Advertisement

Cardiovascular Toxicology

, Volume 14, Issue 4, pp 291–308 | Cite as

Alcoholic Cardiomyopathy: Pathophysiologic Insights

  • Mariann R. Piano
  • Shane A. Phillips
Article

Abstract

Alcoholic cardiomyopathy (ACM) is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. ACM is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of ACM.

Keywords

Alcoholic cardiomyopathy Cardiovascular Alcohol 

Notes

Acknowledgments

Due to page limitations, we recognize that we have not included all the excellent scientific work completed in the area of alcohol and the cardiovascular system. This study was supported by National Institutes of Health grants AA015578 (MRP), HL85614 (SAP), HL095701 (SAP), and HL095701-02S1 (SAP). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

References

  1. 1.
    Maron, B. J., Towbin, J. A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., et al. (2006). Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 113, 1807–1816.PubMedCrossRefGoogle Scholar
  2. 2.
    Fernandez-Sola, J., Preedy, V. R., Lang, C. H., Gonzalez-Reimers, E., Arno, M., Lin, J. C., et al. (2007). Molecular and cellular events in alcohol-induced muscle disease. Alcoholism, Clinical and Experimental Research, 31, 1953–1962.PubMedCrossRefGoogle Scholar
  3. 3.
    Piano, M. R. (2002). Alcoholic cardiomyopathy: Incidence, clinical characteristics, and pathophysiology. Chest, 121, 1638–1650.PubMedCrossRefGoogle Scholar
  4. 4.
    Fauchier, L., Babuty, D., Poret, P., Casset-Senon, D., Autret, M. L., Cosnay, P., et al. (2000). Comparison of long-term outcome of alcoholic and idiopathic dilated cardiomyopathy. European Heart Journal, 21, 306–314.PubMedCrossRefGoogle Scholar
  5. 5.
    McKenna, C. J., Codd, M. B., McCann, H. A., & Sugrue, D. D. (1998). Alcohol consumption and idiopathic dilated cardiomyopathy: A case control study. American Heart Journal, 135, 833–837.PubMedCrossRefGoogle Scholar
  6. 6.
    Kupari, M., Koskinen, P., Suokas, A., & Ventilä, M. (1990). Left ventricular filling impairment in asymptomatic chronic alcoholics. American Journal of Cardiology, 66(20), 1473–1477.PubMedCrossRefGoogle Scholar
  7. 7.
    Askanas, A., Udoshi, M., & Sadjadi, S. A. (1980). The heart in chronic alcoholism: A noninvasive study. American Heart Journal, 99(1), 9–16.PubMedCrossRefGoogle Scholar
  8. 8.
    Silberbauer, K., Juhasz, M., Ohrenberger, G., & Hess, C. (1988). Noninvasive assessment of left ventricular diastolic function by pulsed Doppler echocardiography in young alcoholics. Cardiology, 75(6), 431–439.PubMedCrossRefGoogle Scholar
  9. 9.
    Lazarevic, A. M., Nakatani, S., Neskovic, A. N., Marinkovic, J., Yasumura, Y., Stojicic, D., et al. (2000). Early changes in left ventricular function in chronic asymptomatic alcoholics: Relation to the duration of heavy drinking. Journal of the American College of Cardiology, 35, 1599–1606.PubMedCrossRefGoogle Scholar
  10. 10.
    Mathews, E. C, Jr, Gardin, J. M., Henry, W. L., Del Negro, A. A., Fletcher, R. D., Snow, J. A., et al. (1981). Echocardiographic abnormalities in chronic alcoholics with and without overt congestive heart failure. The American Journal of Cardiology, 47, 570–578.PubMedCrossRefGoogle Scholar
  11. 11.
    Urbano-Marquez, A., Estruch, R., Navarro-Lopez, F., Grau, J. M., Mont, L., & Rubin, E. (1989). The effects of alcoholism on skeletal and cardiac muscle. The New England Journal of Medicine, 320, 409–415.PubMedCrossRefGoogle Scholar
  12. 12.
    Graves, E. J. (1995). Detailed diagnoses and procedures, National Hospital Discharge Survey, 1993. Vital and Health Statistics. Series 13, Data from the National Health Survey (pp. 1–288).Google Scholar
