogle Scholar
  12. 12.
    Ladilov, Y., & Appukuttan, A. (2014). Role of soluble adenylyl cyclase in cell death and growth. Biochimica et Biophysica Acta, 1842, 2646–2655.CrossRefGoogle Scholar
  13. 13.
    Jackson, E. K., Mi, Z., & Dubey, R. K. (2007). The extracellular cAMP-adenosine pathway significantly contributes to the in vivo production of adenosine. Journal of Pharmacology and Experimental Therapeutics, 320, 117–123.CrossRefGoogle Scholar
  14. 14.
    Vecchio, E. A., White, P. J., & May, L. T. (2017). Targeting adenosine receptors for the treatment of cardiac fibrosis. Frontiers in Pharmacology, 8, 243.CrossRefGoogle Scholar
  15. 15.
    Ho, M. F., & Rose’Meyer, R. B. (2013). Vascular adenosine receptors; potential clinical applications. Current Vascular Pharmacology, 11, 327–337.CrossRefGoogle Scholar
  16. 16.
    Antonioli, L., Fornai, M., Blandizzi, C., Pacher, P., & Hasko, G. (2018). Adenosine signaling and the immune system: When a lot could be too much. Immunology Letters.  https://doi.org/10.1016/j.imlet.2018.04.006.Google Scholar
  17. 17.
    Bowser, J. L., Lee, J. W., Yuan, X., & Eltzschig, H. K. (2017). The hypoxia-adenosine link during inflammation. Journal of Applied Physiology, 123, 1303–1320.CrossRefGoogle Scholar
  18. 18.
    Smits, P., Lenders, J. W., Willemsen, J. J., & Thien, T. (1991). Adenosine attenuates the response to sympathetic stimuli in humans. Hypertension, 18, 216–223.CrossRefGoogle Scholar
  19. 19.
    Lynch, F. M., Austin, C., Heagerty, A. M., & Izzard, A. S. (2006). Adenosine and hypoxic dilation of rat coronary small arteries: Roles of the ATP-sensitive potassium channel, endothelium, and nitric oxide. American Journal of Physiology-Heart and Circulatory Physiology, 290, H1145–H1150.CrossRefGoogle Scholar
  20. 20.
    Ansari, H. R., Nadeem, A., Tilley, S. L., & Mustafa, S. J. (2007). Involvement of COX-1 in A3 adenosine receptor-mediated contraction through endothelium in mice aorta. American Journal of Physiology-Heart and Circulatory Physiology, 293, H3448–H3455.CrossRefGoogle Scholar
  21. 21.
    Burnstock, G., & Pelleg, A. (2015). Cardiac purinergic signalling in health and disease. Purinergic Signal, 11, 1–46.CrossRefGoogle Scholar
  22. 22.
    Fox, A. C., Reed, G. E., Glassman, E., Kaltman, A. J., & Silk, B. B. (1974). Release of adenosine from human hearts during angina induced by rapid atrial pacing. Journal of Clinical Investigation, 53, 1447–1457.CrossRefGoogle Scholar
  23. 23.
    Zhou, Z., Sun, C., Tilley, S. L., & Mustafa, S. J. (2015). Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors. Vascular Pharmacology, 73, 78–85.CrossRefGoogle Scholar
  24. 24.
    Ponnoth, D. S., Nadeem, A., Tilley, S., & Mustafa, S. J. (2010). Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma. American Journal of Physiology-Heart and Circulatory Physiology, 299, H81–H87.CrossRefGoogle Scholar
  25. 25.
    Hansen, P. B., Hristovska, A., Wolff, H., Vanhoutte, P., Jensen, B. L., & Bie, P. (2010). Uridine adenosine tetraphosphate affects contractility of mouse aorta and decreases blood pressure in conscious rats and mice. Acta Physiologica, 200, 171–179.CrossRefGoogle Scholar
  26. 26.
    Wang, X., Katwa, P., Podila, R., Chen, P., Ke, P. C., Rao, A. M., et al. (2011). Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Particle and Fibre Toxicology, 8, 24.CrossRefGoogle Scholar
  27. 27.
    Ludbrook, J. (1994). Repeated measurements and multiple comparisons in cardiovascular research. Cardiovascular Research, 28, 303–311.CrossRefGoogle Scholar
  28. 28.
    Yaar, R., Jones, M. R., Chen, J. F., & Ravid, K. (2005). Animal models for the study of adenosine receptor function. Journal of Cellular Physiology, 202, 9–20.CrossRefGoogle Scholar
  29. 29.
    Abukabda, A. B., Stapleton, P. A., & Nurkiewicz, T. R. (2016). Metal nanomaterial toxicity variations within the vascular system. Current Environmental Health Reports, 3, 379–391.CrossRefGoogle Scholar
  30. 30.
    Stone, V., Miller, M. R., Clift, M. J. D., Elder, A., Mills, N. L., Møller, P., et al. (2017). Nanomaterials versus ambient ultrafine particles: An opportunity to exchange toxicology knowledge. Environmental Health Perspectives, 125(10), 106002.CrossRefGoogle Scholar
  31. 31.
    Brook, R. D., Rajagopalan, S., Pope, C. A.3rd, Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefGoogle Scholar
  32. 32.
    Cartwright, M. M., Schmuck, S. C., Corredor, C., Wang, B., Scoville, D. K., Chisholm, C. R., et al. (2016). The pulmonary inflammatory response to multiwalled carbon nanotubes is influenced by gender and glutathione synthesis. Redox Biology, 9, 264–275.CrossRefGoogle Scholar
  33. 33.
    Bonner, J. C., Silva, R. M., Taylor, A. J., Brown, J. M., Hilderbrand, S. C., Castranova, V., et al. (2013). Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environmental Health Perspectives, 121, 676–682.CrossRefGoogle Scholar
  34. 34.
    Thompson, L. C., Frasier, C. R., Sloan, R. C., Mann, E. E., Harrison, B. S., Brown, J. M., et al. (2014). Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology, 8, 38–49.CrossRefGoogle Scholar
  35. 35.
    Thompson, L. C., Urankar, R. N., Holland, N. A., Vidanapathirana, A. K., Pitzer, J. E., Han, L., et al. (2014). C(6)(0) exposure augments cardiac ischemia/reperfusion injury and coronary artery contraction in Sprague Dawley rats. Toxicological Sciences, 138, 365–378.CrossRefGoogle Scholar
  36. 36.
    Boularan, C., & Gales, C. (2015). Cardiac cAMP: Production, hydrolysis, modulation and detection. Frontiers in Pharmacology, 6, 203.CrossRefGoogle Scholar
  37. 37.
    Chung, Y. W., Lagranha, C., Chen, Y., Sun, J., Tong, G., Hockman, S. C., et al. (2015). Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America, 112, E2253–E2262.CrossRefGoogle Scholar
  38. 38.
    Huang, M. H., Poh, K. K., Tan, H. C., Welt, F. G., & Lui, C. Y. (2016). Therapeutic synergy and complementarity for ischemia/reperfusion injury: Beta1-adrenergic blockade and phosphodiesterase-3 inhibition. International Journal of Cardiology, 214, 374–380.CrossRefGoogle Scholar
  39. 39.
    Baldwin, T. A., & Dessauer, C. W. (2018). Function of adenylyl cyclase in heart: The AKAP connection. Journal of Cardiovascular Development and Disease.  https://doi.org/10.3390/jcdd5010002.Google Scholar
  40. 40.
    Aragon, M., Erdely, A., Bishop, L., Salmen, R., Weaver, J., Liu, J., et al. (2016). MMP-9-dependent serum-borne bioactivity caused by multiwalled carbon nanotube exposure induces vascular dysfunction via the CD36 scavenger receptor. Toxicological Sciences, 150, 488–498.CrossRefGoogle Scholar
  41. 41.
    Mandler, W. K., Nurkiewicz, T. R., Porter, D. W., & Olfert, I. M. (2017). Thrombospondin-1 mediates multi-walled carbon nanotube induced impairment of arteriolar dilation. Nanotoxicology, 11, 112–122.CrossRefGoogle Scholar
  42. 42.
    Stapleton, P. A., Minarchick, V. C., Cumpston, A. M., McKinney, W., Chen, B. T., Sager, T. M., et al. (2012). Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: A time-course study. International Journal of Molecular Sciences, 13, 13781–13803.CrossRefGoogle Scholar
  43. 43.
    Achterberg, P. W., Harmsen, E., & de Jong, J. W. (1985). Adenosine deaminase inhibition and myocardial purine release during normoxia and ischaemia. Cardiovascular Research, 19, 593–598.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysiologyBrody School of Medicine at East Carolina UniversityGreenvilleUSA
  2. 2.Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical ScienceUniversity of ColoradoAuroraUSA
  3. 3.College of Health Professions, School of Movement and Rehabilitation SciencesBellarmine UniversityLouisvilleUSA

Personalised recommendations