Cardiovascular Toxicology

, Volume 15, Issue 4, pp 336–344 | Cite as

Comparative Investigation of Protective Effects of Metyrosine and Metoprolol Against Ketamine Cardiotoxicity in Rats

  • Ali Ahiskalioglu
  • Ilker Ince
  • Mehmet Aksoy
  • Elif Oral Ahiskalioglu
  • Mehmet Comez
  • Aysenur Dostbil
  • Mine Celik
  • Hamit Hakan Alp
  • Resit Coskun
  • Ali Taghizadehghalehjoughi
  • Bahadir SuleymanEmail author


This study investigated the effect of metyrosine against ketamine-induced cardiotoxicity in rats and compared the results with the effect of metoprolol. In this study, rats were divided into groups A, B and C. In group A, we investigated the effects of a single dose of metyrosine (150 mg/kg) and metoprolol (20 mg/kg) on single dose ketamine (60 mg/kg)-induced cardiotoxicity. In group B, we investigated the effect of metyrosine and metoprolol, which were given together with ketamine for 30 days. In group C, we investigated the effect of metyrosine and metoprolol given 15 days before ketamine and 30 days together with ketamine on ketamine cardiotoxicity. By the end of this process, we evaluated the effects of the levels of oxidant–antioxidant parameters such as MDA, MPO, 8-OHGua, tGSH, and SOD in addition to CK-MB and TP I on cardiotoxicity in rat heart tissue. The experimental results show that metyrosine prevented ketamine cardiotoxicity in groups A, B and C and metoprolol prevented it in only group C.


Antioxidant Cardiotoxicity Ketamine Metoprolol Metyrosine Oxidant Rat 



The authors wish to thank the staff of the Department of Pharmacology, University of Recep Tayyip Erdogan University, for their technical assistance.


  1. 1.
    Craven, R. (2007). Ketamine. Anaesthesia, 62, 48–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Reich, D. L., & Silvay, G. (1989). Ketamine—An update on the 1st 25 years of clinical-experience. Canadian Journal of Anaesthesia, 36, 186–197.CrossRefPubMedGoogle Scholar
  3. 3.
    White, J. M., & Ryan, C. F. (1996). Pharmacological properties of ketamine. Drug and Alcohol Review, 15, 145–155.CrossRefPubMedGoogle Scholar
  4. 4.
    Aksoy, M., Ince, I., Ahiskalioglu, A., Dostbil, A., Celik, M., Turan, M. I., et al. (2014). The suppression of endogenous adrenalin in the prolongation of ketamine anesthesia. Medical Hypotheses, 83, 103–107.CrossRefPubMedGoogle Scholar
  5. 5.
    Haskova, P., Koubkova, L., Vavrova, A., Mackova, E., Hruskova, K., Kovarikova, P., et al. (2011). Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology, 289, 122–131.CrossRefPubMedGoogle Scholar
  6. 6.
    Bhagat, B., Sullivan, J. M., Fischer, V. W., Nadel, E. M., & Dhalla, N. S. (1976). cAMP activity and isoproterenol-induced myocardial injury in rats. Recent Advances in Studies on Cardiac Structure and Metabolism, 12, 465–470.PubMedGoogle Scholar
  7. 7.
    Fleckenstein, A., Janke, J., Doring, H. J., & Leder, O. (1974). Myocardial fiber necrosis due to intracellular Ca overload—A new principle in cardiac pathophysiology. Recent Advances in Studies on Cardiac Structure and Metabolism, 4, 563–580.PubMedGoogle Scholar
  8. 8.
    Banerjee, S. K., Sood, S., Dinda, A. K., Das, T. K., & Maulik, S. K. (2003). Chronic oral administration of raw garlic protects against isoproterenol-induced myocardial necrosis in rat. Comparative biochemistry and physiology. Toxicology and Pharmacology: CBP, 136, 377–386.Google Scholar
  9. 9.
    Li, Y., Shi, J., Yang, B. F., Liu, L., Han, C. L., Li, W. M., et al. (2012). Ketamine-induced ventricular structural, sympathetic and electrophysiological remodelling: pathological consequences and protective effects of metoprolol. British Journal of Pharmacology, 165, 1748–1756.PubMedCentralCrossRefPubMedGoogle Scholar
  10. 10.
    Burke, A., Smyth, E., & Fitzgerald, G. A. (2006). Goodman and Gilman’s the pharmacological basis of therapeutics. New York: McGraw Hill.Google Scholar
  11. 11.
    el El-Awady, S. E., Moustafa, Y. M., Abo-Elmatty, D. M., & Radwan, A. (2011). Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. European Journal of Pharmacology, 650, 335–341.CrossRefGoogle Scholar
  12. 12.
    Grollman, A. P., & Moriya, M. (1993). Mutagenesis by 8-oxoguanine: An enemy within. Trends in Genetics, 9, 246–249.CrossRefPubMedGoogle Scholar
  13. 13.
    Hoffman, B. B. (2006). Therapy of hypertension. In L. L. Brunton, J. S. Lazo, & K. L. Parker (Eds.), Goodman and Gilman’s the pharmacological basis of therapeutics (pp. 845–897). New York: McGraw-Hill.Google Scholar
  14. 14.
    Suleyman, H., Halici, Z., Cadirci, E., Hacimuftuoglu, A., Keles, S., & Gocer, F. (2007). Indirect role of alpha2-adrenoreceptors in anti-ulcer effect mechanism of nimesulide in rats. Naunyn-Schmiedeberg’s Archives of Pharmacology, 375, 189–198.CrossRefPubMedGoogle Scholar
  15. 15.
    Ushijima, I., Mizuki, Y., & Yamada, M. (1988). The mode of action of bromocriptine following pretreatment with reserpine and alpha-methyl-p-tyrosine in rats. Psychopharmacology, 95, 29–33.PubMedGoogle Scholar
  16. 16.
    Yigiter, M., Yildiz, A., Polat, B., Alp, H. H., Keles, O. N., Salman, A. B., & Suleyman, H. (2012). The protective effects of metyrosine, lacidipine, clonidine, and moxonidine on kidney damage induced by unilateral ureteral obstruction in rats. Surgery Today, 42, 1051–1060.CrossRefPubMedGoogle Scholar
  17. 17.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for eperoxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefPubMedGoogle Scholar
  18. 18.
    Bradley, P. P., Priebat, D. A., Christensen, R. D., & Rothstein, G. (1982). Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. The Journal of Investigative Dermatology, 78, 206–209.CrossRefPubMedGoogle Scholar
  19. 19.
    Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, 25, 192–205.CrossRefPubMedGoogle Scholar
  20. 20.
    Sun, Y., Oberley, L. W., & Li, Y. (1988). A simple method for clinical assay of superoxide-dismutase. Clinical Chemistry, 34, 497–500.PubMedGoogle Scholar
  21. 21.
    Shigenaga, M. K., Aboujaoude, E. N., Chen, Q., & Ames, B. N. (1994). Assays of oxidative DNA-damage biomarkers 8-Oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear-DNA and biological-fluids by high-performance liquid-chromatography with electrochemical detection. Methods in Enzymology, 234, 16–33.CrossRefPubMedGoogle Scholar
  22. 22.
    Kaur, H., & Halliwell, B. (1996). Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection. Biochemical Journal, 318, 21–23.PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Mosca, F., Fattorini, D., Bompadre, S., & Littarru, G. P. (2002). Assay of coenzyme Q(10) in plasma by a single dilution step. Analytical Biochemistry, 305, 49–54.CrossRefPubMedGoogle Scholar
  24. 24.
    Senturker, S., & Dizdaroglu, M. (1999). The effect of experimental conditions on the levels of oxidatively modified bases in DNA as measured by gas chromatography-mass spectrometry: How many modified bases are involved? Prepurification or not? Free Radical Biology and Medicine, 27, 370–380.CrossRefPubMedGoogle Scholar
  25. 25.
    Floyd, R. A., Watson, J. J., Harris, J., West, M., & Wong, P. K. (1986). Formation of 8-hydroxydeoxyguanosine, hydroxyl free-radical adduct of DNA in Granulocytes exposed to the tumor promoter, tetradeconylphorbolacetate. Biochemical and Biophysical Research Communications, 137, 841–846.CrossRefPubMedGoogle Scholar
  26. 26.
    Asami, S., Hirano, T., Yamaguchi, R., Tomioka, Y., Itoh, H., & Kasai, H. (1996). Increase of a type of oxidative DNA damage, 8-hydroxyguanine, and its repair activity in human leukocytes by cigarette smoking. Cancer Research, 56, 2546–2549.PubMedGoogle Scholar
  27. 27.
    Coskun, R., Turan, M. I., Turan, I. S., & Gulapoglu, M. (2014). The protective effect of thiamine pyrophosphate, but not thiamine, against cardiotoxicity induced with cisplatin in rats. Drug and Chemical Toxicology, 37, 290–294.CrossRefPubMedGoogle Scholar
  28. 28.
    Abidov, S. S. (2002). Effect of propofol and ketamine on lipid metabolism and lipid peroxidation in rats. Eksperimental’naia i Klinicheskaia Farmakologiia, 65, 46–48.Google Scholar
  29. 29.
    Gazal, M., Valente, M. R., Acosta, B. A., Kaufmann, F. N., Braganhol, E., Lencina, C. L., et al. (2014). Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. European Journal of Pharmacology, 724, 132–139.CrossRefPubMedGoogle Scholar
  30. 30.
    da Silva, F. C., do Carmo de Oliveira Cito, M., da Silva, M. I., Moura, B. A., de Aquino Neto, M. R., Feitosa, M. L., et al. (2010). Behavioral alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Research Bulletin, 83, 9–15.Google Scholar
  31. 31.
    Kisaoglu, A., Borekci, B., Yapsa, O. E., Bilen, H., & Suleyman, H. (2013). Tissue damage and oxidant/antioxidant balance. The Eurasian Journal of Medicine, 45, 47–49.PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Oelsner, G., & Shashar, D. (2006). Adnexal torsion. Clinical Obstetrics and Gynecology, 49, 459–463.CrossRefPubMedGoogle Scholar
  33. 33.
    Rock, J. A., & Thompson, J. D. (2003). Surgery for benign disease of the ovary. In J. A. Rock & H. W. Jones (Eds.), Te Linde operative gynecology (pp. 648–649). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  34. 34.
    Wen, Q., & Sim, M. K. (2011). Effects of des-aspartate-angiotensin I on myocardial ischemia-reperfusion injury in rats. European Journal of Pharmacology, 658, 193–199.CrossRefPubMedGoogle Scholar
  35. 35.
    Adams, J. E., Bodor, G. S., Davilaroman, V. G., Delmez, J. A., Apple, F. S., Ladenson, J. H., & Jaffe, A. S. (1993). Cardiac troponin-I—A marker with high specificity for cardiac injury. Circulation, 88, 101–106.CrossRefPubMedGoogle Scholar
  36. 36.
    Tsung, J. S., & Tsung, S. S. (1986). creatine-kinase isoenzymes in extracts of various human skeletal-muscles. Clinical Chemistry, 32, 1568–1570.PubMedGoogle Scholar
  37. 37.
    Antman, E. T., & Braunwald, E. (2001). Acute myocardial infarction. In E. Braunwald, P. Libby, & D. P. Zipes (Eds.), Heart disease. A textbook of cardiovascular medicine (pp. 1114–1219). Philadelphia: WB Saunders Company.Google Scholar
  38. 38.
    Hussein, A., Ahmed, A. A., Shouman, S. A., & Sharawy, S. (2012). Ameliorating effect of DL-alpha-lipoic acid against cisplatin-induced nephrotoxicity and cardiotoxicity in experimental animals. Drug Discoveries and Therapeutics, 6, 147–156.PubMedGoogle Scholar
  39. 39.
    Ryan, T. J., Anderson, J. L., Antman, E. M., Braniff, B. A., Brooks, N. H., Califf, R. M., et al. (1996). ACC/AHA guidelines for the management of patients with acute myocardial infarction: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). Circulation, 94, 2341–2350.CrossRefPubMedGoogle Scholar
  40. 40.
    Parvin, R., & Akhter, N. (2008). Protective effect of tomato against adrenaline-induced myocardial infarction in rats. Bangladesh Medical Research Council Bulletin, 34, 104–108.PubMedGoogle Scholar
  41. 41.
    Shaver, K. J., Adams, C., & Weiss, S. J. (2006). Acute myocardial infarction after administration of low-dose intravenous epinephrine for anaphylaxis. CJEM, 8, 289–294.PubMedGoogle Scholar
  42. 42.
    Devi, P., Xavier, D., Sigamani, A., Pandey, S., Thomas, T., Murthy, S., et al. (2011). Effect of fixed dose combinations of metoprolol and amlodipine in essential hypertension: MARS—A randomized controlled trial. Blood Pressure, Suppl. 2, 5–12.CrossRefGoogle Scholar
  43. 43.
    Bayar, E., Ilhan, G., Furat, C., Atik, C., Arslanoglu, Y., Kuran, C., et al. (2014). The effect of different beta-blockers on vascular graft nitric oxide levels: Comparison of nebivolol versus metoprolol. European Journal Of Vascular And Endovascular Surgery: The Official Journal Of The European Society For Vascular Surgery, 47, 204–208.CrossRefGoogle Scholar
  44. 44.
    Ripley, T. L., & Saseen, J. J. (2014). Beta-blockers: A review of their pharmacological and physiological diversity in hypertension. The Annals of Pharmacotherapy, 48, 723–733.CrossRefPubMedGoogle Scholar
  45. 45.
    Erdamar, H., Sen, N., Tavil, Y., Yazici, H. U., Turfan, M., Poyraz, F., et al. (2009). The effect of nebivolol treatment on oxidative stress and antioxidant status in patients with cardiac syndrome-X. Coronary Artery Disease, 20, 234–238.CrossRefGoogle Scholar
  46. 46.
    Kawai, K., Qin, F., Shite, J., Mao, W., Fukuoka, S., & Liang, C. S. (2004). Importance of antioxidant and antiapoptotic effects of beta-receptor blockers in heart failure therapy. American Journal of Physiology Heart and Circulatory Physiology, 287, H1003–H1012.CrossRefPubMedGoogle Scholar
  47. 47.
    Julius, B. K., Vassalli, G., Mandinov, L., & Hess, O. M. (1999). Alpha-adrenoceptor blockade prevents exercise-induced vasoconstriction of stenotic coronary arteries. Journal of the American College of Cardiology, 33, 1499–1505.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Ali Ahiskalioglu
    • 1
  • Ilker Ince
    • 1
  • Mehmet Aksoy
    • 1
  • Elif Oral Ahiskalioglu
    • 2
  • Mehmet Comez
    • 2
  • Aysenur Dostbil
    • 1
  • Mine Celik
    • 1
  • Hamit Hakan Alp
    • 3
  • Resit Coskun
    • 4
  • Ali Taghizadehghalehjoughi
    • 5
  • Bahadir Suleyman
    • 6
    Email author
  1. 1.Department of Anaesthesiology and Reanimation, Faculty of MedicineAtaturk UniversityErzurumTurkey
  2. 2.Department of Anaesthesiology And ReanimationRegional Education And Research HospitalErzurumTurkey
  3. 3.Department of Biochemistry, Faculty of Medicine, 100Yil UniversityVanTurkey
  4. 4.Department of CardiologyBayburt State HospitalBayburtTurkey
  5. 5.Department of Pharmacology, Faculty of MedicineAtaturk UniversityErzurumTurkey
  6. 6.Department of Pharmacology, Faculty of MedicineRecep Tayyip Erdogan UniversityRizeTurkey

Personalised recommendations