Advertisement

Cardiovascular Toxicology

, Volume 16, Issue 2, pp 101–110 | Cite as

Protection of Luteolin-7-O-Glucoside Against Doxorubicin-Induced Injury Through PTEN/Akt and ERK Pathway in H9c2 Cells

  • Hong Yao
  • Zhimei Shang
  • Penghong Wang
  • Shuixian Li
  • Qianyun Zhang
  • Huiqin Tian
  • Dongmei Ren
  • Xiuzhen Han
Article

Abstract

Luteolin-7-O-glucoside (LUTG) was isolated from the plants of Dracocephalum tanguticum Maxim. Previous research has showed that LUTG pretreatment had a significant protective effect against doxorubicin (DOX)-induced cardiotoxicity by reducing intracellular calcium overload and leakage of creatine kinase and lactate dehydrogenase. But the underlying mechanisms have not been completely elucidated. In the present study, we investigated the effects of LUTG on H9c2 cell morphology, viability, apoptosis, reactive oxygen species generation, and the mitochondrial transmembrane potentials. The expression of p-PTEN, p-Akt, p-ERK, p-mTOR, and p-GSK-3β were detected by Western blotting. Compared with DOX alone treatment group, the morphological injury and apoptosis of the cells in groups treated by DOX plus LUTG were alleviated, cell viability was increased, ROS generation was lowered remarkably, and mitochondrial depolarization was mitigated. In DOX group, the expression of p-PTEN was lower than normal group and the expression of p-Akt and p-ERK was higher than normal group. In the groups treated with LUTG (20 μM), the expression of p-PTEN was upregulated and the expression of p-Akt, p-ERK, p-mTOR, and p-GSK-3β was downregulated. These results indicated that the protective effects of LUTG against DOX-induced cardiotoxicity may be related to anti-apoptosis through PTEN/Akt and ERK pathway.

Keywords

Luteolin-7-O-glucoside Doxorubicin PTEN Akt ERK 

Notes

Acknowledgments

This work was supported by Grants from the Natural Science Foundation of Shandong Province (No. ZR2013HM084) and Independent Innovation Foundation of Shandong University (No. 2012ZD043) of P.R.China.

Conflict of interest

None.

References

  1. 1.
    Sun, J., Sun, G., Meng, X., Wang, H., Luo, Y., Qin, M., et al. (2013). Isorhamnetin protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. PLoS ONE, 8, e64526.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Santacruz, L., Darrabie, M. D., Mantilla, J. G., Mishra, R., Feger, B. J., & Jacobs, D. O. (2014). Creatine supplementation reduces doxorubicin-induced cardiomyocellular injury. Cardiovascular Toxicology. doi: 10.1007/s12012-014-9283-x.
  3. 3.
    Li, W., Nie, S., Xie, M., Chen, Y., Li, C., & Zhang, H. (2010). A major green tea component, (−)-epigallocatechin-3-gallate, ameliorates doxorubicin-mediated cardiotoxicity in cardiomyocytes of neonatal rats. Journal of Agriculture and Food Chemistry, 58, 8977–8982.CrossRefGoogle Scholar
  4. 4.
    Wang, S. Q., Han, X. Z., Li, X., Ren, D. M., Wang, X. N., & Lou, H. X. (2010). Flavonoids from Dracocephalum tanguticum and their cardioprotective effects against doxorubicin-induced toxicity in H9c2 cells. Bioorganic & Medicinal Chemistry Letters, 20, 6411–6415.CrossRefGoogle Scholar
  5. 5.
    Wu, Z. Y., & Li, X. W. (2005). Flora of China (vol. 65). Beijing: Science Press.Google Scholar
  6. 6.
    Wang, S. Q., Ren, D. M., Xiang, F., Wang, X. N., Zhu, C. J., Yuan, H. Q., et al. (2009). Dracotanosides A-D, spermidine glycosides from Dracocephalum tanguticum: structure and amide rotational barrier. Journal of Natural Products, 72, 1006–1010.CrossRefPubMedGoogle Scholar
  7. 7.
    Zeng, Q., Chang, R., Qin, J., Cheng, X., Zhang, W., & Jin, H. (2011). New glycosides from Dracocephalum tanguticum maxim. Arch Pharm Res., 34(12), 2015–2020.CrossRefPubMedGoogle Scholar
  8. 8.
    Dorn, G. W., & Force, T, I. I. (2005). Protein kinase cascades in the regulation of cardiac hypertrophy. Journal of Clinical Investigation, 115, 527–537.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Papanicolaou, K. N., Izumiya, Y., & Walsh, K. (2008). Forkhead transcription factors and cardiovascular biology. Circulation Research, 102, 16–31.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Shioda, N., Han, F., Moriguchi, S., & Fukunaga, K. (2007). Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activities in mouse brain ischemia. Journal of Neurochemistry, 102, 1506–1517.CrossRefPubMedGoogle Scholar
  11. 11.
    Shioda, N., Ishigami, T., Han, F., Moriguchi, S., Shibuya, M., Iwabuchi, Y., & Fukunaga, K. (2007). Activation of phosphatidylinositol 3-kinase/protein kinase B pathway by a vanadyl compound mediates its neuroprotective effect in mouse brain ischemia. Neuroscience, 148, 221–229.CrossRefPubMedGoogle Scholar
  12. 12.
    Matsui, T., & Rosenzweig, A. (2005). Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. Journal of Molecular and Cellular Cardiology, 38, 63–71.CrossRefPubMedGoogle Scholar
  13. 13.
    Siddall, H. K., Warrell, C. E., Yellon, D. M., & Mocanu, M. M. (2008). Ischemia-reperfusion injury and cardioprotection: investigating PTEN, the phosphatase that negatively regulates PI3K, using a congenital model of PTEN haploinsufficiency. Basic Research in Cardiology, 103, 560–568.CrossRefPubMedGoogle Scholar
  14. 14.
    Kimes, B. W., & Brandt, B. L. (1976). Properties of a clonal muscle from rat heart. Experimental Cell Research, 98, 367–381.CrossRefPubMedGoogle Scholar
  15. 15.
    Zordoky, B. N., & El-Kadi, A. O. (2007). H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. Journal of Pharmacological and Toxicological Methods, 56, 317–322.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang, X., Wang, X. L., Chen, H. L., Wu, D., Chen, J. X., Wang, X. X., et al. (2014). Ghrelin inhibits doxorubicin cardiotoxicity by inhibiting excessive autophagy through AMPK and p38-MAPK. Biochemical Pharmacology, 88, 334–350.CrossRefPubMedGoogle Scholar
  17. 17.
    Alipour, E., Mousavi, Z., Safaei, Z., Pordeli, M., Safavi, M., Firoozpour, L., et al. (2014). Synthesis and cytotoxic evaluation of some new[1, 3]dioxolo[4,5-g]chromen-8-one derivatives. Daru, 22, 41.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ding, X., Zhang, B., Pei, Q., Pan, J., Huang, S., Yang, Y., et al. (2014). Triptolide induces apoptotic cell death of human cholangiocarcinoma cells through inhibition of myeloid cell leukemia-1. BMC Cancer, 14, 271.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kim, S. Y., Kim, S. J., Kim, B. J., Rah, S. Y., Chung, S. M., Im, M. J., & Kim, U. H. (2006). Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Experimental & Molecular Medicine, 38, 535–545.CrossRefGoogle Scholar
  20. 20.
    Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.CrossRefPubMedGoogle Scholar
  21. 21.
    Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology, 113, 158–166.CrossRefGoogle Scholar
  22. 22.
    Ren, D., Zhu, Q., Li, J., Ha, T., Wang, X., & Li, Y. (2012). Overexpression of angiopoietin-1 reduces doxorubicin-induced apoptosis in cardiomyocytes. Journal of Biomedical Research, 26, 432–438.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochemical Pharmacology, 86, 1301–1310.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang, Y. W., Shi, J., Li, Y. J., & Wei, L. (2009). Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Archivum immunolgiae et therapiae experimentalis, 57, 435–445.CrossRefGoogle Scholar
  25. 25.
    Lee, B. S., Kim, S. H., Jin, T., Choi, E. Y., Oh, J., Park, S., et al. (2013). Protective effect of survivin in doxorubicin-induced cell death in h9c2 cardiac myocytes. Korean Circulation Journal, 43, 400–407.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gharanei, M., Hussain, A., Janneh, O., & Maddock, H. L. (2013). Doxorubicin induced myocardial injury is exacerbated following ischaemic stress via opening of the mitochondrial permeability transition pore. Toxicology and Applied Pharmacology, 268, 149–156.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu, X., Xu, C., Zhou, X., Cui, B., Lu, Z., & Jiang, H. (2011). PI3K/Akt signaling pathway involved in cardioprotection of preconditioning with high mobility group box 1 protein during myocardial ischemia and reperfusion. International Journal of Cardiology, 150, 222–223.CrossRefPubMedGoogle Scholar
  28. 28.
    Théberge, J. F., Mehdi, M. Z., Pandey, S. K., & Srivastava, A. K. (2003). Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Archives of Biochemistry and Biophysics, 420, 9–17.CrossRefPubMedGoogle Scholar
  29. 29.
    Fuglesteg, B. N., Tiron, C., Jonassen, A. K., Mjøs, O. D., & Ytrehus, K. (2009). Pretreatment with insulin before ischaemia reduces infarct size in Langendorff-perfused rat hearts. Acta Physiologica, 195, 273–282.CrossRefPubMedGoogle Scholar
  30. 30.
    Negoro, S., Oh, H., Tone, E., Kunisada, K., Fujio, Y., Walsh, K., et al. (2001). Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and Bcl-xL/caspase-3 interaction. Circulation, 103, 555–561.CrossRefPubMedGoogle Scholar
  31. 31.
    Taniyama, Y., & Wal, K. (2002). Elevated myocardial Akt signaling ameliorates doxorubicin-induced congestive heart failure and promotes heart growth. Journal of Molecular and Cellular Cardiology, 34, 1241–1247.CrossRefPubMedGoogle Scholar
  32. 32.
    Oudit, G. Y., Sun, H., Kerfant, B. G., Crackower, M. A., Penninger, J. M., & Backx, P. H. (2004). The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. Journal of Molecular and Cellular Cardiology, 37, 449–471.CrossRefPubMedGoogle Scholar
  33. 33.
    Ohori, K., Miura, T., Tanno, M., Miki, T., Sato, T., Ishikawa, S., et al. (2008). Ser9 phosphorylation of mitochondrial GSK-3beta is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. American Journal of Physiology Heart and Circulatory Physiology, 295, H2079–2086.CrossRefPubMedGoogle Scholar
  34. 34.
    Angelini, A., Di Ilio, C., Castellani, M. L., Conti, P., & Cuccurullo, F. (2010). Modulation of multidrug resistance p-glycoprotein activity by flavonoids and honokiol in human doxorubicin-resistant sarcoma cells (MES-SA/DX-5): implications for natural sedatives as chemosensitizing agents in cancer therapy. Journal of Biological Regulators and Homeostatic Agents, 24, 197–205.PubMedGoogle Scholar
  35. 35.
    Du, G., Lin, H., Wang, M., Zhang, S., Wu, X., Lu, L., et al. (2010). Quercetin greatly improved therapeutic index of doxorubicin against 4T1 breast cancer by its opposing effects on HIF-1α in tumor and normal cells. Cancer Chemotherapy and Pharmacology, 65, 277–287.CrossRefPubMedGoogle Scholar
  36. 36.
    Duraj, J., Zazrivcova, K., Bodo, J., Sulikova, M., & Sedlak, J. (2005). Flavonoid quercetin, but not apigenin or luteolin, induced apoptosis in human myeloid leukemia cells and their resistant variants. Neoplasma, 52, 273–279.PubMedGoogle Scholar
  37. 37.
    Du, G., Lin, H., Yang, Y., Zhang, S., Wu, X., Wang, M., et al. (2010). Dietary quercetin combining intratumoral doxorubicin injection synergistically induces rejection of established breast cancer in mice. International Immunopharmacology, 10, 819–826.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hong Yao
    • 1
  • Zhimei Shang
    • 2
  • Penghong Wang
    • 1
  • Shuixian Li
    • 1
  • Qianyun Zhang
    • 1
  • Huiqin Tian
    • 1
  • Dongmei Ren
    • 3
  • Xiuzhen Han
    • 1
  1. 1.Department of Pharmacology, School of Pharmaceutical SciencesShandong UniversityJinanChina
  2. 2.Department of OncologyWei Fang Traditional Chinese HospitalWeifangChina
  3. 3.Department of Natural Product Chemistry, School of Pharmaceutical SciencesShandong UniversityJinanChina

Personalised recommendations