Cardiovascular Toxicology

, Volume 15, Issue 1, pp 79–89 | Cite as

Modified High-Density Lipoproteins by Artificial Sweetener, Aspartame, and Saccharin, Showed Loss of Anti-atherosclerotic Activity and Toxicity in Zebrafish

  • Jae-Yong Kim
  • Ki-Hoon Park
  • Jihoe Kim
  • Inho Choi
  • Kyung-Hyun ChoEmail author


Safety concerns have been raised regarding the association of chronic consumption of artificial sweeteners (ASs) with metabolic disorders, especially in the heart and brain. There has been no information on the in vivo physiological effects of AS consumption in lipoprotein metabolism. High-dosage treatment (final 25, 50, and 100 mM) with AS (aspartame, acesulfame K, and saccharin) to human high-density lipoprotein (HDL) induced loss of antioxidant ability along with elevated atherogenic effects. Aspartame-treated HDL3 (final 100 mM) almost all disappeared due to putative proteolytic degradation. Aspartame- and saccharin-treated HDL3 showed more enhanced cholesteryl ester transfer activity, while their antioxidant ability was disappeared. Microinjection of the modified HDL3 exacerbated the inflammatory death in zebrafish embryos in the presence of oxLDL. These results show that AS treatment impaired the beneficial functions of HDL, resulting in loss of antioxidant and anti-atherogenic activities. These results suggest that aspartame and saccharin could be toxic to the human circulation system as well as embryonic development via impairment of lipoprotein function.


Artificial sweetener High-density lipoprotein Atherosclerosis Zebrafish 



This work was supported by the 2014 Yeungnam University Research Grant.


  1. 1.
    Bandyopadhyay, A., Ghoshal, S., & Mukherjee, A. (2008). Genotoxicity testing of low-calorie sweeteners: Aspartame, acesulfame-K, and saccharin. Drug and Chemical Toxicology, 31, 447–457.CrossRefPubMedGoogle Scholar
  2. 2.
    Olney, J. W., Farber, N. B., Spitznagel, E., & Robins, L. N. (1996). Increasing brain tumor rates: Is there a link to aspartame? Journal of Neuropathology and Experimental Neurology, 55, 1115–1123.CrossRefPubMedGoogle Scholar
  3. 3.
    Jang, W., Jeoung, N. H., & Cho, K. H. (2011). Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state. Molecules and Cells, 31, 461–470.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Kim, J. Y., Seo, J., & Cho, K. H. (2011). Aspartame-fed zebrafish exhibit acute deaths with swimming defects and saccharin-fed zebrafish have elevation of cholesteryl ester transfer protein activity in hypercholesterolemia. Food and Chemical Toxicology, 49, 2899–2905.CrossRefPubMedGoogle Scholar
  5. 5.
    Cho, K. H. (2009). Synthesis of reconstituted high density lipoprotein (rHDL) containing apoA-I and apoC-III: The functional role of apoC-III in rHDL. Molecules and Cells, 27, 291–297.CrossRefPubMedGoogle Scholar
  6. 6.
    Rye, K. A., & Barter, P. J. (2008). Antiinflammatory actions of HDL: A new insight. Arteriosclerosis, Thrombosis, and Vascular Biology, 28, 1890–1891.CrossRefPubMedGoogle Scholar
  7. 7.
    Park, K. H., Jang, W., Kim, K. Y., Kim, J. R., & Cho, K. H. (2010). Fructated apolipoprotein A-I showed severe structural modification and loss of beneficial functions in lipid-free and lipid-bound state with acceleration of atherosclerosis and senescence. Biochemical and Biophysical Research Communications, 392, 295–300.CrossRefPubMedGoogle Scholar
  8. 8.
    Roberts, H. J. (2003). Aspartame disease: An ignored epidemic. Ontario: Sunshine Sentinel Press.Google Scholar
  9. 9.
    Selderslaghs, I. W., Blust, R., & Witters, H. E. (2012). Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reproductive Toxicology, 33, 142–154.CrossRefPubMedGoogle Scholar
  10. 10.
    Selderslaghs, I. W., Van Rompay, A. R., De Coen, W., & Witters, H. E. (2009). Development of a screening assay to identify teratogenic and embryotoxic chemicals using the zebrafish embryo. Reproductive Toxicology, 28, 308–320.CrossRefPubMedGoogle Scholar
  11. 11.
    Havel, R. J., Eder, H. A., & Bragdon, J. H. (1955). The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. The Journal of Clinical Investigation, 34, 1345–1353.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Markwell, M. A., Haas, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87, 206–210.CrossRefPubMedGoogle Scholar
  13. 13.
    Benzie, I. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Eckerson, H. W., Wyte, C. M., & La Du, B. N. (1983). The human serum paraoxonase/arylesterase polymorphism. American Journal of Human Genetics, 35, 1126–1238.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Esterbauer, H., Striegl, G., Puhl, H., & Rotheneder, M. (1989). Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radical Research Communications, 6, 67–75.CrossRefPubMedGoogle Scholar
  16. 16.
    Noble, R. P. (1968). Electrophoretic separation of plasma lipoproteins in agarose gel. Journal of Lipid Research, 9, 693–700.PubMedGoogle Scholar
  17. 17.
    Park, K. H., Shin, D. G., Kim, J. R., & Cho, K. H. (2010). Senescence-related truncation and multimerization of apolipoprotein A-I in high-density lipoprotein with an elevated level of advanced glycated end products and cholesteryl ester transfer activity. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 65, 600–610.CrossRefGoogle Scholar
  18. 18.
    Park, K. H., & Cho, K. H. (2011). High-density lipoprotein (HDL) from elderly and reconstituted HDL containing glycated apolipoproteins A-I share proatherosclerotic and prosenescent properties with increased cholesterol influx. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 66, 511–520.CrossRefGoogle Scholar
  19. 19.
    Owusu-Ansah, E., Yavari, A., Mandal, S., & Banerjee, U. (2008). Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nature Genetics, 40, 356–361.CrossRefPubMedGoogle Scholar
  20. 20.
    Nusslein-Volhard, C., & Dahm, R. (2002). Zebrafish: A practical approach. New York: Oxford University Press.Google Scholar
  21. 21.
    Park, K. H., & Cho, K. H. (2011). A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. Fish & Shellfish Immunology, 31, 904–910.CrossRefGoogle Scholar
  22. 22.
    Cho, K. H. (2009). Biomedicinal implications of high-density lipoprotein: Its composition, structure, functions, and clinical applications. BMB Rep., 42, 393–400.CrossRefPubMedGoogle Scholar
  23. 23.
    Cho, K. H., Shin, D. G., Baek, S. H., & Kim, J. R. (2009). Myocardial infarction patients showed altered lipoprotein properties and functions when compared with stable angina pectoris patients. Experimental & Molecular Medicine, 41, 67–76.CrossRefGoogle Scholar
  24. 24.
    Brown, B. E., Nobecourt, E., Zeng, J., Jenkins, A. J., Rye, K. A., & Davies, M. J. (2013). Apolipoprotein A-I glycation by glucose and reactive aldehydes alters phospholipid affinity but not cholesterol export from lipid-laden macrophages. PLoS ONE, 31, e65430.CrossRefGoogle Scholar
  25. 25.
    Kim, J., Park, H. H., Choi, I., Kim, Y. O., & Cho, K. H. (2010). Severely modified lipoprotein properties without a change in cholesteryl ester transfer protein activity in patients with acute renal failure secondary to Hantaan virus infection. BMB Reports, 43, 535–540.CrossRefPubMedGoogle Scholar
  26. 26.
    Johnson, R. J., Segal, M. S., Sautin, Y., Nakagawa, T., Feig, D. I., Kang, D. H., et al. (2007). Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. American Journal of Clinical Nutrition, 86, 899–906.PubMedGoogle Scholar
  27. 27.
    Hu, F. B., & Malik, V. S. (2010). Sugar-sweetened beverages and risk of obesity and type 2 diabetes: Epidemiologic evidence. Physiology & Behavior, 100, 47–54.CrossRefGoogle Scholar
  28. 28.
    Gurney, J. G., Pogoda, J. M., Holly, E. A., Hecht, S. S., & Preston-Martin, S. (1997). Aspartame consumption in relation to childhood brain tumor risk: Results from a case–control study. Journal of the National Cancer Institute, 89, 1072–1074.CrossRefPubMedGoogle Scholar
  29. 29.
    Soffritti, M., Belpoggi, F., Esposti, D. D., & Lambertini, L. (2005). Aspartame induces lymphomas and leukaemias in rats. European Journal of Oncology, 10, 107–116.Google Scholar
  30. 30.
    Lim, U., Subar, A. F., Mouw, T., Hartge, P., Morton, L. M., Stolzenberg-Solomon, R., et al. (2006). Consumption of aspartame-containing beverages and incidence of hematopoietic and brain malignancies. Cancer Epidemiology, Biomarkers & Prevention, 15, 1654–1659.CrossRefGoogle Scholar
  31. 31.
    Eshak, E. S., Iso, H., Kokubo, Y., Saito, I., Yamagishi, K., Inoue, M., et al. (2012). Soft drink intake in relation to incident ischemic heart disease, stroke, and stroke subtypes in Japanese men and women: The Japan Public Health Centre-based study cohort I. American Journal of Clinical Nutrition, 96, 1390–1397.CrossRefPubMedGoogle Scholar
  32. 32.
    Burkhart, C. G. (2009). ‘Lone’ atrial fibrillation precipitated by monosodium glutamate and aspartame. International Journal of Cardiology, 137, 307–308.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jae-Yong Kim
    • 1
    • 2
    • 3
  • Ki-Hoon Park
    • 1
    • 2
    • 3
  • Jihoe Kim
    • 1
    • 2
    • 3
  • Inho Choi
    • 1
    • 2
    • 3
  • Kyung-Hyun Cho
    • 1
    • 2
    • 3
    Email author
  1. 1.School of BiotechnologyYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.Research Institute of Protein SensorYeungnam UniversityGyeongsanRepublic of Korea
  3. 3.BK21plus Program Serum Biomedical Research and Education TeamYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations