Cardiovascular Toxicology

, Volume 14, Issue 3, pp 232–242 | Cite as

Inhibition of Gene Expression of Carnitine Palmitoyltransferase I and Heart Fatty Acid Binding Protein in Cyclophosphamide and Ifosfamide-Induced Acute Cardiotoxic Rat Models

  • Mohamed M. Sayed-Ahmed
  • Meshan L. Aldelemy
  • Othman A. Al-Shabanah
  • Mohamed M. Hafez
  • Khaled A. Al-Hosaini
  • Naif O. Al-Harbi
  • Shakir D. Al-Sharary
  • Mohamed M. Al-Harbi


This study investigated whether cyclophosphamide (CP) and ifosfamide (IFO) therapy alters the expression of the key genes engaged in long-chain fatty acid (LCFA) oxidation outside rat heart mitochondria, and if so, whether these alterations should be viewed as a mechanism during CP- and IFO-induced cardiotoxicity. Adult male Wistar albino rats were assigned to one of the six treatment groups: Rats in group 1 (control) and group 2 (l-carnitine) were injected intraperitoneal (i.p.) with normal saline and l-carnitine (200 mg/kg/day), respectively, for 10 successive days. Animals in group 3 (CP group) were injected i.p. with normal saline for 5 days before and 5 days after a single dose of CP (200 mg/kg, i.p.). Rats in group 4 (IFO group) received normal saline for 5 successive days followed by IFO (50 mg/kg/day, i.p.) for 5 successive days. Rats in group 5 (CP-carnitine supplemented) were given the same doses of l-carnitine as group 2 for 5 days before and 5 days after a single dose of CP as group 3. Rats in group 6 (IFO-carnitine supplemented) were given the same doses of l-carnitine as group 2 for 5 days before and 5 days concomitant with IFO as group 4. Immediately, after the last dose of the treatment protocol, blood samples were withdrawn and animals were killed for biochemical, histopathological and gene expression studies. Treatment with CP and IFO significantly decreased expression of heart fatty acid binding protein (H-FABP) and carnitine palmitoyltransferase I (CPT I) genes in cardiac tissues. Moreover, CP but not IFO significantly increased acetyl-CoA carboxylase2 mRNA expression. Conversely, IFO but not CP significantly decreased mRNA expression of malonyl-CoA decarboxylase. Both CP and IFO significantly increased serum lactate dehydrogenase, creatine kinase isoenzyme MB and malonyl-CoA content and histopathological lesions in cardiac tissues. Interestingly, carnitine supplementation completely reversed all the biochemical, histopathological and gene expression changes induced by CP and IFO to the control values, except CPT I mRNA, and protein expression remained inhibited by IFO. Data from the current study suggest, for the first time, that (1) CP and IFO therapy is associated with the inhibition of the expression of H-FABP and CPT I genes in cardiac tissues with the consequent inhibition of mitochondrial transport and oxidation of LCFA. (2) The progressive increase in cardiotoxicity enzymatic indices and the decrease in H-FABP and CPT I expression may point to the possible contribution of these genes to CP- and IFO-induced cardiotoxicity.


Cyclophosphamide Ifosfamide CPT I H-FABP Cardiotoxicity l-Carnitine 



Authors thank the Deanship of Scientific Research at KSU for funding this work through the research group project no. RGP-VPP-142.


  1. 1.
    Shore, S. (1947). Review of the nitrogen mustards. Hahnemann Monthly, 82, 461–470.PubMedGoogle Scholar
  2. 2.
    Baumann, F., & Preiss, R. (2001). Cyclophosphamide and related anticancer drugs. Journal of Chromatography B: Biomedical Sciences and Applications, 764, 173–192.PubMedCrossRefGoogle Scholar
  3. 3.
    Shanholtz, C. (2001). Acute life-threatening toxicity of cancer treatment. Critical Care Clinics, 17, 483–502.PubMedCrossRefGoogle Scholar
  4. 4.
    Steinherz, L. J., Steinherz, P. G., Mangiacasale, D., O’Reilly, R., Allen, J., Sorell, M., et al. (1981). Cardiac changes with cyclophosphamide. Medical and Pediatric Oncology, 9, 417–422.PubMedCrossRefGoogle Scholar
  5. 5.
    Kandylis, K., Vassilomanolakis, M., Tsoussis, S., & Efremidis, A. P. (1989). Ifosfamide cardiotoxicity in humans. Cancer Chemotherapy and Pharmacology, 24, 395–396.PubMedCrossRefGoogle Scholar
  6. 6.
    Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2010). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 25, 135–142.PubMedCrossRefGoogle Scholar
  7. 7.
    Todorova, V., Vanderpool, D., Blossom, S., Nwokedi, E., Hennings, L., Mrak, R., et al. (2009). Oral glutamine protects against cyclophosphamide-induced cardiotoxicity in experimental rats through increase of cardiac glutathione. Nutrition, 25, 812–817.PubMedCrossRefGoogle Scholar
  8. 8.
    Gottdiener, J. S., Appelbaum, F. R., Ferrans, V. J., Deisseroth, A., & Ziegler, J. (1981). Cardiotoxicity associated with high-dose cyclophosphamide therapy. Archives of Internal Medicine, 141, 758–763.PubMedCrossRefGoogle Scholar
  9. 9.
    Goldberg, M. A., Antin, J. H., Guinan, E. C., & Rappeport, J. M. (1986). Cyclophosphamide cardiotoxicity: An analysis of dosing as a risk factor. Blood, 68, 1114–1118.PubMedGoogle Scholar
  10. 10.
    Quezado, Z. M., Wilson, W. H., Cunnion, R. E., Parker, M. M., Reda, D., Bryant, G., et al. (1993). High-dose ifosfamide is associated with severe, reversible cardiac dysfunction. Annals of Internal Medicine, 118, 31–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2011). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 25, 135–142.PubMedCrossRefGoogle Scholar
  12. 12.
    Mythili, Y., Sudharsan, P. T., Selvakumar, E., & Varalakshmi, P. (2004). Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced oxidative cardiac injury. Chemico-Biological Interactions, 151, 13–19.PubMedCrossRefGoogle Scholar
  13. 13.
    Loudet, A. M., Dousset, N., Carton, M., & Douste-Blazy, L. (1984). Effects of an antimitotic agent (cyclophosphamide) on plasma lipoproteins. Biochemical Pharmacology, 33, 2961–2965.PubMedCrossRefGoogle Scholar
  14. 14.
    Lespine, A., Chap, H., & Perret, B. (1997). Impaired secretion of heart lipoprotein lipase in cyclophosphamide-treated rabbit. Biochimica et Biophysica Acta, 1345, 77–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Al-Nasser, I. A. (1998). In vivo prevention of cyclophosphamide-induced Ca2+ dependent damage of rat heart and liver mitochondria by cyclosporin A. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 121, 209–214.CrossRefGoogle Scholar
  16. 16.
    Fatani, A. G., Darweesh, A. Q., Rizwan, L., Aleisa, A. M., Al-Shabanah, O. A., & Sayed-Ahmed, M. M. (2010). Carnitine deficiency aggravates cyclophosphamide-induced cardiotoxicity in rats. Chemotherapy, 56, 71–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Sayed-Ahmed, M. M. (2011). l-Carnitine attenuates ifosfamide-induced carnitine deficiency and decreased intramitochondrial CoA-SH in rat kidney tissues. Journal of Nephrology, 24, 490–498.PubMedCrossRefGoogle Scholar
  18. 18.
    Sayed-Ahmed, M. M. (2010). Progression of cyclophosphamide-induced acute renal metabolic damage in carnitine-depleted rat model. Clinical and Experimental Nephrology, 14, 418–426.PubMedCrossRefGoogle Scholar
  19. 19.
    Sayed-Ahmed, M. M., Aldelemy, M. L., Hafez, M. M., & Al-Shabanah, O. A. (2012). Inhibition of gene expression of organic cation/carnitine transporter and antioxidant enzymes in oxazaphosphorines-induced acute cardiomyopathic rat models. Oxidative Medicine and Cellular Longevity, 2012, 452902.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Lopaschuk, G. D., & Stanley, W. C. (2006). Malonyl-CoA decarboxylase inhibition as a novel approach to treat ischemic heart disease. Cardiovascular Drugs and Therapy, 20, 433–439.PubMedCrossRefGoogle Scholar
  21. 21.
    Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews, 85, 1093–1129.PubMedCrossRefGoogle Scholar
  22. 22.
    Kunau, W. H., Dommes, V., & Schulz, H. (1995). Beta-oxidation of fatty acids in mitochondria, peroxisomes, and bacteria: A century of continued progress. Progress in Lipid Research, 34, 267–342.PubMedCrossRefGoogle Scholar
  23. 23.
    Bremer, J. (1983). Carnitine–metabolism and functions. Physiological Reviews, 63, 1420–1480.PubMedGoogle Scholar
  24. 24.
    Visarius, T. M., Bahler, H., Kupfer, A., Cerny, T., & Lauterburg, B. H. (1998). Thiodiglycolic acid is excreted by humans receiving ifosfamide and inhibits mitochondrial function in rats. Drug Metabolism and Disposition, 26, 193–196.PubMedGoogle Scholar
  25. 25.
    Visarius, T. M., Stucki, J. W., & Lauterburg, B. H. (1999). Inhibition and stimulation of long-chain fatty acid oxidation by chloroacetaldehyde and methylene blue in rats. Journal of Pharmacology and Experimental Therapeutics, 289, 820–824.PubMedGoogle Scholar
  26. 26.
    Sayed-Ahmed, M. M., Darweesh, A. Q., & Fatani, A. J. (2010). Carnitine deficiency and oxidative stress provoke cardiotoxicity in an ifosfamide-induced Fanconi syndrome rat model. Oxidative Medicine and Cellular Longevity, 3, 266–274.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Chomczynski, P. (1993). A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques, 15, 532–536.PubMedGoogle Scholar
  28. 28.
    Lysiak, W., Lilly, K., DiLisa, F., Toth, P. P., & Bieber, L. L. (1988). Quantitation of the effect of l-carnitine on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver mitochondria. Journal of Biological Chemistry, 263, 1151–1156.PubMedGoogle Scholar
  29. 29.
    Buhl, S. N., & Jackson, K. Y. (1978). Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate-to-pyruvate and pyruvate-to-lactate reactions in human serum at 25, 30, and 37 degrees C. Clinical Chemistry, 24, 828–831.PubMedGoogle Scholar
  30. 30.
    Wu, A. H., & Bowers, G. N, Jr. (1982). Evaluation and comparison of immunoinhibition and immunoprecipitation methods for differentiating MB and BB from macro forms of creatine kinase isoenzymes in patients and healthy individuals. Clinical Chemistry, 28, 2017–2021.PubMedGoogle Scholar
  31. 31.
    Opie, L. H. (1968). Metabolism of the heart in health and disease. I. American Heart Journal, 76, 685–698.PubMedCrossRefGoogle Scholar
  32. 32.
    Veerkamp, J. H., & van Moerkerk, H. T. (1993). Fatty acid-binding protein and its relation to fatty acid oxidation. Molecular and Cellular Biochemistry, 123, 101–106.PubMedCrossRefGoogle Scholar
  33. 33.
    Lopaschuk, G. D., Belke, D. D., Gamble, J., Itoi, T., & Schonekess, B. O. (1994). Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochimica et Biophysica Acta, 1213, 263–276.PubMedCrossRefGoogle Scholar
  34. 34.
    Kako, K. J., Thornton, M. J., & Heggtveit, H. A. (1974). Depressed fatty acid and acetate oxidation and other metabolic defects in homogenates from hearts of hamsters with hereditary cardiomyopathy. Circulation Research, 34, 570–580.PubMedCrossRefGoogle Scholar
  35. 35.
    Scholte, H. R., Luyt-Houwen, I. E., & Vaandrager-Verduin, M. H. (1987). The role of the carnitine system in myocardial fatty acid oxidation: Carnitine deficiency, failing mitochondria and cardiomyopathy. Basic Research in Cardiology, 82(Suppl 1), 63–73.PubMedGoogle Scholar
  36. 36.
    Sayed-Ahmed, M. M., Shaarawy, S., Shouman, S. A., & Osman, A. M. (1999). Reversal of doxorubicin-induced cardiac metabolic damage by l-carnitine. Pharmacological Research, 39, 289–295.PubMedCrossRefGoogle Scholar
  37. 37.
    Sayed-Ahmed, M. M., Shouman, S. A., Rezk, B. M., Khalifa, M. H., Osman, A. M., & El-Merzabani, M. M. (2000). Propionyl-l-carnitine as potential protective agent against adriamycin-induced impairment of fatty acid beta-oxidation in isolated heart mitochondria. Pharmacological Research, 41, 143–150.PubMedCrossRefGoogle Scholar
  38. 38.
    Schaap, F. G., van der Vusse, G. J., & Glatz, J. F. (1998). Fatty acid-binding proteins in the heart. Molecular and Cellular Biochemistry, 180, 43–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Corr, P. B., Gross, R. W., & Sobel, B. E. (1984). Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circulation Research, 55, 135–154.PubMedCrossRefGoogle Scholar
  40. 40.
    Sayed-Ahmed, M. M., Al-Shabanah, O. A., Hafez, M. M., Aleisa, A. M., & Al-Rejaie, S. S. (2010). Inhibition of gene expression of heart fatty acid binding protein and organic cation/carnitine transporter in doxorubicin cardiomyopathic rat model. European Journal of Pharmacology, 640, 143–149.PubMedCrossRefGoogle Scholar
  41. 41.
    Sayed-Ahmed, M. M., Kishk, A., Soloma, S., & Abdel-aleem, S. (2000). Protection by l-carnitine against the inhibition of gene expression of heart fatty acid binding protein by chronic administration of doxorubicin. Journal of the Egyptian National Cancer Institute, 12, 275–281.Google Scholar
  42. 42.
    Abdel-aleem, S., El-Merzabani, M. M., Sayed-Ahmed, M., Taylor, D. A., & Lowe, J. E. (1997). Acute and chronic effects of adriamycin on fatty acid oxidation in isolated cardiac myocytes. Journal of Molecular and Cellular Cardiology, 29, 789–797.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoon, H. R., Hong, Y. M., Boriack, R. L., & Bennett, M. J. (2003). Effect of l-carnitine supplementation on cardiac carnitine palmitoyltransferase activities and plasma carnitine concentrations in adriamycin-treated rats. Pediatric Research, 53, 788–792.PubMedCrossRefGoogle Scholar
  44. 44.
    Brady, L. J., & Brady, P. S. (1987). Hepatic and cardiac carnitine palmitoyltransferase activity. Effects of adriamycin and galactosamine. Biochemical Pharmacology, 36, 3419–3423.PubMedCrossRefGoogle Scholar
  45. 45.
    He, L., Kim, T., Long, Q., Liu, J., Wang, P., Zhou, Y., et al. (2012). Carnitine Palmitoyltransferase-1b (CPT1b) deficiency aggravates pressure-overload-induced cardiac hypertrophy due to lipotoxicity. Circulation, 126(14), 1705–1716.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Wolkowicz, P. E., Urthaler, F., Forrest, C., Shen, H., Durand, J., Wei, C. C., et al. (1999). 2-Tetradecylglycidic acid, an inhibitor of carnitine palmitoyltransferase-1, induces myocardial hypertrophy via the AT1 receptor. Journal of Molecular and Cellular Cardiology, 31, 1405–1412.PubMedCrossRefGoogle Scholar
  47. 47.
    Cabrero, A., Merlos, M., Laguna, J. C., & Carrera, M. V. (2003). Down-regulation of acyl-CoA oxidase gene expression and increased NF-kappaB activity in etomoxir-induced cardiac hypertrophy. Journal of Lipid Research, 44, 388–398.PubMedCrossRefGoogle Scholar
  48. 48.
    Paulson, D. J., Ward, K. M., & Shug, A. L. (1984). Malonyl CoA inhibition of carnitine palmityltransferase in rat heart mitochondria. FEBS Letters, 176, 381–384.PubMedCrossRefGoogle Scholar
  49. 49.
    Kashfi, K., Mynatt, R. L., & Cook, G. A. (1994). Hepatic carnitine palmitoyltransferase-I has two independent inhibitory binding sites for regulation of fatty acid oxidation. Biochimica et Biophysica Acta, 1212, 245–252.PubMedCrossRefGoogle Scholar
  50. 50.
    Winder, W. W. (1998). Intramuscular mechanisms regulating fatty acid oxidation during exercise. Advances in Experimental Medicine and Biology, 441, 239–248.PubMedCrossRefGoogle Scholar
  51. 51.
    Folmes, C. D., & Lopaschuk, G. D. (2007). Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovascular Research, 73, 278–287.PubMedCrossRefGoogle Scholar
  52. 52.
    Kudo, N., Barr, A. J., Barr, R. L., Desai, S., & Lopaschuk, G. D. (1995). High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. Journal of Biological Chemistry, 270, 17513–17520.PubMedCrossRefGoogle Scholar
  53. 53.
    Hall, J. L., Lopaschuk, G. D., Barr, A., Bringas, J., Pizzurro, R. D., & Stanley, W. C. (1996). Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels. Cardiovascular Research, 32, 879–885.PubMedCrossRefGoogle Scholar
  54. 54.
    Dyck, J. R., Cheng, J. F., Stanley, W. C., Barr, R., Chandler, M. P., Brown, S., et al. (2004). Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circulation Research, 94, e78–e84.PubMedCrossRefGoogle Scholar
  55. 55.
    Saha, A. K., Schwarsin, A. J., Roduit, R., Masse, F., Kaushik, V., Tornheim, K., et al. (2000). Activation of malonyl-CoA decarboxylase in rat skeletal muscle by contraction and the AMP-activated protein kinase activator 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside. Journal of Biological Chemistry, 275, 24279–24283.PubMedCrossRefGoogle Scholar
  56. 56.
    Thampy, K. G. (1989). Formation of malonyl coenzyme A in rat heart. Identification and purification of an isozyme of A carboxylase from rat heart. Journal of Biological Chemistry, 264, 17631–17634.PubMedGoogle Scholar
  57. 57.
    Kim, Y. S., & Kolattukudy, P. E. (1978). Purification and properties of malonyl-CoA decarboxylase from rat liver mitochondria and its immunological comparison with the enzymes from rat brain, heart, and mammary gland. Archives of Biochemistry and Biophysics, 190, 234–246.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim, K. H. (1997). Regulation of mammalian acetyl-coenzyme A carboxylase. Annual Review of Nutrition, 17, 77–99.PubMedCrossRefGoogle Scholar
  59. 59.
    Lee, J. J., Moon, Y. A., Ha, J. H., Yoon, D. J., Ahn, Y. H., & Kim, K. S. (2001). Cloning of human acetyl-CoA carboxylase beta promoter and its regulation by muscle regulatory factors. Journal of Biological Chemistry, 276, 2576–2585.PubMedCrossRefGoogle Scholar
  60. 60.
    Abu-Elheiga, L., Jayakumar, A., Baldini, A., Chirala, S. S., & Wakil, S. J. (1995). Human acetyl-CoA carboxylase: Characterization, molecular cloning, and evidence for two isoforms. Proceedings of the National Academy of Sciences of the United States of America, 92, 4011–4015.PubMedCentralPubMedGoogle Scholar
  61. 61.
    Abu-Elheiga, L., Almarza-Ortega, D. B., Baldini, A., & Wakil, S. J. (1997). Human acetyl-CoA carboxylase 2. Molecular cloning, characterization, chromosomal mapping, and evidence for two isoforms. Journal of Biological Chemistry, 272, 10669–10677.PubMedCrossRefGoogle Scholar
  62. 62.
    Bianchi, A., Evans, J. L., Iverson, A. J., Nordlund, A. C., Watts, T. D., & Witters, L. A. (1990). Identification of an isozymic form of acetyl-CoA carboxylase. Journal of Biological Chemistry, 265, 1502–1509.PubMedGoogle Scholar
  63. 63.
    Winz, R., Hess, D., Aebersold, R., & Brownsey, R. W. (1994). Unique structural features and differential phosphorylation of the 280-kDa component (isozyme) of rat liver acetyl-CoA carboxylase. Journal of Biological Chemistry, 269, 14438–14445.PubMedGoogle Scholar
  64. 64.
    Lopaschuk, G. D., Witters, L. A., Itoi, T., Barr, R., & Barr, A. (1994). Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. Journal of Biological Chemistry, 269, 25871–25878.PubMedGoogle Scholar
  65. 65.
    Ha, J., Lee, J. K., Kim, K. S., Witters, L. A., & Kim, K. H. (1996). Cloning of human acetyl-CoA carboxylase-beta and its unique features. Proceedings of the National Academy of Sciences of the United States of America, 93, 11466–11470.PubMedCentralPubMedGoogle Scholar
  66. 66.
    Joly, E., Bendayan, M., Roduit, R., Saha, A. K., Ruderman, N. B., & Prentki, M. (2005). Malonyl-CoA decarboxylase is present in the cytosolic, mitochondrial and peroxisomal compartments of rat hepatocytes. FEBS Letters, 579, 6581–6586.PubMedCrossRefGoogle Scholar
  67. 67.
    Arad, M., Seidman, C. E., & Seidman, J. G. (2007). AMP-activated protein kinase in the heart: Role during health and disease. Circulation Research, 100, 474–488.PubMedCrossRefGoogle Scholar
  68. 68.
    Saha, A. K., & Ruderman, N. B. (2003). Malonyl-CoA and AMP-activated protein kinase: An expanding partnership. Molecular and Cellular Biochemistry, 253, 65–70.PubMedCrossRefGoogle Scholar
  69. 69.
    Cuthbert, K. D., & Dyck, J. R. (2005). Malonyl-CoA decarboxylase is a major regulator of myocardial fatty acid oxidation. Current Hypertension Reports, 7, 407–411.PubMedCrossRefGoogle Scholar
  70. 70.
    Abdel-aleem, S., Nada, M. A., Sayed-Ahmed, M., Hendrickson, S. C., Louis, J., Walthall, H. P., et al. (1996). Regulation of fatty acid oxidation by acetyl-CoA generated from glucose utilization in isolated myocytes. Journal of Molecular and Cellular Cardiology, 28, 825–833.PubMedCrossRefGoogle Scholar
  71. 71.
    Abdel-aleem, S., Youssef, J., Badr, M., Morgan, P., & Frangakis, C. (1992). The inhibition of long-chain fatty acyl-CoA synthetase by enoximone in rat heart mitochondria. Journal of Cardiovascular Pharmacology, 19, 899–904.PubMedCrossRefGoogle Scholar
  72. 72.
    Paumen, M. B., Ishida, Y., Muramatsu, M., Yamamoto, M., & Honjo, T. (1997). Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. Journal of Biological Chemistry, 272, 3324–3329.PubMedCrossRefGoogle Scholar
  73. 73.
    Ogretmen, B., & Hannun, Y. A. (2004). Biologically active sphingolipids in cancer pathogenesis and treatment. Nature Reviews Cancer, 4, 604–616.PubMedCrossRefGoogle Scholar
  74. 74.
    Sayed-Ahmed, M. M., Hafez, M. M., Aldelemy, M. L., Aleisa, A. M., Al-Rejaie, S. S., Al-Hosaini, K. A., et al. (2012). Downregulation of oxidative and nitrosative apoptotic signaling by l-carnitine in Ifosfamide-induced fanconi syndrome rat model. Oxidative Medicine and Cellular Longevity, 2012, 696704.PubMedCentralPubMedGoogle Scholar
  75. 75.
    Paumen, M. B., Ishida, Y., Han, H., Muramatsu, M., Eguchi, Y., Tsujimoto, Y., et al. (1997). Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochemical and Biophysical Research Communications, 231, 523–525.PubMedCrossRefGoogle Scholar
  76. 76.
    Andrieu-Abadie, N., Jaffrezou, J. P., Hatem, S., Laurent, G., Levade, T., & Mercadier, J. J. (1999). l-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: Role of inhibition of ceramide generation. The FASEB Journal, 13, 1501–1510.Google Scholar
  77. 77.
    Di Marzio, L., Alesse, E., Roncaioli, P., Muzi, P., Moretti, S., Marcellini, S., et al. (1997). Influence of l-carnitine on CD95 cross-lining-induced apoptosis and ceramide generation in human cell lines: Correlation with its effects on purified acidic and neutral sphingomyelinases in vitro. Proceedings of the Association of American Physicians, 109, 154–163.PubMedGoogle Scholar
  78. 78.
    Mutomba, M. C., Yuan, H., Konyavko, M., Adachi, S., Yokoyama, C. B., Esser, V., et al. (2000). Regulation of the activity of caspases by l-carnitine and palmitoylcarnitine. FEBS Letters, 478, 19–25.PubMedCrossRefGoogle Scholar
  79. 79.
    von Haefen, C., Wieder, T., Gillissen, B., Starck, L., Graupner, V., Dorken, B., et al. (2002). Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene, 21, 4009–4019.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohamed M. Sayed-Ahmed
    • 1
  • Meshan L. Aldelemy
    • 2
  • Othman A. Al-Shabanah
    • 1
  • Mohamed M. Hafez
    • 1
  • Khaled A. Al-Hosaini
    • 1
  • Naif O. Al-Harbi
    • 1
  • Shakir D. Al-Sharary
    • 1
  • Mohamed M. Al-Harbi
    • 1
  1. 1.Department of Pharmacology and Toxicology, College of PharmacyKing Saud UniversityRiyadhKingdom of Saudi Arabia
  2. 2.King Abdullah International Medical Research CenterRiyadhKingdom of Saudi Arabia

Personalised recommendations