Advertisement

Cardiovascular Toxicology

, Volume 17, Issue 3, pp 227–236 | Cite as

Acrolein Can Cause Cardiovascular Disease: A Review

  • Robert J. HenningEmail author
  • Giffe T. Johnson
  • Jayme P. Coyle
  • Raymond D. Harbison
Article

Abstract

Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.

Keywords

Unsaturated aldehydes Free oxygen radicals Protein adducts Glutathione depletion 

Notes

Acknowledgements

This work was supported in part by the Childrens’ Cardiomyopathy Foundation.

References

  1. 1.
    Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein environmental levels and potential for human exposure. Toxicology and Industrial Health, 24, 543–564.CrossRefPubMedGoogle Scholar
  2. 2.
    Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M., & Plewak, D. (2008). Acrolein health effects. Toxicology and Industrial Health, 24, 447–490.CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson, M., Hazen, S., Hsu, F., & Heinecke, J. (1997). Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive α-hydroxy and α, β-unsaturated aldehydes by phagocytes at sites of inflammation. Journal of Clinical Investigation, 99, 424–432.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    De Woskin, R., Greenberg, M., Pepelko, W., & Strickland, J. (2003). Toxicological review of acrolein (cas no. 107-02-08) in support of summary information on the integrated risk information system (Iris). Washington, DC: US Environmental Protection Agency.Google Scholar
  5. 5.
    Abraham, K., Andres, S., Palavinskas, Berg K., Appel, K., & Lampen, A. (2011). Toxicology and risk assessment of acrolein in food. Molecular Nutrition & Food Research, 55, 1277–1290.CrossRefGoogle Scholar
  6. 6.
    Conklin, D., Barski, O., Lesgards, J.-F., Juvan, P., Rezen, T., Rozman, D., et al. (2010). Acrolein consumption induces systemic dyslipidemia and lipoprotein modification. Toxicology and Applied Pharmacology, 15(243), 1–12.CrossRefGoogle Scholar
  7. 7.
    Wang, G., Guo, Y., Vondriska, T., Zhang, J., Zhang, S., Tsai, L., et al. (2008). Acrolein consumption exacerbates myocardial ischemic injury and blocks nitric oxide-induced PKCε signaling and cardioprotection. Journal of Molecular and Cellular Cardiology, 44, 1016–1022.CrossRefPubMedGoogle Scholar
  8. 8.
    Dwivedi, A., Johanson, G., Lorentzen, J., Palmberg, L., Sjogren, B., & Ernstgard, L. (2015). Acute effects of acrolein in human volunteers during controlled exposure. Inhalation toxicology, 27, 810–821.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Luo, J., Hill, B., Gu, Y., Cai, J., Srivastava, S., Bhatnagar, A., et al. (2007). Mechanisms of acrolein-induced myocardial dysfunction: Implications for environmental and endogenous aldehyde exposure. American Journal of Physiology Heart and Circulatory Physiology, 293, H3673–H3684.CrossRefPubMedGoogle Scholar
  10. 10.
    Wheat, L., Haberzetti, P., Hellmann, J., Baba, S., Bertke, M., Lee, J., et al. (2011). Acrolein inhalation prevents VEGF-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1598–1606.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brook, R., Rajagopalan, S., Pope, C., Brook, J., Bhatnagar, A., Diez-Roux, A., et al. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121, 2331–2378.CrossRefPubMedGoogle Scholar
  12. 12.
    Tonne, C., Melly, S., Mittleman, M., Coull, B., Goldberg, R., & Schwartz, J. (2007). A case-control analysis of exposure to traffic and acute myocardial infarction. Environmental Health Perspectives, 115, 53–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Agency for Toxic Substances and Disease Registry. Toxicological profile for acrolein. (2007). CAS#: 107-02-8, August.Google Scholar
  14. 14.
    Ghilarducci, D., & Tjeerdema, R. (1995). Fate and effects of acrolein. Reviews of Environmental Contamination and Toxicology, 144, 95–146.PubMedGoogle Scholar
