Cardiovascular Toxicology

, Volume 16, Issue 1, pp 46–53 | Cite as

FGF2 Prevents Sunitinib-Induced Cardiotoxicity in Zebrafish and Cardiomyoblast H9c2 Cells

  • Guozhen Cui
  • Huanxian Chen
  • Wei Cui
  • Xiaogang Guo
  • Jiansong Fang
  • Ailin Liu
  • Yonglong Chen
  • Simon Ming Yuen Lee


Sunitinib is used extensively in the treatment of metastatic renal cell carcinoma and imatinib-resistant gastrointestinal stromal tumors. However, the undesirable cardiotoxic effects of sunitinib, such as congestive heart failure and hypertension, limit its use in the clinical setting. As multiple receptor tyrosine kinases are inhibited by sunitinib, it raises a question as to which target mediates sunitinib-induced cardiotoxicity. Here, we reported that the injection of fibroblast growth factor 2 (FGF2) mRNA into one- to two-cell stage embryos protected against sunitinib-induced cardiotoxicity in zebrafish. In addition, FGF2 significantly prevented sunitinib-induced cardiotoxicity in cardiomyoblast H9c2 cells, possibly via activating the PLC-γ/c-Raf/CREB pathway. Importantly, FGF2 did not compromise the antitumor activity of sunitinib in Caki-1 and OS-RC-2 renal cell carcinoma cells. Molecular docking simulations further revealed an interaction between the tyrosine kinase domain of FGF receptor 1 (FGFR1) and sunitinib. Taken together, our results clearly demonstrated that FGF2 inhibition plays an important role in sunitinib-induced cardiotoxicity both in vitro and in vivo. This study also provided a basis for further research on sunitinib-induced cardiotoxicity and may allow rational design of new sunitinib derivatives with fewer or weak cardiotoxic effects.


Sunitinib Cardiotoxicity FGF2 Zebrafish PLC-γ/c-Raf/CREB 



Bulbus arteriosus


cAMP response element-binding protein


Fibroblast growth factor 2


Hours post-fertilization


Lactate dehydrogenase


Phospholipase C


Sinus venosus


Tyrosine kinase inhibitor



This work was supported by grants from the Science and Technology Development Fund Macao SAR, China (Grant No. 014/2011/A1) and the National Natural Science Foundation of China (Grant No. 31301192).

Conflict of interest

The authors declare that there are no conflicts of interest.


  1. 1.
    Karaman, M. W., Herrgard, S., Treiber, D. K., Gallant, P., Atteridge, C. E., Campbell, B. T., et al. (2008). A quantitative analysis of kinase inhibitor selectivity. Nature Biotechnology, 26, 127–132.CrossRefPubMedGoogle Scholar
  2. 2.
    Blay, J. Y. (2010). Pharmacological management of gastrointestinal stromal tumours: an update on the role of sunitinib. Annals of Oncology, 21, 208–215.CrossRefPubMedGoogle Scholar
  3. 3.
    Chu, T. F., Rupnick, M. A., Kerkela, R., Dallabrida, S. M., Zurakowski, D., Nguyen, L., et al. (2007). Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 370, 2011–2019.PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Telli, M. L., Witteles, R. M., Fisher, G. A., & Srinivas, S. (2008). Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Annals of Oncology, 19, 1613–1618.CrossRefPubMedGoogle Scholar
  5. 5.
    Force, T., & Kolaja, K. L. (2011). Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nature Reviews Drug Discovery, 10, 111–126.CrossRefPubMedGoogle Scholar
  6. 6.
    Chan, J., & Mably, J. D. (2011). Dissection of Cardiovascular Development and Disease Pathways in Zebrafish. In K. T. Chang & K. T. Min (Eds.), Progress in molecular biology and translational science: animal models of human disease (Vol. 100, pp. 111–153). San Diego: Elsevier Academic Press Inc.CrossRefGoogle Scholar
  7. 7.
    Chen, J. N., Haffter, P., Odenthal, J., Vogelsang, E., Brand, M., van Eeden, F. J., et al. (1996). Mutations affecting the cardiovascular system and other internal organs in zebrafish. Development, 123, 293–302.PubMedGoogle Scholar
  8. 8.
    Challa, A. K., & Chatti, K. (2013). Conservation and early expression of zebrafish tyrosine kinases support the utility of zebrafish as a model for tyrosine kinase biology. Zebrafish, 10, 264–274.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Cheng, H., Kari, G., Dicker, A. P., Rodeck, U., Koch, W. J., & Force, T. (2011). A novel preclinical strategy for identifying cardiotoxic kinase inhibitors and mechanisms of cardiotoxicity. Circulation Research, 109, 1401–1409.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Powers, C. J., McLeskey, S. W., & Wellstein, A. (2000). Fibroblast growth factors, their receptors and signaling. Endocrine-Related Cancer, 7, 165–197.CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang, Z. S., Padua, R. R., Ju, H., Doble, B. W., Jin, Y., Hao, J., et al. (2002). Acute protection of ischemic heart by FGF-2: Involvement of FGF-2 receptors and protein kinase C. American Journal of Physiology Heart and Circulatory Physiology, 282, H1071–H1080.CrossRefPubMedGoogle Scholar
  12. 12.
    Marais, E., Genade, S., & Lochner, A. (2008). CREB activation and ischaemic preconditioning. Cardiovascular Drugs and Therapy, 22, 3–17.CrossRefPubMedGoogle Scholar
  13. 13.
    Kumar, R., Crouthamel, M. C., Rominger, D. H., Gontarek, R. R., Tummino, P. J., Levin, R. A., & King, A. G. (2009). Myelosuppression and kinase selectivity of multikinase angiogenesis inhibitors. British Journal of Cancer, 101, 1717–1723.PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Huang, C. J., Tu, C. T., Hsiao, C. D., Hsieh, F. J., & Tsai, H. J. (2003). Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish. Developmental Dynamics, 228, 30–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Westerfield, M. (1995). The zebrafish book: A guide for the laboratory use of zebrafish (Danio rerio), 3rd Edition Eugene (pp. 267–272). OR: University of Oregon.Google Scholar
  16. 16.
    Kim, B., Huang, G., Ho, W. B., & Greenspan, D. S. (2011). Bone morphogenetic protein-1 processes insulin-like growth factor-binding protein 3. Journal of Biological Chemistry, 286, 29014–29025.PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Antkiewicz, D. S., Burns, C. G., Carney, S. A., Peterson, R. E., & Heideman, W. (2005). Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicological Sciences, 84, 368–377.CrossRefPubMedGoogle Scholar
  18. 18.
    Cui, G., Shan, L., Hung, M., Lei, S., Choi, I., Zhang, Z., et al. (2013). A novel Danshensu derivative confers cardioprotection via PI3 K/Akt and Nrf2 pathways. International Journal of Cardiology, 168, 1349–1359.CrossRefPubMedGoogle Scholar
  19. 19.
    Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B. K., et al. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science, 276, 955–960.CrossRefPubMedGoogle Scholar
  20. 20.
    Jain, A. N. (2003). Surflex: Fully automatic flexible molecular docking using a molecular similarity-based search engine. Journal of Medicinal Chemistry, 46, 499–511.CrossRefPubMedGoogle Scholar
  21. 21.
    French, K. J., Coatney, R. W., Renninger, J. P., Hu, C. X., Gales, T. L., Zhao, S. F., et al. (2010). Differences in effects on myocardium and mitochondria by angiogenic inhibitors suggest separate mechanisms of cardiotoxicity. Toxicologic Pathology, 38, 691–702.CrossRefPubMedGoogle Scholar
  22. 22.
    Marcolino, M. S., Ribeiro, A. L., Clementino, N. C. D., Nunes, M. D. P., Barbosa, M. M., Silva, M., et al. (2011). The use of imatinib mesylate has no adverse effects on the heart function. Results of a pilot study in patients with chronic myeloid leukemia. Leukemia Research, 35, 317–322.CrossRefPubMedGoogle Scholar
  23. 23.
    Jiang, Z. S., Jeyaraman, M., Wen, G. B., Fandrich, R. R., Dixon, I. M., Cattini, P. A., & Kardami, E. (2007). High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. Journal of Molecular and Cellular Cardiology, 42, 222–233.CrossRefPubMedGoogle Scholar
  24. 24.
    Hescheler, J., Meyer, R., Plant, S., Krautwurst, D., Rosenthal, W., & Schultz, G. (1991). Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circulation Research, 69, 1476–1486.CrossRefPubMedGoogle Scholar
  25. 25.
    Anestopoulos, I., Kavo, A., Tentes, I., Kortsaris, A., Panayiotidis, M., Lazou, A., & Pappa, A. (2013). Silibinin protects H9c2 cardiac cells from oxidative stress and inhibits phenylephrine-induced hypertrophy: potential mechanisms. Journal of Nutritional Biochemistry, 24, 586–594.CrossRefPubMedGoogle Scholar
  26. 26.
    House, S. L., Newman, G., & Schultz, J. J. (2010). Human recombinant low molecular weight fibroblast growth factor 2 protects the heart from reperfusion injury through activation of fgf receptors and nitric oxide signaling. Annals of Emergency Medicine, 56, S5–S5.CrossRefGoogle Scholar
  27. 27.
    House, S. L., Melhorn, S. J., Newman, G., Doetschman, T., & Schultz, J. E. (2007). The protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2. American Journal of Physiology-Heart and Circulatory Physiology, 293, H354–H365.CrossRefPubMedGoogle Scholar
  28. 28.
    Chen, X. Q., Chen, L. L., Fan, L., Fang, J., Chen, Z. Y., & Li, W. W. (2014). Stem cells with FGF4-bFGF fused gene enhances the expression of bFGF and improves myocardial repair in rats. Biochemical and Biophysical Research Communications, 447, 145–151.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Guozhen Cui
    • 1
  • Huanxian Chen
    • 1
  • Wei Cui
    • 2
  • Xiaogang Guo
    • 3
  • Jiansong Fang
    • 4
  • Ailin Liu
    • 4
  • Yonglong Chen
    • 3
  • Simon Ming Yuen Lee
    • 1
  1. 1.State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical SciencesUniversity of MacauMacaoChina
  2. 2.School of MedicineNingbo UniversityNingboChina
  3. 3.Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhouChina
  4. 4.Institute of Materia MedicaChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations