Methylene Blue Counteracts H2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction

  • Joseph Y. Cheung
  • JuFang Wang
  • Xue-Qian Zhang
  • Jianliang Song
  • John M. Davidyock
  • Fabian Jana Prado
  • Santhanam Shanmughapriya
  • Alison M. Worth
  • Muniswamy Madesh
  • Annick Judenherc-Haouzi
  • Philippe Haouzi
Article
  • 45 Downloads

Abstract

We have previously demonstrated that methylene blue (MB) counteracts the effects of hydrogen sulfide (H2S) cardiotoxicity by improving cardiomyocyte contractility and intracellular Ca2+ homeostasis disrupted by H2S poisoning. In vivo, MB restores cardiac contractility severely depressed by sulfide and protects against arrhythmias, ranging from bundle branch block to ventricular tachycardia or fibrillation. To dissect the cellular mechanisms by which MB reduces arrhythmogenesis and improves bioenergetics in myocytes intoxicated with H2S, we evaluated the effects of H2S on resting membrane potential (Em), action potential (AP), Na+/Ca2+ exchange current (INaCa), depolarization-activated K+ currents and ATP levels in adult mouse cardiac myocytes and determined whether MB could counteract the toxic effects of H2S on myocyte electrophysiology and ATP. Exposure to toxic concentrations of H2S (100 µM) significantly depolarized Em, reduced AP amplitude, prolonged AP duration at 90% repolarization (APD90), suppressed INaCa and depolarization-activated K+ currents, and reduced ATP levels in adult mouse cardiac myocytes. Treating cardiomyocytes with MB (20 µg/ml) 3 min after H2S exposure restored Em, APD90, INaCa, depolarization-activated K+ currents, and ATP levels toward normal. MB improved mitochondrial membrane potential (∆ψm) and oxygen consumption rate in myocytes in which Complex I was blocked by rotenone. We conclude that MB ameliorated H2S-induced cardiomyocyte toxicity at multiple levels: (1) reversing excitation–contraction coupling defects (Ca2+ homeostasis and L-type Ca2+ channels); (2) reducing risks of arrhythmias (Em, APD, INaCa and depolarization-activated K+ currents); and (3) improving cellular bioenergetics (ATP, ∆ψm).

Keywords

Sulfide toxicity Arrhythmogenesis Ion currents Patch clamp 

Notes

Acknowledgements

This work has been partially supported by NIH RO1-HL123093, RO1-HL137426, UO1-NS097162, R21-NS098991, and American Heart Association Grant-in-Aid 15GRNT25680042.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Almeida, A. F., & Guidotti, T. L. (1999). Differential sensitivity of lung and brain to sulfide exposure: A peripheral mechanism for apnea. Toxicological Sciences, 50, 287–293.CrossRefPubMedGoogle Scholar
  2. 2.
    Almgren, T., Dyrssen, D., Elgquist, B., & Johannsson, O. (1976). Dissociation of hydrogen sulfide in seawater and comparison of pH scales. Marine Chemistry, 4, 289–297.CrossRefGoogle Scholar
  3. 3.
    Arnold, I. M., Dufresne, R. M., Alleyne, B. C., & Stuart, P. J. (1985). Health implication of occupational exposures to hydrogen sulfide. Journal of Occupational Medicine, 27, 373–376.CrossRefPubMedGoogle Scholar
  4. 4.
    Ash-Bernal, R., Wise, R., & Wright, S. M. (2004). Acquired methemoglobinemia: A retrospective series of 138 cases at 2 teaching hospitals. Medicine (Baltimore), 83, 265–273.CrossRefGoogle Scholar
  5. 5.
    Astier, A., & Baud, F. J. (1996). Complexation of intracellular cyanide by hydroxocobalamin using a human cellular model. Human and Experimental Toxicology, 15, 19–25.CrossRefPubMedGoogle Scholar
  6. 6.
    Baldelli, R. J., Green, F. H., & Auer, R. N. (1993). Sulfide toxicity: Mechanical ventilation and hypotension determine survival rate and brain necrosis. Journal of Applied Physiology, 75, 1348–1353.CrossRefPubMedGoogle Scholar
  7. 7.
