Cardiovascular Toxicology

, Volume 18, Issue 6, pp 547–556 | Cite as

The Effects of Lipid Emulsion, Magnesium Sulphate and Metoprolol in Amitriptyline-Induced Cardiovascular Toxicity in Rats

  • Saylav Bora
  • Mümin Alper Erdoğan
  • Gürkan Yiğittürk
  • Oytun Erbaş
  • İsmet Parlak


The aim of this study was to evaluate the effects of metoprolol, lipid emulsion and MgSO4 which can be recommended for prevention of long QT that is one of the lethal consequences of amitriptyline intoxication. Thirty Sprague–Dawley male rats were included. Five groups respectively received the following: saline intraperitoneally (i.p.); amitriptyline (AMT) 100 mg/kg per os (p.o.) and saline i.p.; AMT 100 mg/kg p.o. and 5 mg/kg metoprolol i.p.; AMT 100 mg/kg p.o. and 20 ml/kg lipid emulsion i.p.; AMT 100 mg/kg p.o. and 75 mg/kg MgSO4 i.p. After 1 h, all groups were analysed by ECG recordings in DII lead; their blood was taken for biochemical examination and euthanasia was performed. For histological examination, cardiac tissues were removed and sections were prepared. QTc was significantly reduced in treatment groups compared to the AMT+saline group. When compared with the AMT+saline, lipid emulsion did not affect pro-BNP and troponin levels in biochemical analysis, but it significantly reduced Caspase 3 expression in histological examination. In the group treated with AMT and metoprolol, there was no significant effect on Caspase 3 expression. In MgSO4-treated group, there was a significant decrease in troponin, pro-BNP and urea levels biochemically and significant decrease in Caspase 3 expression histologically when compared with the control group. With further studies including clinical studies, MgSO4, lipid emulsion or metoprolol may be used to improve AMT-induced cardiotoxicity. They can possibly become alternative approaches in the future for suicidal or accidental intoxication of tricyclic antidepressant in emergency departments.


Drug toxicity QTc Amitriptyline Arrhythmia Electrocardiogram 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Akgun, A., Kalkan, S., Hocaoglu, N., Gidener, S., & Tuncok, Y. (2008). Effects of adenosine receptor antagonists on amitriptyline-induced QRS prolongation in isolated rat hearts. Clinical Toxicology (Philadelphia), 46(7), 677–685.CrossRefGoogle Scholar
  2. 2.
    Akman, T., Erbas, O., Akman, L., & Yilmaz, A. U. (2014). Prevention of pazopanib-prevention induced prolonged cardiac repolarization and proarrhytmic effects. Arquivos Brasileiros de Cardiologia, 103(5), 403–409.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Alvarez, P. A., & Pahissa, J. (2010). QT alterations in psychopharmacology: Proven candidates and suspects. Current Drug Safety, 5(1), 97–104.CrossRefPubMedGoogle Scholar
  4. 4.
    Balasubramaniyam, N., Palaniswamy, C., Aronow, W. S., Khera, S., Balasubramanian, G., Harikrishnan, P., et al. (2013). Association of corrected QT interval with long-term mortality in patients with syncope. Archives of Medical Science, 9(6), 1049–1054.CrossRefPubMedGoogle Scholar
  5. 5.
    Barber, M. J., Starmer, C. F., & Grant, A. O. (1991). Blockade of cardiac sodium channels by amitriptyline and diphenylhydantoin. Evidence for two use-dependent binding sites. Circulation Research, 69(3), 677–696.CrossRefPubMedGoogle Scholar
  6. 6.
    Barrington, P. L., & Ten Eick, R. E. (1990). Characterization of the electrophysiological effects of metoprolol on isolated feline ventricular myocytes. Journal of Pharmacology and Experimental Therapeutics, 252(3), 1043–1052.PubMedGoogle Scholar
  7. 7.
    Basol, N., & Erbas, O. (2016). The effects of diltiazem and metoprolol in QTc prolongation due to amitriptyline intoxication. Human & Experimental Toxicology, 35(1), 29–34.CrossRefGoogle Scholar
  8. 8.
    Bateman, D. N., Chick, J., Good, A. M., Kelly, C. A., & Masterton, G. (2004). Are selective serotonin re-uptake inhibitors associated with an increased risk of self-harm by antidepressant overdose? European Journal of Clinical Pharmacology, 60, 2214.Google Scholar
  9. 9.
    Baysal, T., Oran, B., Doğan, M., Cimen, D., Elmas, S., & Karaaslan, S. (2007). Beta-blocker treatment in an adolescent with amitriptyline intoxication. The Anatolian Journal of Cardiology, 7(3), 324–325.PubMedGoogle Scholar
  10. 10.
    Beach, S. R., Celano, C. M., Noseworthy, P. A., Januzzi, J. L., & Huffman, J. C. (2013). QTc prolongation, torsades de pointes, and psychotropic medications. Psychosomatics, 54(1), 1–13.CrossRefPubMedGoogle Scholar
  11. 11.
    Blaber, M. S., Khan, J. N., Nrebner, J. A., & McColm, R. (2012). “Lipid rescue” for tricyclic antidepressant cardiotoxicity. The Journal of Emergency Medicine, 43(3), 465–467.CrossRefPubMedGoogle Scholar
  12. 12.
    Carreiro, S., Blum, J., & Hack, J. B. (2014). Pretreatment with intravenous lipid emulsion reduces mortality from cocaine toxicity in a rat model. Annals of Emergency Medicine, 64(1), 32–37.CrossRefPubMedGoogle Scholar
  13. 13.
    Celebi, O., Diker, E., & Aydogdu, S. (2008). Clinical importance of cardiac troponins. Archives of the Turkish Society of Cardiology, 36(4), 269–277.PubMedGoogle Scholar
  14. 14.
    Cotton, D. B., Gonik, B., & Dorman, K. F. (1984). Cardiovascular alterations in severe pregnancy-induced hypertension: Acute effects of intravenous magnesium sulphate. American Journal of Obstetrics and Gynecology, 148, 162–165.CrossRefPubMedGoogle Scholar
  15. 15.
    Critelli, G., Ferro, G., Peschle, C., Perticone, F. R., Rengo, F. R., & Condorelli, M. (1977). Myocardial contractility after injection or prolonged infusion of magnesium sulphate. Acta Cardiologica, 32, 65–73.PubMedGoogle Scholar
  16. 16.
    Dandavino, A., Woods, J. R., Murayama, K., Brinkman, C. R., & Assali, N. S. (1977). Circulatory effects of magnesium sulphate in normotensive and renal hypertensive pregnant sheep. American Journal of Obstetrics and Gynecology, 127, 769–774.CrossRefPubMedGoogle Scholar
  17. 17.
    Demircan, C., Cikriklar, H. I., Engindeniz, Z., Cebicci, H., Atar, N., Guler, V., et al. (2005). Comparison of the effectiveness of intravenous diltiazem and metoprolol in the management of rapid ventricular rate in atrial fibrillation. Emergency Medicine Journal, 22(6), 411–414.CrossRefPubMedGoogle Scholar
  18. 18.
    Dianat, S., Zarei, M. R., Hassanian-Moghaddam, H., Rashidi-Ranjbar, N., Rahimian, R., & Rasouli, M. R. (2011). Tricyclic antidepressants intoxication in Tehran, Iran: Epidemiology and associated factors. Human & Experimental Toxicology, 30(4), 283–288.CrossRefGoogle Scholar
  19. 19.
    Dinleyici, E. C., Kilic, Z., Sahin, S., Tutuncu-Toker, R., Eren, M., Yargic, Z. A., et al. (2013). Heart rate variability in children with tricyclic antidepressant intoxication. Cardiology Research and Practice, 2013, 196506.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Erbas, O., & Yilmaz, M. (2015). Metoprolol and diltiazem ameliorate ziprasidone-induced prolonged corrected QT interval in rats. Toxicology and Industrial Health, 31(12), 1152–1157.CrossRefPubMedGoogle Scholar
  21. 21.