  15. 15.
    Stevens, J., & Maier, C. (2008). Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research, 52, 7–25.CrossRefGoogle Scholar
  16. 16.
    Perez, C., Hazari, M., Ledbetter, A., Haykal-Coates, N., Carll, A., Cascio, W., et al. (2015). Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhalation Toxicology, 27, 54–63.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carmella, S., Chen, M., Zhang, Y., Zhang, S., Hatsukami, D., & Hecht, S. (2007). Quantitation of acrolein-derived 3-hydroxypropylmercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry: Effects of cigarette smoking. Chemical Research in Toxicology, 20, 986–990.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    World Health International Agency on Research on Cancer. (2005). Overall evaluations of carcinogenicity of 900 agents, mixtures and exposures to humans (pp. 1–82). Lyon. http://www-cie.iarc.fr/monoeval/crthall.html. Feb 15, 2005.
  19. 19.
    United States Department of Health and Human Services. (2014). The health consequences of smoking: 50 years of progress. A report of the surgeon general. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health.Google Scholar
  20. 20.
    Breland, A., Spindle, T., Weaver, M., & Eissenberg, T. (2014). Science and electronic cigarettes: Current data, future needs. Journal of Addiction Medicine, 8, 223–233.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Counts, M., Morton, M., Laffoon, S., Cox, R., & Lipowicz, P. (2005). Smoke composition and predicting relationships for international commercial cigarettes smoked with three machine-smoking conditions. Regulatory Toxicology and Pharmacology, 41, 185–227.CrossRefPubMedGoogle Scholar
  22. 22.
    Goniewicz, M., Knysak, J., Gawron, M., Kosmider, L., Sobczak, A., Kurek, J., et al. (2014). Levels of selected carcinogens and toxicants in vapour from electronic cigarettes. Tobacco Control, 23, 133–139.CrossRefPubMedGoogle Scholar
  23. 23.
    Cheng, T. (2014). Chemical evaluation of electronic cigarettes. Tobacco Control, 23, ii11–ii17.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Etter, J. (2013). The electronic cigarette: An alternative to tobacco?. Atlanta: Elsevier.Google Scholar
  25. 25.
    Laugesen, M. (2008). Safety report on the Ruyan e-cigarette cartridge and inhaled aerosol. Health New Zealand Ltd., Christchurch. http://www.healthnz.co.nz/RuyanCartridgeReport30-Oct-08.pdf.
  26. 26.
    Uchiyama, S., Inaba, Y., & Kunugita, N. (2010). Determination of acrolein and other carbonyls in cigarette smoke using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine. Journal of Chromatography A, 1217, 4383–4388.CrossRefPubMedGoogle Scholar
  27. 27.
    Lim, H. H., & Shin, H. S. (2013). Measurement of aldehydes in replacement liquids of electronic cigarettes by headspace gas chromatography-mass spectrometry. Bulletin of the Korean Chemical Society, 34, 2691–2696.CrossRefGoogle Scholar
  28. 28.
    Uchiyama, S., Ohta, K., Inaba, Y., & Kunugita, N. (2013). Determination of carbonyl compounds generated from the e-cigarette using coupled silica cartridges impregnated with hydroquinone and 2,4-dinitrophenylhydrazine, followed by high-performance liquid chromatography. Analytical Sciences, 29, 1219–1222.CrossRefPubMedGoogle Scholar
  29. 29.
    Breland, A., Soule, E., Lopez, A., Ramoa, C., El-Hellani, A., & Eissenberg, T. (2016). Electronic cigarettes: What are they and what do they do? Annals of the New York Academy of Sciences, 15, 1–26.Google Scholar
  30. 30.
    Ismahil, M., Hamid, T., Haberzetti, P., Gu, Y., Chandrasekar, B., Srivastava, S., et al. (2011). Chronic oral exposure to the aldehyde pollutant acrolein induces dilated cardiomyopathy. American Journal of Physiology Heart and Circulatory Physiology, 301, H2050–H2060.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Moghe, A., Ghare, S., Lamoreau, B., Mohammad, M., Barve, S., McClain, C., et al. (2015). Molecular mechanisms of acrolein toxicity: Relevance to human disease. Toxicological Sciences, 143, 242–255.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Srivastavaa, S., Sithu, S., Vladykovskayaa, E., Haberzettla, P., Hoetker, D., Siddiqui, M., et al. (2011). Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis, 215, 301–308.CrossRefGoogle Scholar
  33. 33.
    De Jonge, M., Huitema, A., Rodenhuis, S., & Beijnen, J. (2005). Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics, 44, 1135–1164.CrossRefPubMedGoogle Scholar
  34. 34.
    Ewer, M., & Ewer, S. (2010). Cardiotoxicity of anticancer treatments: What the cardiologist needs to know. Nature Reviews Cardiology, 7, 564–567.CrossRefPubMedGoogle Scholar
  35. 35.
    Takamoto, S., Sakura, N., & Namera, A. (2004). Monitoring of urinary acrolein concentration in patients receiving cyclophosphamide and isophamide. Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences, 806, 59–63.CrossRefPubMedGoogle Scholar
  36. 36.
    Conklin, D. (2016). Acute cardiopulmonary toxicity of inhaled aldehydes: Role of TRPA1. Annals of the New York Academy of Sciences, 1374, 59–67.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Conklin, D., Haberzetti, P., Jagatheesan, G., Kong, M., Hoyle, G. (2016). Role of TRPA1 in acute cardiopulmonary toxicity of inhaled acrolein, Toxicology and Applied Pharmacology. http://dx.doi.org/10.1016/j.taap.2016.08.028. (in press).
  38. 38.
    Bautista, D., Jordt, S.-E., Nikai, T., Tsuruda, P., Read, A., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124, 1269–1282.CrossRefPubMedGoogle Scholar
  39. 39.
    Andre, E., Campi, B., Materazzi, S., Trevisani, M., Amadesi, S., Massi, D., et al. (2008). Cigarette smoke—induced neurogenic inflammation is mediated by α, β-unsaturated aldehydes and the TRPA1 receptor in rodents. The Journal of Clinical Investigation, 118, 2574–2582.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pozsgai, G., Bodkin, J., Graepel, R., Bevan, S., Andersson, D., & Brain, S. (2010). Evidence for the pathophysiological relevance of TRPA1 receptors in the cardiovascular system in vivo. Cardiovascular Research, 87, 760–768.CrossRefPubMedGoogle Scholar
  41. 41.
    Earley, S. (2012). TRPA1 channels in the vasculature. British Journal of Pharmacology, 167, 13–22.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hazari, M., Haykal-Coates, N., Winsett, D., Krantz, Q., Costa, D., & Frarraj, A. (2011). TRPA1 and sympathetic activation contribute to increased risk of triggered cardiac arrhythmias in hypertensive rats exposed to diesel exhaust. Environmental Health Perspectives, 119, 951–957.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nemmar, A., Hoet, P., Vanquickenborne, B., Dinsdale, D., Thomeer, M., Hoylaerts, M., et al. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105, 411–414.CrossRefGoogle Scholar
  44. 44.
    Negre-Salvayre, A., Coatrieux, C., Ingueneau, C., & Salvayre, R. (2008). Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. British Journal of Pharmacology, 153, 6–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Jacobs, A., & Marnett, L. (2010). Systems analysis of protein modification and cellular responses induced by electrophile stress. Accounts of Chemical Research, 43, 673–683.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Srivastava, M., Atwater, I., Glasman, M., Leighton, X., Goping, G., Caohuy, H., et al. (1999). Defects in inositol 1,4,5-trisphosphate receptor expression, Ca(2+) signaling, and insulin secretion in the anx7(±) knockout mouse. Proceedings of the National Academy of Sciences of the United States of America, 96, 13783–13788.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Keith, R., Haberzetti, P., Vladykovskaya, E., Bradford, G., Kaiserova, K., Srivastava, S., et al. (2009). Aldose reductase decreases endoplasmic reticulum stress in ischemic hearts. Chemico-Biological Interactions, 178, 242–249.CrossRefPubMedGoogle Scholar