    Barrett, T. J., Anderson, G. M., & Lugowski, J. T. (1988). The solubility of hydrogen sulphide in 0–5 m NaCl solutions at 25–95 C and one atmosphere. Geochimica et Cosmochimica Acta, 52, 807–811.CrossRefGoogle Scholar
  8. 8.
    Beauchamp, R. O., Jr., Bus, J. S., Popp, J. A., Boreiko, C. J., & Andjelkovich, D. A. (1984). A critical review of the literature on hydrogen sulfide toxicity. Critical Reviews in Toxicology, 13, 25–97.CrossRefPubMedGoogle Scholar
  9. 9.
    Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415, 198–205.CrossRefPubMedGoogle Scholar
  10. 10.
    Bitterman, N., Talmi, Y., Lerman, A., Melamed, Y., & Taitelman, U. (1986). The effect of hyperbaric oxygen on acute experimental sulfide poisoning in the rat. Toxicology and Applied Pharmacology, 84, 325–328.CrossRefPubMedGoogle Scholar
  11. 11.
    Bott, E., & Dodd, M. (2013). Suicide by hydrogen sulfide inhalation. The American Journal of Forensic Medicine and Pathology, 34, 23–25.CrossRefPubMedGoogle Scholar
  12. 12.
    Bouillaud, F., & Blachier, F. (2011). Mitochondria and sulfide: A very old story of poisoning, feeding, and signaling? Antioxidants & Redox Signaling, 15, 379–391.CrossRefGoogle Scholar
  13. 13.
    Carroll, J. J., & Mather, A. E. (1989). The solubility of hydrogen sulfide in water from 0 to 90°C and pressures to 1 MPa. Geochimica et Cosmochimica Acta, 53, 1163–1170.CrossRefGoogle Scholar
  14. 14.
    Chenard, L., Lemay, S. P., & Lague, C. (2003). Hydrogen sulfide assessment in shallow-pit swine housing and outside manure storage. Journal of Agricultural Safety and Health, 9, 285–302.CrossRefPubMedGoogle Scholar
  15. 15.
    Chenuel, B., Sonobe, T., & Haouzi, P. (2015). Effects of infusion of human methemoglobin solution following hydrogen sulfide poisoning. Clinical Toxicology (Philadelphia, PA), 53, 93–101.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Clifton, J., 2nd, & Leikin, J. B. (2003). Methylene blue. American Journal of Therapeutics, 10, 289–291.CrossRefPubMedGoogle Scholar
  17. 17.
    Cooper, C. E., & Brown, G. C. (2008). The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical mechanism and physiological significance. Journal of Bioenergetics and Biomembranes, 40, 533–539.CrossRefPubMedGoogle Scholar
  18. 18.
    De Bruyn, W. J., Swartz, E., Hu, J. H., Shorter, J. A., Davidovits, P., Worsnop, D. R., et al. (1995). Henry’s law solubilities and Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements. Journal of Geophysical Research, 100, 7245–7251.CrossRefGoogle Scholar
  19. 19.
    Dorman, D. C., Moulin, F. J., McManus, B. E., Mahle, K. C., James, R. A., & Struve, M. F. (2002). Cytochrome oxidase inhibition induced by acute hydrogen sulfide inhalation: Correlation with tissue sulfide concentrations in the rat brain, liver, lung, and nasal epithelium. Toxicological Sciences, 65, 18–25.CrossRefPubMedGoogle Scholar
  20. 20.
    Douabul, A. A., & Riley, J. P. (1979). The solubility of gases in distilled water and seawater—V. Hydrogen sulphide. Deep-Sea Research, 26A, 259–268.CrossRefGoogle Scholar
  21. 21.
    EPA. (2003). Toxicological review of hydrogen sulfide (CAC No 7783-06-04). Washington, DC: United States Environmental Protection Agency.Google Scholar
  22. 22.
    Foulkes, C. H. (1934). Gas!” The story of the special brigade. Edinburgh: Blackwood & Sons.Google Scholar
  23. 23.
    Fuller, D. C., & Suruda, A. J. (2000). Occupationally related hydrogen sulfide deaths in the United States from 1984 to 1994. Journal of Occupational and Environmental Medicine, 42, 939–942.CrossRefPubMedGoogle Scholar
  24. 24.
    Furne, J., Saeed, A., & Levitt, M. D. (2008). Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 295, R1479–R1485.PubMedGoogle Scholar
  25. 25.
    Ginimuge, P. R., & Jyothi, S. D. (2010). Methylene blue: Revisited. Journal of Anaesthesiology, Clinical Pharmacology, 26, 517–520.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Goodwin, L. R., Francom, D., Dieken, F. P., Taylor, J. D., Warenycia, M. W., Reiffenstein, R. J., et al. (1989). Determination of sulfide in brain tissue by gas dialysis/ion chromatography: Postmortem studies and two case reports. Journal of Analytical Toxicology, 13, 105–109.CrossRefPubMedGoogle Scholar
  27. 27.
    Guidotti, T. L. (2010). Hydrogen sulfide: Advances in understanding human toxicity. International Journal of Toxicology, 29, 569–581.CrossRefPubMedGoogle Scholar
  28. 28.
    Guidotti, T. L. (1996). Hydrogen sulphide. Occupational Medicine (London), 46, 367–371.CrossRefGoogle Scholar
  29. 29.
    Haggard, H. W. (1921). The fate of sulfides in the blood. Journal of Biological Chemistry, 49, 519–529.Google Scholar
  30. 30.
    Hagihara, A., Abe, T., Omagari, M., Motoi, M., & Nabeshima, Y. (2014). The impact of newspaper reporting of hydrogen sulfide suicide on imitative suicide attempts in Japan. Social Psychiatry and Psychiatric Epidemiology, 49, 221–229.CrossRefPubMedGoogle Scholar
  31. 31.
    Hall, A. H., & Rumack, B. H. (1997). Hydrogen sulfide poisoning: An antidotal role for sodium nitrite? Veterinary and Human Toxicology, 39, 152–154.PubMedGoogle Scholar
  32. 32.
    Hall, A. H., Saiers, J., & Baud, F. (2009). Which cyanide antidote? Critical Reviews in Toxicology, 39, 541–552.CrossRefPubMedGoogle Scholar
  33. 33.
    Haouzi, P. (2016). Is exogenous hydrogen sulfide a relevant tool to address physiological questions on hydrogen sulfide? Respiratory Physiology & Neurobiology, 229, 5–10.CrossRefGoogle Scholar
  34. 34.
    Haouzi, P., Bell, H., & Philmon, M. (2011). Hydrogen sulfide oxidation and the arterial chemoreflex: Effect of methemoglobin. Respiratory Physiology & Neurobiology, 177, 273–283.CrossRefGoogle Scholar
  35. 35.
    Haouzi, P., Bell, H., & Van de Louw, A. (2011). Hypoxia-induced arterial chemoreceptor stimulation and hydrogen sulfide: Too much or too little? Respiratory Physiology & Neurobiology, 179, 97–102.CrossRefGoogle Scholar
  36. 36.
    Haouzi, P., & Klingerman, C. M. (2013). Fate of intracellular H2S/HS and metallo-proteins. Respiratory Physiology & Neurobiology, 188, 229–230.CrossRefGoogle Scholar
  37. 37.
    Haouzi, P., Sonobe, T., & Judenherc-Haouzi, A. (2016). Developing effective countermeasures against acute hydrogen sulfide intoxication: Challenges and limitations. Annals of the New York Academy of Sciences, 1374, 29–40.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Haouzi, P., Sonobe, T., Torsell-Tubbs, N., Prokopczyk, B., Chenuel, B., & Klingerman, C. M. (2014). In vivo interactions between cobalt or ferric compounds and the pools of sulphide in the blood during and after H2S poisoning. Toxicological Sciences, 141, 493–504.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Henderson, S. A., Goldhaber, J. I., So, J. M., Han, T., Motter, C., Ngo, A., et al. (2004). Functional adult myocardium in the absence of Na+–Ca2+ exchange: Cardiac-specific knockout of NCX1. Circulation Research, 95, 604–611.CrossRefPubMedGoogle Scholar
  40. 40.
    Hoffman, N. E., Miller, B. A., Wang, J., Elrod, J. W., Rajan, S., Gao, E., et al. (2015). Ca2+ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. American Journal of Physiology Heart and Circulatory Physiology, 308, H637–H650.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Irrinki, K. M., Mallilankaraman, K., Thapa, R. J., Chandramoorthy, H. C., Smith, F. J., Jog, N. R., et al. (2011). Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Molecular and Cellular Biology, 31, 3745–3758.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ishigami, M., Hiraki, K., Umemura, K., Ogasawara, Y., Ishii, K., & Kimura, H. (2009). A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxidants & Redox Signaling, 11, 205–214.CrossRefGoogle Scholar
  43. 43.
    Judenherc-Haouzi, A., Zhang, X. Q., Sonobe, T., Song, J., Rannals, M. D., Wang, J., et al. (2016). Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 310, R1030–R1044.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Kelner, M. J., & Alexander, N. M. (1985). Methylene blue directly oxidizes glutathione without the intermediate formation of hydrogen peroxide. Journal of Biological Chemistry, 260, 15168–15171.PubMedGoogle Scholar
  45. 45.
    Khan, A. A., Schuler, M. M., Prior, M. G., Yong, S., Coppock, R. W., Florence, L. Z., et al. (1990). Effects of hydrogen sulfide exposure on lung mitochondrial respiratory chain enzymes in rats. Toxicology and Applied Pharmacology, 103, 482–490.CrossRefPubMedGoogle Scholar
  46. 46.
    Klingerman, C. M., Trushin, N., Prokopczyk, B., & Haouzi, P. (2013). H2S concentrations in the arterial blood during H2S administration in relation to its toxicity and effects on breathing. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 305, R630–R638.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Kohn, M. C., Melnick, R. L., Ye, F., & Portier, C. J. (2002). Pharmacokinetics of sodium nitrite-induced methemoglobinemia in the rat. Drug Metabolism and Disposition, 30, 676–683.CrossRefPubMedGoogle Scholar
  48. 48.
    Lagoutte, E., Mimoun, S., Andriamihaja, M., Chaumontet, C., Blachier, F., & Bouillaud, F. (2010). Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochimica et Biophysica Acta, 1797, 1500–1511.CrossRefPubMedGoogle Scholar
  49. 49.
    Leschelle, X., Goubern, M., Andriamihaja, M., Blottiere, H. M., Couplan, E., Gonzalez-Barroso, M. D., et al. (2005). Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide. Biochimica et Biophysica Acta, 1725, 201–212.CrossRefPubMedGoogle Scholar
  50. 50.
    Levitt, M. D., Abdel-Rehim, M. S., & Furne, J. (2011). Free and acid-labile hydrogen sulfide concentrations in mouse tissues: Anomalously high free hydrogen sulfide in aortic tissue. Antioxidants & Redox Signaling, 15, 373–378.CrossRefGoogle Scholar
  51. 51.
    Mihajlovic, A. (1999). Antidotal mechanisms for hydrogen sulfide toxicity. Master of Science thesis, Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, p. 69.Google Scholar
  52. 52.
    Miller, B. A., Hoffman, N. E., Merali, S., Zhang, X. Q., Wang, J., Rajan, S., et al. (2014). Trpm2 channels protect against cardiac ischemia-reperfusion injury: Role of mitochondria. Journal of Biological Chemistry, 289, 7615–7629.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Millero, F. J. (1986). The thermodynamics and kinetics of hydrogen sulfide system in natural waters. Marine Chemistry, 18, 121–147.CrossRefGoogle Scholar
  54. 54.
    Modis, K., Bos, E. M., Calzia, E., van Goor, H., Coletta, C., Papapetropoulos, A., et al. (2014). Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. British Journal of Pharmacology, 171, 2123–2146.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Ogasawara, Y., Isoda, S., & Tanabe, S. (1994). Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biological & Pharmaceutical Bulletin, 17, 1535–1542.CrossRefGoogle Scholar
  56. 56.
    Reedy, S. J., Schwartz, M. D., & Morgan, B. W. (2011). Suicide fads: Frequency and characteristics of hydrogen sulfide suicides in the United States. Western Journal of Emergency Medicine, 12, 300–304.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Reiffenstein, R. J., Hulbert, W. C., & Roth, S. H. (1992). Toxicology of hydrogen sulfide. Annual Review of Pharmacology and Toxicology, 32, 109–134.CrossRefPubMedGoogle Scholar
  58. 58.
    Resch, P., Field, R. J., Schneider, W., & Burger, M. (1989). Reduction of methylene blue by sulfide ion in the presence and absence of oxygen: Simulation of the methylene blue-Op-HS- CSTR Oscillations. Journal of Physical Chemistry, 93, 8181–8186.CrossRefGoogle Scholar
  59. 59.
    Sevcikt, P., & Dunford, H. (1991). Kinetics of the oxidation of NADH by methylene blue In a closed system. Journal of Physical Chemistry, 95, 2411–2415.CrossRefGoogle Scholar
  60. 60.
    Smilkstein, M. J., Bronstein, A. C., Pickett, H. M., & Rumack, B. H. (1985). Hyperbaric oxygen therapy for severe hydrogen sulfide poisoning. Journal of Emergency Medicine, 3, 27–30.CrossRefPubMedGoogle Scholar
  61. 61.
    Smith, L., Kruszyna, H., & Smith, R. P. (1977). The effect of methemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochemical Pharmacology, 26, 2247–2250.CrossRefPubMedGoogle Scholar
  62. 62.
    Smith, R. P. (1969). Cobalt salts: Effects in cyanide and sulfide poisoning and on methemoglobinemia. Toxicology and Applied Pharmacology, 15, 505–516.CrossRefPubMedGoogle Scholar
  63. 63.
    Smith, R. P. (1967). The oxygen and sulfide binding characteristics of hemoglobins generated from methemoglobin by two erythrocytic systems. Molecular Pharmacology, 3, 378–385.PubMedGoogle Scholar
  64. 64.
    Smith, R. P., & Gosselin, R. E. (1976). Current concepts about the treatment of selected poisonings: Nitrite, cyanide, sulfide, barium, and quinidine. Annual Review of Pharmacology and Toxicology, 16, 189–199.CrossRefPubMedGoogle Scholar
  65. 65.
    Smith, R. P., & Gosselin, R. E. (1979). Hydrogen sulfide poisoning. Journal of Occupational Medicine, 21, 93–97.CrossRefPubMedGoogle Scholar
  66. 66.
    Smith, R. P., & Gosselin, R. E. (1966). On the mechanism of sulfide inactivation by methemoglobin. Toxicology and Applied Pharmacology, 8, 159–172.CrossRefPubMedGoogle Scholar
  67. 67.
    Smith, R. P., Kruszyna, R., & Kruszyna, H. (1976). Management of acute sulfide poisoning. Effects of oxygen, thiosulfate, and nitrite. Archives of Environmental Health, 31, 166–169.CrossRefPubMedGoogle Scholar
  68. 68.
    Song, J., Gao, E., Wang, J., Zhang, X. Q., Chan, T. O., Koch, W. J., et al. (2012). Constitutive overexpression of phospholemman S68E mutant results in arrhythmias, early mortality and heart failure: Potenial involvement of Na+/Ca2+ exchanger. American Journal of Physiology Heart and Circulatory Physiology, 302, H770–H781.CrossRefPubMedGoogle Scholar
  69. 69.
    Song, J., Zhang, X. Q., Wang, J., Cheskis, E., Chan, T. O., Feldman, A. M., et al. (2008). Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange vs. Na+-K+-ATPase. American Journal of Physiology Heart and Circulatory Physiology, 295, H1615–H1625.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Sonobe, T., Chenuel, B., Cooper, T. K., & Haouzi, P. (2015). Immediate and long-term outcome of acute H2S intoxication induced coma in unanesthetized rats: Effects of methylene blue. PLoS ONE, 10, e0131340.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sonobe, T., & Haouzi, P. (2016). H2S concentrations in the heart after acute H2S administration: Methodological and physiological considerations. American Journal of Physiology Heart and Circulatory Physiology, 311, H1445–H1458.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Sonobe, T., & Haouzi, P. (2015). H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores. Clinical Toxicology (Philadelphia, PA), 53, 525–539.CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Sonobe, T., & Haouzi, P. (2016). Sulfide intoxication-induced circulatory failure is mediated by a depression in cardiac contractility. Cardiovascular Toxicology, 16, 67–78.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sun, Y. G., Cao, Y. X., Wang, W. W., Ma, S. F., Yao, T., & Zhu, Y. C. (2008). Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovascular Research, 79, 632–641.CrossRefPubMedGoogle Scholar
  75. 75.
    Tadros, G. M., Zhang, X. Q., Song, J., Carl, L. L., Rothblum, L. I., Tian, Q., et al. (2002). Effects of Na+/Ca2+ exchanger downregulation on contractility and [Ca2+]i transients in adult rat myocytes. American Journal of Physiology Heart and Circulatory Physiology, 283, H1616–H1626.CrossRefPubMedGoogle Scholar
  76. 76.
    Toombs, C. F., Insko, M. A., Wintner, E. A., Deckwerth, T. L., Usansky, H., Jamil, K., et al. (2010). Detection of exhaled hydrogen sulphide gas in healthy human volunteers during intravenous administration of sodium sulphide. British Journal of Clinical Pharmacology, 69, 626–636.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Truong, D. H., Mihajlovic, A., Gunness, P., Hindmarsh, W., & O’Brien, P. J. (2007). Prevention of hydrogen sulfide (H2S)-induced mouse lethality and cytotoxicity by hydroxocobalamin (vitamin B(12a)). Toxicology, 242, 16–22.CrossRefPubMedGoogle Scholar
  78. 78.
    Truscott, A. (2008). Suicide fad threatens neighbours, rescuers. CMAJ, 179, 312–313.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Tucker, A. L., Song, J., Zhang, X. Q., Wang, J., Ahlers, B. A., Carl, L. L., et al. (2006). Altered contractility and [Ca2+]i homeostasis in phospholemman-deficient murine myocytes: Role of Na+/Ca2+ exchange. American Journal of Physiology Heart and Circulatory Physiology, 291, H2199–H2209.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ubuka, T., Abe, T., Kajikawa, R., & Morino, K. (2001). Determination of hydrogen sulfide and acid-labile sulfur in animal tissues by gas chromatography and ion chromatography. Journal of Chromatography B: Biomedical Sciences and Applications, 757, 31–37.CrossRefPubMedGoogle Scholar
  81. 81.
    Van de Louw, A., & Haouzi, P. (2013). Ferric Iron and Cobalt (III) compounds to safely decrease hydrogen sulfide in the body? Antioxidants & Redox Signaling, 19, 510–516.CrossRefGoogle Scholar
  82. 82.
    Wang, J., Chan, T. O., Zhang, X. Q., Gao, E., Song, J., Koch, W. J., et al. (2009). Induced overexpression of Na+/Ca2+ exchanger transgene: Altered myocyte contractility, [Ca2+]i transients, SR Ca2+ contents and action potential duration. American Journal of Physiology Heart and Circulatory Physiology, 297, H590–H601.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang, J., Gao, E., Rabinowitz, J., Song, J., Zhang, X. Q., Koch, W. J., et al. (2011). Regulation of in vivo cardiac contractility by phospholemman: Role of Na+/Ca2+ exchange. American Journal of Physiology Heart and Circulatory Physiology, 300, H859–H868.CrossRefPubMedGoogle Scholar
  84. 84.
    Wang, J., Gao, E., Song, J., Zhang, X. Q., Li, J., Koch, W. J., et al. (2010). Phospholemman and β-adrenergic stimulation in the heart. American Journal of Physiology Heart and Circulatory Physiology, 298, H807–H815.CrossRefPubMedGoogle Scholar
  85. 85.
    Warenycia, M. W., Goodwin, L. R., Francom, D. M., Dieken, F. P., Kombian, S. B., & Reiffenstein, R. J. (1990). Dithiothreitol liberates non-acid labile sulfide from brain tissue of H2S-poisoned animals. Archives of Toxicology, 64, 650–655.CrossRefPubMedGoogle Scholar
  86. 86.
    Wei, H., Zhang, G., Qiu, S., Lu, J., Sheng, J., Tan, G., et al. (2012). Hydrogen sulfide suppresses outward rectifier potassium currents in human pluripotent stem cell-derived cardiomyocytes. PLoS ONE, 7, e50641.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Wendel, W. B. (1934). The Mechanism of antidotal action of methylene blue in cyanide poisoning. Science, 80, 381–382.CrossRefGoogle Scholar
  88. 88.
