Cardiovascular Toxicology

, Volume 18, Issue 5, pp 400–406 | Cite as

Evaluation of the Effectiveness of Sugammadex for Digoxin Intoxication: An Experimental Study

  • Sule Ozbilgin
  • Derya Aslan Yurtlu
  • Beyza Küçükoztaş
  • Gonca Kamacı
  • Sezen Korkut
  • Bülent Serhan YurtluEmail author
  • M. Ensari Güneli
  • Volkan Hancı
  • Ali Günerli


Previous studies have shown that cyclodextrin group medicines bind to various drugs. The hypothesis of our study is to determine whether sugammadex could bind to digoxin and delay the cardiovascular toxicity of that drug. Twenty-eight sedated Wistar rats were infused with digoxin at 3 mg/h (0.25 mg/ml). Five minutes after the start of infusion, animals were treated with a bolus of either 16 mg/kg (Sgdx16), 100 mg/kg (Sgdx100), or 1000 mg/kg (Sgdx1000) sugammadex. The control group infusion did not contain sugammadex. Heart rate, electrocardiography, and respiratory rate were monitored. The primary endpoint was time to asystole. Digoxin infusion continued until the animals arrested. The time to asystole for the Sgdx1000 group was significantly longer compared to that for the control group (p < 0.05). The mean lethal dose of digoxin was 5.35 ± 2.06 mg/kg in the saline-treated rats. On the other hand, the mean lethal dose of digoxin was 8.54 ± 1.51 mg/kg in the sugammadex 1000 group (p < 0.05). The mean lethal dose of digoxin was significantly higher than control group (p < 0.05). We found that the 1000 mg/kg dose of sugammadex delayed digoxin cardiotoxicity in a rat model of digoxin toxicity. We conclude that further research must be conducted on the interaction between digoxin and sugammadex.


Cyclodextrin Digoxin Toxicity Sugammadex 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bronsteın, A. C., Spyker, D. A., Cantilena, L. R., Rumack, B. H., & Dart, R. C. (2012). 2011 Annual report of the american association of poison control centers national poison data system (NPDS): 29th annual report. Clinical Toxicology, 50, 911–1164.CrossRefPubMedGoogle Scholar
  2. 2.
    Hafner, J. W., Belknap, S. M., Squillante, M. D., & Bucheit, Kay A. (2002). Adverse drug events in emergency department patients. Annals of Emergency Medicine, 39, 258–267.CrossRefPubMedGoogle Scholar
  3. 3.
    Patinen, L. J., Kuitunen, T., Pere, P., & Neuvonen, Pertti J. (2006). Drug-related visits to a district hospital emergency room. Basic & Clinical Pharmacology & Toxicology, 98, 212–217.CrossRefGoogle Scholar
  4. 4.
    Hauptman, P. J., Blume, S. W., Lewis, E. F., & Ward, S. (2016). Digoxin toxicity and use of digoxin immune fab: Insights from a national hospital database. JACC Heart Failure, 4(5), 357–364.CrossRefPubMedGoogle Scholar
  5. 5.
    See, I., Shehab, N., Kegler, S. R., Laskar, S. R., & Budnitz, D. S. (2014). Emergency department visits and hospitalizations for digoxin toxicity: United States, 2005 to 2010. Circulation: Heart Failure, 7(1), 28–34.Google Scholar
  6. 6.
    Eyer, F., Steimer, W., Müller, C., & Zilker, T. (2010). Free and total digoxin in serum during treatment of acute digoxin poisoning with fab fragments: Case study. American Journal of Critical Care, 19, 391.CrossRefPubMedGoogle Scholar
  7. 7.
    Chan, B. S. H., & Buckley, N. A. (2014). Digoxin-specific antibody fragments in the treatment of digoxin toxicity. Clinical Toxicology (Philadelphia, PA), 52(8), 824–836.CrossRefGoogle Scholar
  8. 8.
    Maron, B. A., & Rocco, T. P. (2011). Pharmacotherapy of congestive heart failure. In L. S. Bruton (Ed.), Goodman & Gillman’s the pharmacological basis of therapeutics (12th ed., pp. 789–813). New York, USA: Mc Graw Hill Publication.Google Scholar
  9. 9.
    Lapostolle, F., Borron, S. W., Verdier, C., Arnaud, F., Couvreur, J., Mégarbane, B., et al. (2008). Assessment of digoxin antibody use in patients with elevated serum digoxin following chronic or acute exposure. Intensive Care Medicine, 34, 1448–1453.CrossRefPubMedGoogle Scholar
  10. 10.
    Digitalis Investigation Group. (1997). The effect of digoxin on mortality and morbidity in patients with heart failure: The digitalis investigation group. New England Journal of Medicine, 336, 525–533.CrossRefGoogle Scholar
  11. 11.
    Leor, J., Goldbourt, U., Rabinowitz, B., Reicher-Reiss, H., Boyko, V., Kaplinsky, E., et al. (1995). Digoxin and increased mortality among patients recovering from acute myocardial infarction: Importance of digoxin dose. The SPRINT study group. Cardiovascular Drugs and Therapy, 9, 723–729.CrossRefPubMedGoogle Scholar
  12. 12.
    Kirilmaz, B., Saygi, S., Gungor, H., Onsel Turk, U., Alioğlu, E., et al. (2012). Digoxin intoxication: An old enemy in modern era. Journal of Geriatric Cardiology, 9(3), 237–242.CrossRefPubMedGoogle Scholar
  13. 13.
    Acharya, T. A., Mehta, D. S., & Vekariya, R. S. (2012). Digoxin toxicity: Crucial to diagnose. International Journal of Basic & Clinical Pharmacology, 1(1), 39–40.CrossRefGoogle Scholar
  14. 14.
    Yang, E. H., Shah, S., & Criley, J. M. (2012). Digitalis toxicity: A fading but crucial complication to recognize. American Journal of Medicine, 125, 337–343.CrossRefPubMedGoogle Scholar
  15. 15.
    Wasserstrom, J. A., & Aistrup, G. L. (2005). Digitalis: New actions for an old drug. American Journal of Physiology-Heart and Circulatory Physiology, 289, H1781–H1793.CrossRefPubMedGoogle Scholar
  16. 16.
    Oubaassine, R., Bilbault, P., Roegel, J. C., Alexandre, E., Sigrist, S., Lavaux, T., et al. (2006). Cardio protective effect of glucose–insulin infusion on acute digoxin toxicity in rat. Toxicology, 224, 238–243.CrossRefPubMedGoogle Scholar
  17. 17.
    Zand, F., Asadi, S., & Katibeh, P. (2011). Good outcome after digoxin toxicity despite very high serum potassium level. Iranian Red Crescent Medical Journal, 13(9), 680–681.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chan, K. E., Lazarus, J. M., & Hakim, R. M. (2010). Digoxin associates with mortality in ESRD. Journal of the American Society of Nephrology, 21, 1550–1559.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhang, M.-Q. (2003). Drug-specific cyclodextrins: The future of rapid neuromuscular block reversal? Drugs Future, 28, 347–354.CrossRefGoogle Scholar
  20. 20.
    Tomak, Y., Yılmaz, A., Bostan, H., Tümkaya, L., Altuner, D., Kalkan, Y., et al. (2012). Effects of sugammadex and rocuronium mast cell number and degranulation in rat liver. Anaesthesia, 67(10), 1101–1104.CrossRefPubMedGoogle Scholar
  21. 21.
    Sacan, O., White, P. F., Tufanogullari, B., & Klein, K. (2007). Sugammadex reversal of rocuronium-induced neuromuscular blockade: A comparison with neostigmine-glycopyrrolate and edrophonium-atropine. Anesthesia and Analgesia, 104, 569–574.CrossRefPubMedGoogle Scholar
  22. 22.
    Hancı, V., Kiraz, H. A., Ömür, D., Ekin, S., Uyan, B., & Yurtlu, S. (2013). Precipitation in gallipoli: Sugammadex/amiodarone & sugammadex/dobutamine & sugammadex/protamine. Brazilian Journal of Anesthesiology, 63, 163–164.CrossRefPubMedGoogle Scholar
  23. 23.
    Srivastava, A., & Hunter, J. M. (2009). Reversal of neuro muscular block. British Journal of Anaesthesia, 103(1), 115–129.CrossRefPubMedGoogle Scholar
  24. 24.
    Ozbilgin, S., Ozbilgin, M., Kucukoztas, B., Kamaci, G., Unek, T., Yurtlu, B. S., et al. (2013). Evaluation of the effectiveness of sugammadex for verapamil intoxication. Basic & Clinical Pharmacology & Toxicology, 113(4), 280–285.CrossRefGoogle Scholar
  25. 25.
    Challa, R., Ahuja, A., Ali, J., & Khar, R. K. (2005). Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech, 6, 329–357.CrossRefGoogle Scholar
  26. 26.
    Dresser, G. K., & Bailey, D. G. (2002). A basic conceptual and practical overview of interactions with highly prescribed drugs. The Canadian Journal of Clinical Pharmacology, 9, 191–198.PubMedGoogle Scholar
  27. 27.
    Tripathi, K. D. (2009). Cardiac glycosides and drugs for heart failure. Essentials of medical pharmacology (6th ed., pp. 493–507). Jaypee Brothers: New Delhi.Google Scholar
  28. 28.
    Schlehuber, S., Beste, G., & Skerra, A. (2000). A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. Journal of Molecular Biology, 297, 1105–1120.CrossRefPubMedGoogle Scholar
  29. 29.
    Schlehuber, S., & Skerra, A. (2005). Lipocalins in drug discovery: From natural ligand-binding proteins to “anticalins”. Drug Discovery, 10, 23–33.CrossRefGoogle Scholar
  30. 30.
    Korndörfer, I. P., Schlehuber, S., & Skerra, A. (2003). Structural mechanism of specific ligand recognition by a lipocalin tailored for the complexation of digoxigenin. Journal of Molecular Biology, 330, 385–396.CrossRefPubMedGoogle Scholar
  31. 31.
    Mottram, A. R., Bryant, S. M., & Steven, E. (2011). Effect of cyclodextrin infusion in a rat model of verapamil toxicity. American Journal of Therapeutics, 18, 371–374.CrossRefPubMedGoogle Scholar
  32. 32.
    Mottram, A. R., Bryant, S. M., & Steven, E. (2012). Dose-dependent response to cyclodextrin infusion in a rat model of verapamil toxicity. Western Journal of Emergency Medicine, 13, 63–67.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Juurlink, D. N., McGuigan, M. A., Paton, T. W., & Redelmeier, D. A. (2001). Availability of antidotes at acute care hospitals in Ontario. CMAJ, 165, 27–30.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Yurtlu, B. S., Özbilgin, Ş., Yurtlu, D. A., Boztaş, N., Kamacı, G., Akaltun, M., et al. (2016). Intravenous lipid emulsion prolongs survival in rats intoxicated with digoxin. American Journal of Emergency Medicine, 34(6), 1112–1116.CrossRefPubMedGoogle Scholar
  35. 35.
    Turan, C. A., Ozturk, T. C., Akoglu, E. U., Ak, R., Aygun, K., Sahiner, A., et al. (2018). The role of intralipid emulsion in the rat model of digoxin intoxication. Cardiovascular Toxicology. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sule Ozbilgin
    • 1
  • Derya Aslan Yurtlu
    • 2
  • Beyza Küçükoztaş
    • 1
  • Gonca Kamacı
    • 3
  • Sezen Korkut
    • 4
  • Bülent Serhan Yurtlu
    • 1
    Email author
  • M. Ensari Güneli
    • 3
  • Volkan Hancı
    • 1
  • Ali Günerli
    • 1
  1. 1.Department of Anesthesiology and Reanimation, School of MedicineDokuz Eylül UniversityİzmirTurkey
  2. 2.Department of Anesthesiology and Reanimation, School of MedicineKatip Celebi UniversityİzmirTurkey
  3. 3.Department of Experimental Laboratory Animal Science, School of MedicineDokuz Eylül UniversityİzmirTurkey
  4. 4.Department of Biology, School of MedicineDokuz Eylül UniversityİzmirTurkey

Personalised recommendations