  48. 48.
    Maeshima, T., Honda, K., Chikazawa, M., Shibata, T., Kawai, Y., Akagawa, M., et al. (2012). Quantitative analysis of acrolein-specific adducts generated during lipid peroxidation—modification of proteins in vitro: Identification of Nτ-(3-propanal) histidine as the major adduct. Chemical Research in Toxicology, 25, 1384–1392.CrossRefPubMedGoogle Scholar
  49. 49.
    Li, L., Jiang, L., Geng, C., Cao, J., & Zhong, L. (2008). The role of oxidative stress in acrolein-induced DNA damage in HepG2 cells. Free Radical Research, 42, 354–361.CrossRefPubMedGoogle Scholar
  50. 50.
    Kehrer, P., & Biswal, S. (2000). The molecular effects of acrolein. Toxicological Sciences, 57, 6–15.CrossRefGoogle Scholar
  51. 51.
    Liu, F., Li, X. L., Lin, T., He, D. W., Wei, G. H., Liu, J. H., et al. (2012). The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Molecular Biology Reports, 39, 493–500.CrossRefPubMedGoogle Scholar
  52. 52.
    Jang, J., Bruse, S., Huneidi, S., Schrader, R., Monick, M., Lin, Y., et al. (2014). Acrolein-exposed normal human lung fibroblasts in vitro: Cellular senescence, enhanced telomere erosion, and degradation of werner’s syndrome protein. Environmental Health Perspectives, 122, 955–962.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Rom, O., Kaisaria, S., Aizenbuda, D., & Reznick, A. (2013). The effects of acetaldehyde and acrolein on muscle catabolism in C2 myotubes. Free Radical Biology and Medicine, 65, 190–200.CrossRefPubMedGoogle Scholar
  54. 54.
    De Jarnett, N., Conklin, D., Riggs, D., Myers, J., O’Toole, T., Hamzeh, I., et al. (2014). Acrolein exposure is associated with increased cardiovascular disease risk. Journal of the American Heart Association, 3, e000934.CrossRefGoogle Scholar
  55. 55.
    Perez, C., Ledbetter, A., Hazari, M., Haykal-Coates, N., Carll, A., Winsett, D., et al. (2013). Hypoxia stress test reveals exaggerated cardiovascular effects in hypertensive rats after exposure to the air pollutant acrolein. Toxicological Sciences, 132, 467–477.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    McCall, M., Tang, J., Bielicki, J., & Forte, T. (1995). Inhibition of lecithin-cholesterol acyltransferase and modification of HDL apolipoproteins by aldehydes. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1599–1606.CrossRefPubMedGoogle Scholar
  57. 57.
    Watanabe, K., Nakazato, Y., Saiki, R., Igarashi, K., Kitada, M., & Ishii, I. (2013). Acrolein-conjugated low-density lipoprotein induces macrophage foam cell formation. Atherosclerosis, 227, 51–57.CrossRefPubMedGoogle Scholar
  58. 58.
    Kim, C., Lee, S., Seo, K., Park, H., Yun, J., Bae, J., et al. (2010). Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway. Toxicology and Applied Pharmacology, 245, 76–82.CrossRefPubMedGoogle Scholar
  59. 59.
    O’Toole, T., Zheng, Y. T., Hellmann, J., Conklin, D., Barski, O., & Bhatnagar, A. (2009). Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology, 236, 194–201.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Chadwick, A., Holme, R., Chen, Y., Thomas, M., Sorci-Thomas, M., Silverstein, R., et al. (2015). Acrolein impairs the cholesterol transport functions of high density lipoproteins. Plos ONE, 10, e0123138.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Conklin, D., Bhatnagara, A., Cowleyb, H., Johnsonc, G., Wiechmannc, R., Sayred, L., et al. (2006). Acrolein generation stimulates hypercontraction in isolated human blood vessels. Toxicology and Applied Pharmacology, 217, 277–288.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Hyvelin, J. M., Roux, E., Prevost, M. C., Savineau, J. P., & Marthan, R. (2000). Cellular mechanisms of acrolein-induced alterations in calcium signaling in airway smooth muscle. Toxicology and Applied Pharmacology, 164, 176–183.CrossRefPubMedGoogle Scholar
  63. 63.
    Murata, F., Suzuki, S., Tsuyama, S., & Suganuma, T. (1985). Application of rapid freezing followed by freeze-substitution acrolein fixation for cytochemical studies of the rat stomach. The Histochemical Journal, 17, 967–980.CrossRefPubMedGoogle Scholar
  64. 64.
    Biagini, R., Toraason, M., Lynch, D., & Winston, G. (1990). Inhibition of rat heart mitochondrial electron transport in vitro: Implications for the cardiotoxic action of allylamine or its primary metabolite, acrolein. Toxicology, 62, 95–106.CrossRefPubMedGoogle Scholar
  65. 65.
    Biswal, S., Acquaah-Mensah, G., Datta, K., Wu, X., & Kehrer, J. (2002). Inhibition of cell proliferation and AP-1 activity by acrolein in human A549 lung adenocarcinoma cells due to thiol imbalance and covalent modifications. Chemical Research in Toxicology, 15, 180–186.CrossRefPubMedGoogle Scholar
  66. 66.
    Vikman, P., Xu, C. B., & Edvinsson, L. (2009). Lipid-soluble cigarette smoking particles induce expression of inflammatory and extracellular-matrix-related genes in rat cerebral arteries. Vascular Health Risk Management, 5, 333–341.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Jaimes, E., De Master, E., Tian, R., & Raij, L. (2004). Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1031–1036.CrossRefPubMedGoogle Scholar
  68. 68.
    Misonou, Y., Asahi, M., Yokoe, S., Miyoshi, E., & Taniguchi, N. (2006). Acrolein produces nitric oxide through the elevation of intracellular calcium levels to induce apoptosis in human umbilical vein endothelial cells: Implications for smoke angiopathy. Nitric Oxide, 14, 180–187.CrossRefPubMedGoogle Scholar
  69. 69.
    Cui, Y., Xie, X., Jia, F., He, J., Li, Z., Fu, M., et al. (2015). Ambient fine particulate matter induces apoptosis of endothelial progenitor cells through reactive oxygen species formation. Cellular Physiology and Biochemistry, 35, 353–363.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Tziakas, D., Chalikias, G., Parissis, J., Hatzinikolaou, E., Papadopoulos, E., Tripsiannis, G., et al. (2004). Serum profiles of matrix metalloproteinases and their tissue inhibitor in patients with acute coronary syndromes. International Journal of Cardiology, 94, 269–277.CrossRefPubMedGoogle Scholar
  71. 71.
    Vasilyev, N., Williams, T., Brennan, M. L., Unzek, S., Zhou, X., Heinecke, J., et al. (2005). Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation, 112, 2812–2820.CrossRefPubMedGoogle Scholar
  72. 72.
    Boor, P., & Ferrans, V. (1985). Ultrastructural alterations in allylamine cardiovascular toxicity. Late myocardial and vascular lesions. American Journal of Pathology, 121, 39–54.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Hochman, D., Collaco, C., & Brooks, E. (2014). Acrolein induction of oxidative stress and degranulation in mast cells. Environmental Toxicology, 29, 908–915.CrossRefPubMedGoogle Scholar
  74. 74.
    Alano, C., Ying, W., & Swanson, R. (2004). Poly (ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. Journal of Biological Chemistry, 279, 18895–18902.CrossRefPubMedGoogle Scholar
  75. 75.
    Kauppinen, T., Chan, W., Suh, S., Wiggins, A., Huang, E., & Swanson, R. A. (2006). Direct phosphorylation and regulation of poly (ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proceedings of the National Academy of Sciences of the United States of America, 103, 7136–7141.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Szabo, C., Zingarelli, B., O’Connor, M., & Salzman, A. (1996). DNA strand breakage, activation of poly (ADP-ribose) synthetase, and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proceedings of the National Academy of Sciences of the United States of America, 93, 1753–1758.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ludwig, A., Behnke, B., Holtlund, J., & Hilz, H. (1988). Immunoquantitation and size determination of intrinsic poly (ADP-ribose) polymerase from acid precipitates. An analysis of the in vivo status in mammalian species and in lower eukaryotes. Journal of Biological Chemistry, 263, 6993–6999.PubMedGoogle Scholar
  78. 78.
    Virag, L., & Szabo, C. (2002). The therapeutic potential of poly (ADP-ribose) polymerase inhibitors. Pharmacological Reviews, 54, 375–429.CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang, S., Lin, Y., Kim, Y., Hande, M., Liu, Z., & Shen, H. (2007). c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly (ADP-ribose) polymerase-1 activation. Cell Death and Differentiation, 14, 1001–1010.CrossRefPubMedGoogle Scholar
  80. 80.
    Ha, H., & Snyder, S. (1999). Poly (ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proceedings of the National Academy of Sciences of the United States of America, 96, 13978–13982.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yu, S., Andrabi, S., Wang, H., Kim, N., Poirier, G., Dawson, T., et al. (2006). Apoptosis-inducing factor mediates poly (ADP-ribose) (PAR) polymer-induced cell death. Proceedings of the National Academy of Sciences of the United States of America, 103, 18314–18319.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    McCluskey, J., Harbison, S., Johnson, G., & Harbison, R. (2012). PARP-1 inhibitor attenuates cocaine-induced hepatotoxicity. The Open Toxicology Journal, 5, 21–27.CrossRefGoogle Scholar
  83. 83.
    Hall, K. W., Muro-Cacho, C., Abritis, A., Johnson, G. T., & Harbison, R. D. (2010). Attenuation of bromobenzene-induced hepatotoxicity by poly (ADP-Ribose) polymerase inhibitors. Research Communications in Molecular Pathology and Pharmacology, 122–123, 79–96.Google Scholar
  84. 84.
    Szabados, E., Literati-Nagy, P., Farkas, B., & Sumeti, B. (2000). BGP-15, a nicotinic amidoxime derivate protecting heart from ischemia reperfusion injury through modulation of poly (ADP-ribose) polymerase. Biochemical Pharmacology, 59, 937–945.CrossRefPubMedGoogle Scholar
  85. 85.
    Faro, R., Toyoda, Y., McCully, J., Jagtap, P., Szabo, E., Virag, L., et al. (2002). Myocardial protection by PJ34, a novel potent poly (ADP-ribose) synthetase inhibitor. Annals of Thoracic Surgery, 73, 575–581.CrossRefPubMedGoogle Scholar
  86. 86.
    Yang, Z., Zingarelli, B., & Szabo, C. (2000). Effect of genetic disruption of poly (ADP-ribose) synthetase on delayed production of inflammatory mediators and delayed necrosis during myocardial ischemia-reperfusion injury. Shock, 13, 60–66.CrossRefPubMedGoogle Scholar
  87. 87.
    Pieper, A., Walles, T., Wei, G., Clements, E., Verma, A., Snyder, S., et al. (2000). Myocardial postischemic injury is reduced by polyADPripose polymerase-1 gene disruption. Molecular Medicine, 6, 271–282.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Pacher, P., Liaudet, L., Bai, P., Virag, L., Mabley, J., Hasko, G., et al. (2002). Activation of poly (ADP-ribose) polymerase contributes to the development of doxorubicin-induced heart failure. Journal of Pharmacology and Experimental Therapeutics, 300, 862–867.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  • Robert J. Henning
    • 1
    Email author
  • Giffe T. Johnson
    • 1
  • Jayme P. Coyle
    • 1
  • Raymond D. Harbison
    • 1
  1. 1.Department of Environmental and Occupational Health, College of Public HealthUniversity of South Florida, The James A. Haley HospitalTampaUSA

Personalised recommendations