    Foianini, A., Joseph Wiegand, T., & Benowitz, N. (2010). What is the role of lidocaine or phenytoin in tricyclic antidepressant-induced cardiotoxicity? Clinical Toxicology, 48(4), 325–330.CrossRefPubMedGoogle Scholar
  22. 22.
    Fossa, A. A., Zhou, M., Brennan, N., Round, P., & Ford, J. (2014). Use of continuous ECG for improvements in assessing the standing response as a positive control for QT prolongation. Annals of Noninvasive Electrocardiology, 19(1), 82–89.CrossRefPubMedGoogle Scholar
  23. 23.
    Harvey, M., & Cave, G. (2007). Intralipid outperforms sodium bicarbonate in a rabbit model of clomipramine toxicity. Annals of Emergency Medicine, 49(2), 178–185.CrossRefPubMedGoogle Scholar
  24. 24.
    Harvey, M., & Cave, G. (2012). Case report: Successful lipid resuscitation in multi-drug overdose with predominant tricyclic antidepressant toxidrome. International Journal of Emergency Medicine, 5(1), 8.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Holly, T. A., Drincic, A., Byun, Y., Nakamura, S., Harris, K., Klocke, F. J., et al. (1999). Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. Journal of Molecular and Cellular Cardiology, 31, 1709–1715.CrossRefPubMedGoogle Scholar
  26. 26.
    Hussain, A., Gharanei, A. M., Nagra, A. S., & Maddock, H. L. (2014). Caspase inhibition Via A3 adenosine receptors: A new cardioprotective mechanism against myocardial infarction. Cardiovascular Drugs and Therapy, 28, 19–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Jalal, A. N., Yasseri, K., & Kadhim, H. A. (2009). Histopathological monitorring of cardioprotective effects of MgSO4, pioglitazone and omega-3 fatty acids in rabbits induced with myocardial infarction. Kufa Medical Journal, 12(1), 476–481.Google Scholar
  28. 28.
    James, M. F. M., Cork, R. C., & Dennett, J. E. (1987). Cardiovascular effects of magnesium sulphate in the baboon. Magnesium, 6, 314–324.PubMedGoogle Scholar
  29. 29.
    Kalkan, S., Hocaoglu, N., Oransay, K., Buyukdeligoz, M., & Tuncok, Y. (2012). Adenosine mediated cardiovascular toxicity in amitriptyline poisoned rats. Drug and Chemical Toxicology, 35(4), 423–431.CrossRefPubMedGoogle Scholar
  30. 30.
    Kaplan, Y. C., Hocaoglu, N., Oransay, K., Kalkan, S., & Tuncok, Y. (2008). Effect of glucagon on amitriptyline-induced cardiovascular toxicity in rats. Human & Experimental Toxicology, 27(4), 321–325.CrossRefGoogle Scholar
  31. 31.
    Karmakar, S., Padman, A., Mane, N. S., & Sen, T. (2013). Hypokalemia: A potent risk for QTc prolongation in clarithromycin treated rats. European Journal of Pharmacology, 709(1–3), 80–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Kemp, P. A., Gardiner, S. M., March, J. E., Bennett, T., & Rubin, P. C. (1994). Effects of NG-nitro-L-arginine methyl ester on regional hemomodynamic responses to MgSO4 in conscious rats. British Journal of Pharmacology, 111(1), 325–331.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kerr, G. W., McGuffie, A. C., & Wilkie, S. (2001). Tricyclic antidepressant overdose: A review. Emergency Medicine Journal, 18(4), 236–241.CrossRefPubMedGoogle Scholar
  34. 34.
    Kharb, S., & Singh, V. (2000). Magnesium deficiency potentiates free radical production associated with myocardial infarction. The Journal of the Association of Physicians of India, 48, 484–485.PubMedGoogle Scholar
  35. 35.
    Kiyan, S., Aksay, E., Yanturali, S., Atilla, R., & Ersel, M. (2006). Acute myocardial infarction associated with amitripthyline overdose. Basic & Clinical Pharmacology & Toxicology, 98, 462–466.CrossRefGoogle Scholar
  36. 36.
    Kline, J. A., DeStefano, A. A., Schroeder, J. D., & Raymond, R. M. (1994). Magnesium potantiates imipramine toxicity in the isolated rat heart. Annals of Emergency Medicine, 24, 224–232.CrossRefPubMedGoogle Scholar
  37. 37.
    Legome, E. (2006). Toxicity, antidepressant. Emergency medicine online textbook. Retrieved September 26, from
  38. 38.
    Levine, M., Brooks, D. E., Franken, A., & Graham, R. (2012). Delayed-onset seizure and cardiac arrest after amitriptyline overdose, treated with intravenous lipid emulsion therapy. Pediatrics, 130(2), E432–E438.CrossRefGoogle Scholar
  39. 39.
    Li, J., Iorga, A., Sharma, S., Youn, J. Y., Partow-Navid, R., Umar, S., et al. (2012). Intralipid, a clinically safe compound, protects the heart against ischemia-reperfusion injury more efficiently than cyclosporine-A. Anesthesiology: The Journal of the American Society of Anesthesiologists, 117(4), 836–846.CrossRefGoogle Scholar
  40. 40.
    Liebelt, E. L. (2011). Cyclic antidepressants. In L. S. Nelson, N. A. Lewin, M. A. Howland, R. S. Hoffman, L. R. Goldfrank, & N. E. Flomenbaum (Eds.), Goldfrank’s toxicologic emergencies (9th ed., pp. 1049–1057). New York: Mcgraw Hill Companies.Google Scholar
  41. 41.
    Lou, P., Lucchinetti, E., Zhang, L., Affolter, A., Schaub, M. C., Gandhi, M., et al. (2014). The mechanism of intralipid®-mediated cardioprotection complex IV inhibition by the active metabolite, palmitoylcarnitine, generates reactive oxygen species and activates reperfusion injury salvage kinases. PLoS ONE. Scholar
  42. 42.
    Martin, B. J., Black, J., & McLelland, A. S. (1991). Hipomagnesemi in elderly hospital admissions: A study of clinical significance. QJM: An International Journal of Medicine, 78, 177–184.Google Scholar
  43. 43.
    Mazoit, J. X., Le Guen, R., Beloeil, H., & Benhamou, D. (2009). Binding of long-lasting local anesthetics to lipid emulsions. Anesthesiology, 110, 380–386.PubMedGoogle Scholar
  44. 44.
    Mroczek, W. J., Lee, W. R., & Davidov, M. E. (1970). Effect of magnesium sulphate on cardiovascular hemomodynamics. Angiology, 10, 720–724.Google Scholar
  45. 45.
    Nose`, M., & Barbui, C. (2014). Do antidepressants prolong the QT interval? Epidemiology and Psychiatric Sciences, 23(1), 19–20.CrossRefGoogle Scholar
  46. 46.
    Olgun, H., Yildirim, Z. K., Karacan, M., & Ceviz, N. (2009). Clinical, electrocardiographic, and laboratory findings in children with amitriptyline intoxication. Pediatric Emergency Care, 25(3), 170–173.CrossRefPubMedGoogle Scholar
  47. 47.
    Oransay, K., Kalkan, S., Hocaoglu, N., Arici, A., & Tuncok, Y. (2011). An alternative antidote therapy in amitriptyline-induced rat toxicity model: Theophylline. Drug and Chemical Toxicology, 34(1), 53–60.CrossRefPubMedGoogle Scholar
  48. 48.
    Potter, W. Z., & Hollister, L. E. (2004). Antidepressant agents. In B. G. Katzung (Ed.), Basic and clinical pharmacology. A LANGE medical book (pp. 482–496). New York: McGraw-Hill.Google Scholar
  49. 49.
    Pritchard, J. A., & Pritchard, S. A. (1975). Standardized treatment of 154 consecutive cases of eclampsia. American Journal of Obstetrics and Gynecology, 123, 543–552.CrossRefPubMedGoogle Scholar
  50. 50.
    Shantsila, E., Watson, T., & Lip, G. Y. (2007). Drug-induced QT-interval prolongation and proarrhythmic risk in the treatment of atrial arrhythmias. Europace, 9(Suppl 4), iv37–i44.PubMedGoogle Scholar
  51. 51.
    Sorodoc, V., Sorodoc, L., Ungureanu, D., Sava, A., & Jaba, I. M. (2013). Troponin T and NT-proBNP as biomarkers of early myocardial damage amitriptyline-induced cardiovascular toxicity in rats. International Journal of Toxicology, 32(5), 351–357.CrossRefPubMedGoogle Scholar
  52. 52.
    Su, Q., Li, L., Liu, Y. C., Zhou, Y., Lu, Y. G., & Wen, W. M. (2013). Effect of metoprolol on myocardial apoptosis and caspase-9 activation after coronary microembolization in rats. Experimental & Clinical Cardiology, 18(2), 161–165.Google Scholar
  53. 53.
    Thanacoody, H. K., & Thomas, S. H. (2005). Tricyclic antidepressant poisoning: Cardiovascular toxicity. Toxicological Reviews, 24(3), 205–214.CrossRefPubMedGoogle Scholar
  54. 54.
    Trinkley, K. E., Lee Page, R., Lien, H., Yamanouye, K., & Tisdale, J. E. (2013). QT interval prolongation and the risk of torsades de pointes: Essentials for clinicians. Current Medical Research and Opinion, 29(12), 1719–1726.CrossRefPubMedGoogle Scholar
  55. 55.
    Turlapaty, P. D. M. V., & Altura, B. M. (1980). Magnesium deficiency produces spasms of coronary arteries: Relationship to etiology of sudden death ischemic heart disease. Science, 208, 198–200.CrossRefPubMedGoogle Scholar
  56. 56.
    Tzivoni, D., Banai, S., Schuger, C., Benhorin, J., Keren, A., Gottlieb, S., et al. (1988). Treatment of torsade de pointes with magnesium sulfate. Circulation, 77, 392–397.CrossRefPubMedGoogle Scholar
  57. 57.
    Weinberg, G. L., Ripper, R., Murphy, P., Edelman, L. B., Hoffman, W., Strichartz, G., et al. (2006). Lipid infusion accelerates removal of bupivacaine and recovery from bupivacaine toxicity in the isolated rat heart. Regional Anesthesia and Pain Medicine, 31, 296–303.CrossRefPubMedGoogle Scholar
  58. 58.
    Weinberg, G. L., VadeBoncouer, T., Ramaraju, G. A., Garcia-Amaro, M. F., & Cwik, M. J. (1998). Pretreatment or resuscitation with a lipid infusion shifts the dose-response to bupivacaine-induced asystole. Anesthesiology, 88, 1071–1075.CrossRefPubMedGoogle Scholar
  59. 59.
    Woolf, A. D., Erdman, A. R., Nelson, L. S., Caravati, E. M., Cobaugh, D. J., Booze, L. L., et al. (2007). Tricyclic antidepressant poisoning: An evidence-based consensus guideline for out-of-hospital management. Clinical Toxicology, 45(3), 203–233.CrossRefPubMedGoogle Scholar
  60. 60.
    Yap, Y. G., & Camm, A. J. (2003). Drug induced QT prolongation and torsades de pointes. Heart, 89(11), 1363–1372.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Yoav, G., Odelia, G., & Shaltiel, C. (2002). A lipid emulsion reduces mortality from clomipramine overdose in rats. Veterinary and Human Toxicology, 44(1), 30–30.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Emergency Medicine, Atatürk Training and Research Hospitalİzmir Katip Çelebi UniversityIzmirTurkey
  2. 2.Department of Physiology, Faculty of Medicineİzmir Katip Çelebi UniversityIzmirTurkey
  3. 3.Department of Histology and EmbryologyMuğla Sıtkı Koçman UniversityMuğlaTurkey
  4. 4.Department of Physiology, Faculty of MedicineIstanbul Bilim UniversityIstanbulTurkey
  5. 5.Department of Emergency MedicineHealth Science University İzmir Bozyaka Research and Training HospitalIzmirTurkey

Personalised recommendations