    Whitfield, N. L., Kreimier, E. L., Verdial, F. C., Skovgaard, N., & Olson, K. R. (2008). Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 294, R1930–R1937.PubMedGoogle Scholar
  89. 89.
    Wiklund, L., Basu, S., Miclescu, A., Wiklund, P., Ronquist, G., & Sharma, H. S. (2007). Neuro- and cardioprotective effects of blockade of nitric oxide action by administration of methylene blue. Annals of the New York Academy of Sciences, 1122, 231–244.CrossRefPubMedGoogle Scholar
  90. 90.
    Wintner, E. A., Deckwerth, T. L., Langston, W., Bengtsson, A., Leviten, D., Hill, P., et al. (2010). A monobromobimane-based assay to measure the pharmacokinetic profile of reactive sulphide species in blood. British Journal of Pharmacology, 160, 941–957.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wright, R. O., Lewander, W. J., & Woolf, A. D. (1999). Methemoglobinemia: Etiology, pharmacology, and clinical management. Annals of Emergency Medicine, 34, 646–656.CrossRefPubMedGoogle Scholar
  92. 92.
    Xu, H., Guo, W., & Nerbonne, J. M. (1999). Four kinetically distinct depolarization-activated K+ currents in adult mouse ventricular myocytes. Journal of General Physiology, 113, 661–678.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhang, R., Sun, Y., Tsai, H., Tang, C., Jin, H., & Du, J. (2012). Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS ONE, 7, e37073.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhang, X., Rojas, J. C., & Gonzalez-Lima, F. (2006). Methylene blue prevents neurodegeneration caused by rotenone in the retina. Neurotoxicity Research, 9, 47–57.CrossRefPubMedGoogle Scholar
  95. 95.
    Zhang, X. Q., Ahlers, B. A., Tucker, A. L., Song, J., Wang, J., Moorman, J. R., et al. (2006). Phospholemman inhibition of the cardiac Na+/Ca2+ exchanger. Role of phosphorylation. Journal of Biological Chemistry, 281, 7784–7792.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhang, X. Q., Qureshi, A., Song, J., Carl, L. L., Tian, Q., Stahl, R. C., et al. (2003). Phospholemman modulates Na+/Ca2+ exchange in adult rat cardiac myocytes. American Journal of Physiology Heart and Circulatory Physiology, 284, H225–H233.CrossRefPubMedGoogle Scholar
  97. 97.
    Zhang, X. Q., Zhang, L. Q., Palmer, B. M., Ng, Y. C., Musch, T. I., Moore, R. L., et al. (2001). Sprint training shortens prolonged action potential duration in postinfarction rat myocyte: Mechanisms. Journal of Applied Physiology, 90, 1720–1728.CrossRefPubMedGoogle Scholar
  98. 98.
    Zhou, Y. Y., Wang, S. Q., Zhu, W. Z., Chruscinski, A., Kobilka, B. K., Ziman, B., et al. (2000). Culture and adenoviral infection of adult mouse cardiac myocytes: Methods for cellular genetic physiology. American Journal of Physiology Heart and Circulatory Physiology, 279, H429–H436.CrossRefPubMedGoogle Scholar
  99. 99.
    Zima, A. V., & Blatter, L. A. (2006). Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research, 71, 310–321.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Joseph Y. Cheung
    • 1
    • 2
  • JuFang Wang
    • 1
  • Xue-Qian Zhang
    • 1
  • Jianliang Song
    • 1
  • John M. Davidyock
    • 2
  • Fabian Jana Prado
    • 1
  • Santhanam Shanmughapriya
    • 1
  • Alison M. Worth
    • 1
  • Muniswamy Madesh
    • 1
  • Annick Judenherc-Haouzi
    • 3
  • Philippe Haouzi
    • 4
  1. 1.Center of Translational MedicineLewis Katz School of Medicine of Temple UniversityPhiladelphiaUSA
  2. 2.Department of MedicineLewis Katz School of Medicine of Temple UniversityPhiladelphiaUSA
  3. 3.Heart and Vascular InstitutePennsylvania State University College of MedicineHersheyUSA
  4. 4.Division of Pulmonary and Critical Care Medicine, Department of MedicinePennsylvania State University College of MedicineHersheyUSA

Personalised recommendations