  13. 13.
    Gavazzi, A., De Maria, R., Parolini, M., & Porcu, M. (2000). Alcohol abuse and dilated cardiomyopathy in men. The American Journal of Cardiology, 85, 1114–1118.PubMedCrossRefGoogle Scholar
  14. 14.
    McKenna, C. J., Codd, M. B., McCann, H. A., & Sugrue, D. D. (1998). Alcohol consumption and idiopathic dilated cardiomyopathy: A case control study. American Heart Journal, 135, 833–837.PubMedCrossRefGoogle Scholar
  15. 15.
    Hookana, E., Junttila, M. J., Kaikkonen, K. S., Ukkola, O., Kesaniemi, Y. A., Kortelainen, M. L., et al. (2012). Comparison of family history of sudden cardiac death in nonischemic and ischemic heart disease. Circulation. Arrhythmia and Electrophysiology, 5, 757–761.PubMedCrossRefGoogle Scholar
  16. 16.
    Ho, E., Karimi Galougahi, K., Liu, C. C., Bhindi, R., & Figtree, G. A. (2013). Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biology, 1(1), 483–491.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Fernandez-Checa, J. C., Kaplowitz, N., Garcia-Ruiz, C., & Colell, A. (1998). Mitochondrial glutathione: Importance and transport. Seminars in Liver Disease, 18, 389–401.PubMedCrossRefGoogle Scholar
  18. 18.
    Capasso, J. M., Li, P., Guideri, G., Malhotra, A., Cortese, R., & Anversa, P. (1992). Myocardial mechanical, biochemical, and structural alterations induced by chronic ethanol ingestion in rats. Circulation Research, 71, 346–356.PubMedCrossRefGoogle Scholar
  19. 19.
    Segel, L. D., Rendig, S. V., & Mason, D. T. (1981). Alcohol-induced cardiac hemodynamic and Ca2+ flux dysfunctions are reversible. Journal of Molecular and Cellular Cardiology, 13, 443–455.PubMedCrossRefGoogle Scholar
  20. 20.
    Sarma, J. S., Ikeda, S., Fischer, R., Maruyama, Y., Weishaar, R., & Bing, R. J. (1976). Biochemical and contractile properties of heart muscle after prolonged alcohol administration. Journal of Molecular and Cellular Cardiology, 8, 951–972.PubMedCrossRefGoogle Scholar
  21. 21.
    Bing, R. J., Tillmanns, H., Fauvel, J. M., Seeler, K., & Mao, J. C. (1974). Effect of prolonged alcohol administration on calcium transport in heart muscle of the dog. Circulation Research, 35, 33–38.PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang, R. H., Gao, J. Y., Guo, H. T., Scott, G. I., Eason, A. R., Wang, X. M., et al. (2013). Inhibition of CYP2E1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction and apoptosis. Biochimica et Biophysica Acta, 1832(1), 128–141.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Weishaar, R., Sarma, J. S., Maruyama, Y., Fischer, R., Bertuglia, S., & Bing, R. J. (1977). Reversibility of mitochondrial and contractile changes in the myocardium after cessation of prolonged ethanol intake. The American Journal of Cardiology, 40, 556–562.PubMedCrossRefGoogle Scholar
  24. 24.
    Pachinger, O. M., Tillmanns, H., Mao, J. C., Fauvel, J. M., & Bing, R. J. (1973). The effect of prolonged administration of ethanol on cardiac metabolism and performance in the dog. Journal of Clinical Investigation, 52, 2690–2696.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Segel, L. D., Rendig, S. V., Choquet, Y., Chacko, K., Amsterdam, E. A., & Mason, D. T. (1975). Effects of chronic graded ethanol consumption on the metabolism, ultrastructure, and mechanical function of the rat heart. Cardiovascular Research, 9, 649–663.PubMedCrossRefGoogle Scholar
  26. 26.
    Cederbaum, A. I., & Rubin, E. (1975). Molecular injury to mitochondria produced by ethanol and acetaldehyde. Federation Proceedings, 34, 2045–2051.PubMedGoogle Scholar
  27. 27.
    Hastillo, A. H., Poland, J., & Hess, M. L. (1980). Mechanical and subcellular function of rat myocardium during chronic ethanol consumption. Proceedings of the Society for Experimental Biology and Medicine, 164, 415–420.PubMedCrossRefGoogle Scholar
  28. 28.
    Piano, M. R., Rosenblum, C., Solaro, R. J., & Schwertz, D. (1999). Calcium sensitivity and the effect of the calcium sensitizing drug pimobendan in the alcoholic isolated rat atrium. Journal of Cardiovascular Pharmacology, 33, 237–242.PubMedCrossRefGoogle Scholar
  29. 29.
    Tsiplenkova, V. G., Vikhert, A. M., & Cherpachenko, N. M. (1986). Ultrastructural and histochemical observations in human and experimental alcoholic cardiomyopathy. Journal of the American College of Cardiology, 8, 22A–32A.PubMedCrossRefGoogle Scholar
  30. 30.
    Jing, L., Jin, C. M., Li, S. S., Zhang, F. M., Yuan, L., Li, W. M., et al. (2012). Chronic alcohol intake-induced oxidative stress and apoptosis: Role of CYP2E1 and calpain-1 in alcoholic cardiomyopathy. Molecular and Cellular Biochemistry, 359(1–2), 283–292.PubMedCrossRefGoogle Scholar
  31. 31.
    Hibbs, R. G., Ferrans, V. J., Black, W. C., Weilbaecher, D. G., & Burch, G. E. (1965). Alcoholic cardiomyopathy: An electron microscopic study. American Heart Journal, 69, 766–779.PubMedCrossRefGoogle Scholar
  32. 32.
    Beckemeier, M. E., & Bora, P. S. (1998). Fatty acid ethyl esters: Potentially toxic products of myocardial ethanol metabolism. Journal of Molecular and Cellular Cardiology, 30, 2487–2494.PubMedCrossRefGoogle Scholar
  33. 33.
    Hu, C., Ge, F., Hyodo, E., Arai, K., Iwata, S., Lobdell, H. T., et al. (2013). Chronic ethanol consumption increases cardiomyocyte fatty acid uptake and decreases ventricular contractile function in C57BL/6 J mice. Journal of Molecular and Cellular Cardiology, 59, 30–40.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Dalle-Donne, I., Rossi, R., Colombo, R., Giustarni, D., & Milzani, A. (2006). Biomarkers of oxidative damage in human disease. Clinical Chemistry, 52(4), 601–623.PubMedCrossRefGoogle Scholar
  35. 35.
    Vikhert, A. M., Tsiplenkova, V. G., & Cherpachenko, N. M. (1986). Alcoholic cardiomyopathy and sudden cardiac death. Journal of the American College of Cardiology, 8, 3A–11A.PubMedCrossRefGoogle Scholar
  36. 36.
    Fahimi, H. D., Kino, M., Hicks, L., Thorp, K. A., & Abelman, W. H. (1979). Increased myocardial catalase in rats fed ethanol. American Journal of Pathology, 96, 373–390.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Kino, M. (1981). Chronic effects of ethanol under partial inhibition of catalase activity in the rat heart: Light and electron microscopic observations. Journal of Molecular and Cellular Cardiology, 13, 5–21.PubMedCrossRefGoogle Scholar
  38. 38.
    Ribiere, C., Hininger, I., Rouach, H., & Nordmann, R. (1992). Effects of chronic ethanol administration on free radical defense in rat myocardium. Biochemical Pharmacology, 44, 1495–1500.PubMedCrossRefGoogle Scholar
  39. 39.
    Vendemiale, G., Grattagliano, I., Altomare, E., Serviddio, G., Portincasa, P., Prigigallo, F., et al. (2001). Mitochondrial oxidative damage and myocardial fibrosis in rats chronically intoxicated with moderate doses of ethanol. Toxicology Letters, 123, 209–216.PubMedCrossRefGoogle Scholar
  40. 40.
    Edes, I., Toszegi, A., Csanady, M., & Bozoky, B. (1986). Myocardial lipid peroxidation in rats after chronic alcohol ingestion and the effects of different antioxidants. Cardiovascular Research, 20, 542–548.PubMedCrossRefGoogle Scholar
  41. 41.
