Advertisement

Cardiovascular Toxicology

, Volume 15, Issue 3, pp 241–249 | Cite as

Protective Effect of Apigenin on Ischemia/Reperfusion Injury of the Isolated Rat Heart

  • Jing Hu
  • Zilin Li
  • Li-ting Xu
  • Ai-jun Sun
  • Xiao-yan Fu
  • Li Zhang
  • Lin-lin Jing
  • An-dong Lu
  • Yi-fei DongEmail author
  • Zheng-ping JiaEmail author
Article

Abstract

Apigenin (Api), a mainly bioactive component of Apium graveolens L. var. dulce DC. (a traditional Chinese medicinal herb), possesses a wide range of biological activities, including antioxidant effects. It also has been shown to associate with lower prevalence of cardiovascular diseases, but its mechanisms of action remain unclear. The aim of the present study is to investigate the role of Api in isolated rat heart model of ischemia/reperfusion (I/R). Langendorff-perfused isolated rat hearts were used in our study. Api was added to the perfusate before ischemia and during reperfusion in the isolated pulsed rat heart exposed to 30-min ischemia followed by 50-min reperfusion. The treatment with Api conferred a cardioprotective effect, and the treated hearts demonstrated an improved ischemic cardiac functional recovery, a decreased myocardial infarct size, a reduced activities of creatine kinase isoenzyme and lactate dehydrogenase in the coronary flow, a reduced number of apoptotic cardiomyocytes, a reduced activity of caspase-3, up-regulation of the anti-apoptotic protein Bcl-2 and down-regulation of the pro-apoptotic protein Bax. In addition, Api inhibited the phosphorylation of p38 MAPKS during I/R. In conclusion, these observations provide preliminary evidence that Api can protect cardiomyocytes from I-/R-induced injury, at least partially, through the inhibition of p38 MAPKS signaling pathway.

Keywords

Apigenin Isolated heart perfusion Ischemia–reperfusion Cardioprotection p38 MAPKS 

Abbreviations

CK-MB

Creatine kinase-MB isoform

I/R

Ischemia–reperfusion

K–H

Krebs–Henseleit

LDH

Lactate dehydrogenase

TTC

2,3,5-Triphenyltetrazolium chloride

LVEDP

Left ventricular end-diastolic pressure

Notes

Acknowledgments

We thank Xiao Cao Botanical Development Co., Ltd (Xi’an, China) for supplying us with the standardized Api extract used in this study. We are grateful for the financial support by National Natural Science Foundation of China (81400276).

Conflict of interest

None.

References

  1. 1.
    Sharma, H., Kanwal, R., Bhaskaran, N., & Gupta, S. (2014). Plant flavone apigenin binds to nucleic acid bases and reduces oxidative DNA damage in prostate epithelial cells. PLoS ONE, 9, e91588.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lu, X. Y., Sun, D. L., Chen, Z. J., Chen, T., Li, L. P., Xu, Z. H., et al. (2010). Relative contribution of small and large intestine to deglycosylation and absorption of flavonoids from Chrysanthemum morifolium extract. Journal of Agriculture and Food Chemistry, 58, 10661–10667.CrossRefGoogle Scholar
  3. 3.
    Beara, I. N., Lesjak, M. M., Jovin, E. D., Balog, K. J., Anackov, G. T., Orcic, D. Z., et al. (2009). Plantain (Plantago L.) species as novel sources of flavonoid antioxidants. Journal of Agriculture and Food Chemistry, 57, 9268–9273.CrossRefGoogle Scholar
  4. 4.
    Kanazawa, K., Uehara, M., Yanagitani, H., & Hashimoto, T. (2006). Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Archives of Biochemistry and Biophysics, 455, 197–203.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, Y. H., Park, Y. S., Kim, T. J., Fang, L. H., Ahn, H. Y., Hong, J. T., et al. (2000). Endothelium-dependent vasorelaxant and antiproliferative effects of apigenin. General Pharmacology, 35, 341–347.PubMedCrossRefGoogle Scholar
  6. 6.
    Basile, A., Giordano, S., Lopez-Saez, J. A., & Cobianchi, R. C. (1999). Antibacterial activity of pure flavonoids isolated from mosses. Phytochemistry, 52, 1479–1482.PubMedCrossRefGoogle Scholar
  7. 7.
    Gupta, S., Afaq, F., & Mukhtar, H. (2002). Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene, 21, 3727–3738.PubMedCrossRefGoogle Scholar
  8. 8.
    Lindenmeyer, F., Li, H., Menashi, S., Soria, C., & Lu, H. (2001). Apigenin acts on the tumor cell invasion process and regulates protease production. Nutrition and Cancer, 39, 139–147.PubMedCrossRefGoogle Scholar
  9. 9.
    Jin, B. H., Qian, L. B., Chen, S., Li, J., Wang, H. P., Bruce, I. C., et al. (2009). Apigenin protects endothelium-dependent relaxation of rat aorta against oxidative stress. European Journal of Pharmacology, 616, 200–205.PubMedCrossRefGoogle Scholar
  10. 10.
    Meyer, H., Bolarinwa, A., Wolfram, G., & Linseisen, J. (2006). Bioavailability of apigenin from apiin-rich parsley in humans. Annals of Nutrition and Metabolism, 50, 167–172.PubMedCrossRefGoogle Scholar
  11. 11.
    Bellosta, S., Bogani, P., Canavesi, M., Galli, C., & Visioli, F. (2008). Mediterranean diet and cardioprotection: Wild artichoke inhibits metalloproteinase 9. Molecular Nutrition and Food Research, 52, 1147–1152.PubMedCrossRefGoogle Scholar
  12. 12.
    Jeong, C. W., Yoo, K. Y., Lee, S. H., Jeong, H. J., Lee, C. S., & Kim, S. J. (2012). Curcumin protects against regional myocardial ischemia/reperfusion injury through activation of RISK/GSK-3beta and inhibition of p38 MAPK and JNK. Journal of Cardiovascular Pharmacology and Therapeutics, 17, 387–394.PubMedCrossRefGoogle Scholar
  13. 13.
    Yang, Y., Hu, S. J., Li, L., & Chen, G. P. (2009). Cardioprotection by polysaccharide sulfate against ischemia/reperfusion injury in isolated rat hearts. Acta Pharmacologica Sinica, 30, 54–60.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Schwertz, H., Carter, J. M., Abdudureheman, M., Russ, M., Buerke, U., Schlitt, A., et al. (2007). Myocardial ischemia/reperfusion causes VDAC phosphorylation which is reduced by cardioprotection with a p38 MAP kinase inhibitor. Proteomics, 7, 4579–4588.PubMedCrossRefGoogle Scholar
  15. 15.
    Lin, M., Lu, S. S., Wang, A. X., Qi, X. Y., Zhao, D., Wang, Z. H., et al. (2011). Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling. Journal of Dermatological Science, 63, 10–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Noh, H. J., Sung, E. G., Kim, J. Y., Lee, T. J., & Song, I. H. (2010). Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by apigenin via the inhibition of p38 mitogen-activated protein kinase-dependent matrix metalloproteinase-9 expression. Oncology Reports, 24, 277–283.PubMedGoogle Scholar
  17. 17.
    Huang, C. H., Kuo, P. L., Hsu, Y. L., Chang, T. T., Tseng, H. I., Chu, Y. T., et al. (2010). The natural flavonoid apigenin suppresses Th1- and Th2-related chemokine production by human monocyte THP-1 cells through mitogen-activated protein kinase pathways. Journal of Medicinal Food, 13, 391–398.PubMedCrossRefGoogle Scholar
  18. 18.
    Olfert, E. D., Cross, B. M., & McWilliam, A. A. (1993). Guide to the care and use of experimental animals. Vol. 1. No. 2. Ottawa: Canadian Council on Animal Care.Google Scholar
  19. 19.
    Zheng, Z., Yang, M., Zhang, F., Yu, J., Wang, J., Ma, L., et al. (2011). Gender-related difference of sevoflurane postconditioning in isolated rat hearts: Focus on phosphatidylinositol-3-kinase/Akt signaling. Journal of Surgical Research, 170, e3–e9.PubMedCrossRefGoogle Scholar
  20. 20.
    Miao, Q., Wang, S., Miao, S., Wang, J., Xie, Y., & Yang, Q. (2011). Cardioprotective effect of polydatin against ischemia/reperfusion injury: Roles of protein kinase C and mito K(ATP) activation. Phytomedicine, 19, 8–12.PubMedCrossRefGoogle Scholar
  21. 21.
    Omura, T., Yoshiyama, M., Ishikura, F., Kobayashi, H., Takeuchi, K., Beppu, S., et al. (2001). Myocardial ischemia activates the JAK-STAT pathway through angiotensin II signaling in in vivo myocardium of rats. Journal of Molecular and Cellular Cardiology, 33, 307–316.PubMedCrossRefGoogle Scholar
  22. 22.
    Hu, J., Wang, Z., Guo, Y. Y., Zhang, X. N., Xu, Z. H., Liu, S. B., et al. (2009). A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain. Molecular Pain, 5, 71.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Pagliaro, P., Mancardi, D., Rastaldo, R., Penna, C., Gattullo, D., Miranda, K. M., et al. (2003). Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radical Biology and Medicine, 34, 33–43.PubMedCrossRefGoogle Scholar
  24. 24.
    Cory, S., & Adams, J. M. (2002). The Bcl2 family: Regulators of the cellular life-or-death switch. Nature Reviews Cancer, 2, 647–656.PubMedCrossRefGoogle Scholar
  25. 25.
    Antonsson, B. (2004). Mitochondria and the Bcl-2 family proteins in apoptosis signaling pathways. Molecular and Cellular Biochemistry, 256–257, 141–155.PubMedCrossRefGoogle Scholar
  26. 26.
    Kuwana, T., Mackey, M. R., Perkins, G., Ellisman, M. H., Latterich, M., Schneiter, R., et al. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell, 111, 331–342.PubMedCrossRefGoogle Scholar
  27. 27.
    Burlacu, A. (2003). Regulation of apoptosis by Bcl-2 family proteins. Journal of Cellular and Molecular Medicine, 7, 249–257.PubMedCrossRefGoogle Scholar
  28. 28.
    Ling, Q., Xu, X., Wei, X., Wang, W., Zhou, B., Wang, B., et al. (2011). Oxymatrine induces human pancreatic cancer PANC-1 cells apoptosis via regulating expression of Bcl-2 and IAP families, and releasing of cytochrome c. Journal of Experimental and Clinical Cancer Research, 30, 66.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Yue, T. L., Wang, C., Gu, J. L., Ma, X. L., Kumar, S., Lee, J. C., et al. (2000). Inhibition of extracellular signal-regulated kinase enhances ischemia/reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart. Circulation Research, 86, 692–699.PubMedCrossRefGoogle Scholar
  30. 30.
    Antonsson, B. (2001). Bax and other pro-apoptotic Bcl-2 family “killer-proteins” and their victim the mitochondrion. Cell and Tissue Research, 306, 347–361.PubMedCrossRefGoogle Scholar
  31. 31.
    Alnemri, E. S., Livingston, D. J., Nicholson, D. W., Salvesen, G., Thornberry, N. A., Wong, W. W., et al. (1996). Human ICE/CED-3 protease nomenclature. Cell, 87, 171.PubMedCrossRefGoogle Scholar
  32. 32.
    Thomas, C. J., Ng, D. C., Patsikatheodorou, N., Limengka, Y., Lee, M. W., Darby, I. A., et al. (2011). Cardioprotection from ischaemia-reperfusion injury by a novel flavonol that reduces activation of p38 MAPK. European Journal of Pharmacology, 658, 160–167.PubMedCrossRefGoogle Scholar
  33. 33.
    Kaiser, R. A., Bueno, O. F., Lips, D. J., Doevendans, P. A., Jones, F., Kimball, T. F., et al. (2004). Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo. Journal of Biological Chemistry, 279, 15524–15530.PubMedCrossRefGoogle Scholar
  34. 34.
    Li, G., Barrett, E. J., Barrett, M. O., Cao, W., & Liu, Z. (2007). Tumor necrosis factor-alpha induces insulin resistance in endothelial cells via a p38 mitogen-activated protein kinase-dependent pathway. Endocrinology, 148, 3356–3363.PubMedCrossRefGoogle Scholar
  35. 35.
    Bassi, R., Heads, R., Marber, M. S., & Clark, J. E. (2008). Targeting p38-MAPK in the ischaemic heart: Kill or cure? Current Opinion in Pharmacology, 8, 141–146.PubMedCrossRefGoogle Scholar
  36. 36.
    Ma, L., Liu, H., Xie, Z., Yang, S., Xu, W., Hou, J., et al. (2014). Ginsenoside Rb3 protects cardiomyocytes against ischemia–reperfusion injury via the inhibition of JNK-mediated NF-κB pathway: A mouse cardiomyocyte model. PLoS ONE, 9, e103628.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Nicholas, R. L., Colleen, J. T., Lokugan, S. S., Yvonne, Y. Y., Suwan, Y., James, R. B., et al. (2013). Cardioprotective 3prime, 4prime-dihydroxyflavonol attenuation of JNK and p38MAPK signalling involves CaMKII inhibition. Biochemical Journal, 456, 149–161.CrossRefGoogle Scholar
  38. 38.
    Jones, W. K., Brown, M., Ren, X., He, S., & McGuinness, M. (2003). NF-κB as an integrator of diverse signaling pathways. Cardiovascular Toxicology, 3, 229–253.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen, H.-M., Hsu, J.-H., Liou, S.-F., Chen, T.-J., Chen, L.-Y., Chiu, C.-C., et al. (2014). Baicalein, an active component of Scutellaria baicalensis Georgi, prevents lysophosphatidylcholine-induced cardiac injury by reducing reactive oxygen species production, calcium overload and apoptosis via MAPK pathways. BMC complementary and alternative medicine, 14, 233.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jing Hu
    • 1
  • Zilin Li
    • 2
  • Li-ting Xu
    • 1
  • Ai-jun Sun
    • 1
  • Xiao-yan Fu
    • 3
  • Li Zhang
    • 1
  • Lin-lin Jing
    • 1
  • An-dong Lu
    • 2
  • Yi-fei Dong
    • 2
    Email author
  • Zheng-ping Jia
    • 1
    Email author
  1. 1.Department of PharmacyGeneral Hospital of Lanzhou Command, PLALanzhouChina
  2. 2.Department of Cardiovascular SurgeryGeneral Hospital of Lanzhou Command, PLALanzhouChina
  3. 3.Department of UltrasoundGeneral Hospital of Lanzhou Command, PLALanzhouChina

Personalised recommendations