    Edes, I., Piros, G., Forster, T., & Csanady, M. (1987). Alcohol-induced congestive cardiomyopathy in adult turkeys: Effects on myocardial antioxidant defence systems. Basic Research in Cardiology, 82, 551–556.PubMedCrossRefGoogle Scholar
  42. 42.
    Khanna, D., Kan, H., Fang, Q., Xie, Z., Underwood, B. L., Jain, A. C., et al. (2007). Inducible nitric oxide synthase attenuates adrenergic signaling in alcohol fed rats. Journal of Cardiovascular Pharmacology, 50, 692–696.PubMedCrossRefGoogle Scholar
  43. 43.
    Tan, Y., Li, X., Prabhu, S. D., Brittian, K. R., Chen, Q., Yin, X., et al. (2012). Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner. Journal of the American College of Cardiology, 59(16), 1477–1486.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhang, B., Turdi, S., Li, Q., Lopez, F. L., Eason, A. R., Anversa, P., et al. (2010). Cardiac overexpression of insulin-like growth factor 1 attenuates chronic alcohol intake-induced myocardial contractile dysfunction but not hypertrophy: Roles of Akt, mTOR, GSK3beta, and PTEN. Free Radical Biology & Medicine, 49, 1238–1253.CrossRefGoogle Scholar
  45. 45.
    Fogle, R. L., Lynch, C. J., Palopoli, M., Deiter, G., Stanley, B. A., & Vary, T. C. (2010). Impact of chronic alcohol ingestion on cardiac muscle protein expression. Alcoholism, Clinical and Experimental Research, 34, 1226–1234.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Cheng, H. J., Grant, K. A., Han, Q. H., Daunais, J. B., Friedman, D. P., Masutani, S., et al. (2010). Up-regulation and functional effect of cardiac beta3-adrenoreceptors in alcoholic monkeys. Alcoholism, Clinical and Experimental Research, 34, 1171–1181.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Cheng, C. P., Cheng, H. J., Cunningham, C., Shihabi, Z. K., Sane, D. C., Wannenburg, T., et al. (2006). Angiotensin II type 1 receptor blockade prevents alcoholic cardiomyopathy. Circulation, 114, 226–236.PubMedCrossRefGoogle Scholar
  48. 48.
    Li, S. Y., Gilbert, S. A., Li, Q., & Ren, J. (2009). Aldehyde dehydrogenase-2 (ALDH2) ameliorates chronic alcohol ingestion-induced myocardial insulin resistance and endoplasmic reticulum stress. Journal of Molecular and Cellular Cardiology, 47(2), 247–255.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Li, S. Y., & Ren, J. (2008). Cardiac overexpression of alcohol dehydrogenase exacerbates chronic ethanol ingestion-induced myocardial dysfunction and hypertrophy: Role of insulin signaling and ER stress. Journal of Molecular and Cellular Cardiology, 44, 992–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Nadal-Ginard, B., Kajstura, J., Anversa, P., & Leri, A. (2003). A matter of life and death: Cardiac myocyte apoptosis and regeneration. J Clin Investig, 111, 1457–1459.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Farber, N. B., & Olney, J. W. (2003). Drugs of abuse that cause developing neurons to commit suicide. Brain Research. Developmental Brain Research, 147, 37–45.PubMedCrossRefGoogle Scholar
  52. 52.
    Zambo, V., Simon-Szabo, L., Szelenyi, P., Kereszturi, E., Banhegyi, G., & Csala, M. (2013). Lipotoxicity in the liver. World Journal of Hepatology, 5, 550–557.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Fernandez-Sola, J., Fatjo, F., Sacanella, E., Estruch, R., Bosch, X., Urbano-Marquez, A., et al. (2006). Evidence of apoptosis in alcoholic cardiomyopathy. Human Pathology, 37, 1100–1110.PubMedCrossRefGoogle Scholar
  54. 54.
    Fernandez-Sola, J., Lluis, M., Sacanella, E., Estruch, R., Antunez, E., & Urbano-Marquez, A. (2011). Increased myostatin activity and decreased myocyte proliferation in chronic alcoholic cardiomyopathy. Alcoholism, Clinical and Experimental Research, 35, 1220–1229.PubMedCrossRefGoogle Scholar
  55. 55.
    Marzetti, E., Csiszar, A., Dutta, D., Balagopal, G., Calvani, R., & Leeuwenburgh, C. (2013). Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: From mechanisms to therapeutics. American Journal Physiology Heart and Circulatory Physiology, 305(4), H459–H476.CrossRefGoogle Scholar
  56. 56.
    Miro, O., Robert, J., Casademont, J., Alonso, J. R., Nicolas, J. M., Fernandez-Sola, J., et al. (2000). Heart mitochondrial respiratory chain complexes are functionally unaffected in heavy ethanol drinkers without cardiomyopathy. Alcoholism, Clinical and Experimental Research, 24, 859–864.PubMedCrossRefGoogle Scholar
  57. 57.
    Williams, E. S., & Li, T. K. (1977). The effect of chronic alcohol administration on fatty acid metabolism and pyruvate oxidation of heart mitochondria. Journal of Molecular and Cellular Cardiology, 9, 1003–1011.PubMedCrossRefGoogle Scholar
  58. 58.
    Cunningham, C. C., & Spach, P. I. (1994). Alcoholism and myocardial energy metabolism. Alcoholism, Clinical and Experimental Research, 18, 132–137.PubMedCrossRefGoogle Scholar
  59. 59.
    Lange, L. G., & Sobel, B. E. (1983). Myocardial metabolites of ethanol. Circulation Research, 72, 724–731.Google Scholar
  60. 60.
    Kaphalia, B. S., Cai, P., Khan, M. F., Okorodudu, A. O., & Ansari, G. A. (2004). Fatty acid ethyl esters: Markers of alcohol abuse and alcoholism. Alcohol, 34, 151–158.PubMedCrossRefGoogle Scholar
  61. 61.
    Yoerger, D. M., Best, C. A., McQuillan, B. M., Supple, G. E., Guererro, J. L., Cluette-Brown, J. E., et al. (2006). Rapid fatty acid ethyl ester synthesis by porcine myocardium upon ethanol infusion into the left anterior descending coronary artery. American Journal of Pathology, 168, 1435–1442.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Lang, C. H., Frost, R. A., Summer, A. D., & Vary, T. C. (2005). Molecular mechanisms responsible for alcohol-induced myopathy in skeletal muscle and heart. The International Journal of Biochemistry & Cell Biology, 37, 2180–2195.CrossRefGoogle Scholar
  63. 63.
    Vary, T. C., & Deiter, G. (2005). Long-term alcohol administration inhibits synthesis of both myofibrillar and sarcoplasmic proteins in heart. Metabolism, Clinical and Experimental, 54, 212–219.CrossRefGoogle Scholar
  64. 64.
    Vary, T. C., Deiter, G., & Lantry, R. (2008). Chronic alcohol feeding impairs mTOR(Ser 2448) phosphorylation in rat hearts. Alcoholism, Clinical and Experimental Research, 32, 43–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Lang, C. H., & Korzick, D. H. (2013). Chronic alcohol consumption disrupts myocardial protein balance and function in aged, but not adult, female F344 rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 306(1), R23–R33.PubMedGoogle Scholar
  66. 66.
    Donohue, T. M, Jr. (2009). Autophagy and ethanol-induced liver injury. World Journal of Gastroenterology: WJG, 15, 1178–1185.PubMedCrossRefGoogle Scholar
  67. 67.
    Lang, C. H., Huber, D., & Frost, R. A. (2007). Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 292, R328–R336.PubMedCrossRefGoogle Scholar
  68. 68.
    Lang, S. M., Kazi, A. A., Hong-Brown, L., & Lang, C. H. (2012). Delayed recovery of skeletal muscle mass following hindlimb immobilization in mTOR heterozygous mice. PLoS ONE, 7(6), e38910.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Gustafsson, A. B., & Gottlieb, R. A. (2009). Autophagy in ischemic heart disease. Circulation Research, 104, 150–158.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Sukhanov, S., Semprun-Prieto, L., Yoshida, T., Michael Tabony, A., Higashi, Y., Galvez, S., et al. (2011). Angiotensin II, oxidative stress and skeletal muscle wasting. The American Journal of the Medical Sciences, 342, 143–147.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Guo, R., Hu, N., Kandadi, M. R., & Ren, J. (2012). Facilitated ethanol metabolism promotes cardiomyocyte contractile dysfunction through autophagy in murine hearts. Autophagy, 8, 593–608.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Roerecke, M., & Rehm, J. (2010). Irregular heavy drinking occasions and risk of ischemic heart disease: A systematic review and meta-analysis. American Journal of Epidemiology, 171, 633–644.PubMedCrossRefGoogle Scholar
  73. 73.
    Gu, L., Fink, A. M., Chowdhury, S. A., Geenen, D. L., & Piano, M. R. (2013). Cardiovascular responses and differential changes in mitogen-activated protein kinases following repeated episodes of binge drinking. Alcohol and Alcoholism, 48, 131–137.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Thombs, D. L., Olds, R. S., & Snyder, B. M. (2003). Field assessment of BAC data to study late-night college drinking. Journal of Studies on Alcohol, 64, 322–330.PubMedGoogle Scholar
  75. 75.
    Kajander, O. A., Kupari, M., Perola, M., Pajarinen, J., Savolainen, V., Penttila, A., et al. (2001). Testing genetic susceptibility loci for alcoholic heart muscle disease. Alcoholism, Clinical and Experimental Research, 25, 1409–1413.PubMedCrossRefGoogle Scholar
  76. 76.
    Husemoen, L. L., Fenger, M., Friedrich, N., Tolstrup, J. S., Beenfeldt Fredriksen, S., & Linneberg, A. (2008). The association of ADH and ALDH gene variants with alcohol drinking habits and cardiovascular disease risk factors. Alcoholism, Clinical and Experimental Research, 32, 1984–1991.PubMedGoogle Scholar
  77. 77.
    Djousse, L., Levy, D., Herbert, A. G., Wilson, P. W., D’Agostino, R. B., Cupples, L. A., et al. (2005). Influence of alcohol dehydrogenase 1C polymorphism on the alcohol-cardiovascular disease association (from the Framingham Offspring Study). The American Journal of Cardiology, 96, 227–232.PubMedCrossRefGoogle Scholar
  78. 78.
    Hines, L. M., Stampfer, M. J., Ma, J., Gaziano, J. M., Ridker, P. M., Hankinson, S. E., et al. (2001). Genetic variation in alcohol dehydrogenase and the beneficial effect of moderate alcohol consumption on myocardial infarction. The New England Journal of Medicine, 344, 549–555.PubMedCrossRefGoogle Scholar
  79. 79.
    Reinke, L. A., Lai, E. K., DuBose, C. M., & McCay, P. B. (1987). Reactive free radical generation in vivo in heart and liver of ethanol-fed rats: Correlation with radical formation in vitro. Proceedings of the National Academy of Sciences of the United States of America, 84, 9223–9227.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Wang, L., Zhou, Z., Saari, J. T., & Kang, Y. J. (2005). Alcohol-induced myocardial fibrosis in metallothionein-null mice: Prevention by zinc supplementation. American Journal of Pathology, 167, 337–344.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fuchs, F. D., Chambless, L. E., Folsom, A. R., Eigenbrodt, M. L., Duncan, B. B., Gilbert, A., et al. (2004). Association between alcoholic beverage consumption and incidence of coronary heart disease in whites and blacks: The Atherosclerosis Risk in Communities Study. American Journal of Epidemiology, 160, 466–474.PubMedCrossRefGoogle Scholar
  82. 82.
    Sempos, C. T., Rehm, J., Wu, T., Crespo, C. J., & Trevisan, M. (2003). Average volume of alcohol consumption and all-cause mortality in African Americans: The NHEFS cohort. Alcoholism, Clinical and Experimental Research, 27, 88–92.PubMedCrossRefGoogle Scholar
  83. 83.
    National Institute on Alcohol Abuse and Alcoholism. (2008). Alcohol: A women’s health issue. NIH Publication No. 03 4956. Washington, DC: U.S. Department of Health and Human Services.Google Scholar
  84. 84.
    Fernandez-Sola, J., Estruch, R., Nicolas, J. M., Pare, J. C., Sacanella, E., Antunez, E., et al. (1997). Comparison of alcoholic cardiomyopathy in women versus men. The American Journal of Cardiology, 80, 481–485.PubMedCrossRefGoogle Scholar
  85. 85.
    Kennedy, R. H., Stewart, C., Light, K. E., & Wyeth, R. P. (2002). Effects of gender on the cardiac toxicity elicited by chronic ethanol intake in rats. Toxicology Applied Pharmacology, 179, 111–118.PubMedCrossRefGoogle Scholar
  86. 86.
    Lochner, A., Cowley, R., & Brink, A. J. (1969). Effect of ethanol on metabolism and function of perfused rat heart. American Heart Journal, 78, 770–780.PubMedCrossRefGoogle Scholar
  87. 87.
    Piano, M. R., Geenen, D. L., Schwertz, D. W., Chowdhury, S. A., & Yuzhakova, M. (2007). Long-term effects of alcohol consumption in male and female rats. Cardiovascular Toxicology, 7, 247–254.PubMedCrossRefGoogle Scholar
  88. 88.
    Vary, T. C., Kimball, S. R., & Sumner, A. (2007). Sex-dependent differences in the regulation of myocardial protein synthesis following long-term ethanol consumption. American Journal Physiology-Regulatory Integrative and Comparative Physiology, 292, R778–R787.CrossRefGoogle Scholar
  89. 89.
    Fogle, R. L., Hollenbeak, C. S., Stanley, B. A., Vary, T. C., Kimball, S. R., & Lynch, C. J. (2011). Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy. Physiological Genomics, 43, 346–356.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Mackie, A. R., Krishnamurthy, P., Verma, S. K., Thorne, T., Ramirez, V., Qin, G., et al. (2013). Alcohol consumption negates estrogen-mediated myocardial repair in ovariectomized mice by inhibiting endothelial progenitor cell mobilization and function. Journal of Biological Chemistry, 288, 18022–18034.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Yancy, C. W., Jessup, M., Bozkurt, B., et al. (2013). ACCF/AHA guideline for the management of heart failure. Journal of the American Association of Cardiology, 62(16), e148–e239.Google Scholar
  92. 92.
    Iacovoni, A., De Maria, R., & Gavazzi, A. (2010). Alcoholic cardiomyopathy. Journal of Cardiovascular Medicine, 11, 884–892.PubMedCrossRefGoogle Scholar
  93. 93.
    Piano, M. R. (2002). Alcohol and heart failure. Journal of Cardiac Failure, 8(4), 239–246.PubMedCrossRefGoogle Scholar
  94. 94.
    Balady, G. J., Williams, M. A., Ades, P. A., et al. (2007). Core components of cardiac rehabilitation/secondary prevention programs: 2007 update. Circulation, 115, 2675–2682.PubMedCrossRefGoogle Scholar
  95. 95.
    Substance Abuse and Mental Health Services Administration. (2011). Results from the 2010 National Survey on Drug Use and Health: Summary of national findings. NSDUH series H-41. HHS Publication No. (SMA) 11-4658. Rockville, MD: Substance Abuse and Mental Health Services Administration.Google Scholar
  96. 96.
    Small, E. M., Frost, R. J., & Olson, E. N. (2010). MicroRNAs add a new dimension to cardiovascular disease. Circulation, 121, 1022–1032.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Miranda, R. C., Pietrzykowski, A. Z., Tang, Y., Sathyan, P., Mayfield, D., Keshavarzian, A., et al. (2010). MicroRNAs: Master regulators of ethanol abuse and toxicity? Alcoholism, Clinical and Experimental Research, 34, 575–587.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Biobehavioral Health ScienceUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Physical TherapyUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations