Cardiovascular Toxicology

, Volume 14, Issue 3, pp 214–221 | Cite as

Cardioprotective Effect of Mumie (Shilajit) on Experimentally Induced Myocardial Injury

  • Siyavash JoukarEmail author
  • Hamid Najafipour
  • Shahriar Dabiri
  • Mohammad Sheibani
  • Nader Sharokhi


This study assessed the effects of mumie (shilajit) pre-treatment, a traditional drug which is well known in the ancient medicine of both east and west, on cardiac performance of rats subjected to myocardial injury. Animals were divided into control, M250, and M500 (received mumie at dosages of 250 and 500 mg/kg/day, orally for 7 days, respectively) main groups each consisting of two subgroups—with and without heart injury. On the 6th and 7th days, isoproterenol (ISO) (85 mg/kg i.p.) was injected (s.c.) to half of the animal subgroups to induce myocardial damage. On the 8th day, after hemodynamic parameter recordings, hearts were removed for further evaluation. Mumie pre-treatment had no significant effects on hemodynamic and cardiac indices of normal animals. When the cardiac injury was induced, mumie maintained the ±dp/dt maximum, attenuated the serum cardiac troponin I, and reduced the severity of cardiac lesions. Despite the mild positive effects of mumie on total antioxidant capacity and lipid proxidation index, no significant difference was observed among animal groups. The findings suggest the prominent cardioprotective effect of mumie against destructive effects of ISO. It seems that other mechanisms than reinforcements of antioxidant system are involved in this beneficial effect.


Mumie (shilajit) Myocardial injury ±dp/dt maximum Cardiac troponin I Total antioxidant capacity Lipid proxidation index 



The authors are thankful to the Vice Chancellor of Research, Kerman University of Medical Sciences, for financial support. We also express our gratitude to Ms Nadia Ghazanfari-Moghaddam for her critical proofreading of the manuscript.


  1. 1.
    Taylor, F., Huffman, M. D., Macedo, A. F., Moore, T. H. M., Burke, M., et al. (2013). Statins for the primary prevention of cardiovascular disease. Cochrane Database of Systematic Reviews, Issue 1. Art. No: CD004816. doi: 10.1002/14651858.CD004816.pub5.
  2. 2.
    WHO. (2008). Cardiovascular disease. The World Health report. Accessed June 25, 2013.
  3. 3.
    Luepker, R. V. (2011). Cardiovascular disease: Rise, fall, and future prospects. Annual Review of Public Health, 32, 1–3.PubMedCrossRefGoogle Scholar
  4. 4.
    Lloyd-Jones, D., Adams, R. J., Brown, T. M., Carnethon, M., Dai, S., De Simone, G., et al. (2010). On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation, 121, e46–e215.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang, X. (2000).World Health Organization (WHO). General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organization. Accessed June 25, 2013.
  6. 6.
    Kamboj, V. P. (2000). Herbal medicine. Current Science, 78, 35–39.Google Scholar
  7. 7.
    Agarwal, S. P., Khanna, R., Karmarkar, R., AnwerMd, Kh, & KharR, K. (2007). Shilajit: A review. Phytotherapy Research, 21, 401–405.PubMedCrossRefGoogle Scholar
  8. 8.
    Wilson, E., Rajamanickam, G. V., Dubey, G. P., Klose, P., Musial, F., SahaF, J., et al. (2011). Review on shilajit used in traditional Indian medicine. Journal of Ethnopharmacology, 136, 1–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Schepetkin, I., Khlebnikov, A., & Kwon, B. S. (2002). Medical drugs from humus matter: Focus on mumie. Drug Development Research, 57, 140–159.CrossRefGoogle Scholar
  10. 10.
    Srivastava, R. S., Kumar, Y., Singh, S. K., & Ghosal, S. (1988). Shilajit, its source and active principles. In Proceedings of the 16th IUPAC (Chemistry of natural products). Kyoto Japan, pp. 524.Google Scholar
  11. 11.
    Surapaneni, D. K., Adapa, S. R., Preeti, K., Teja, G. R., Veeraragavan, M., & Krishnamurthy, S. (2012). Shilajit attenuates behavioral symptoms of chronic fatigue syndrome by modulating the hypothalamic-pituitary-adrenal axis and mitochondrial bioenergetics in rats. Journal of Ethnopharmacology, 143, 91–99.PubMedCrossRefGoogle Scholar
  12. 12.
    Garedew, A., Feist, M., Schmolz, E., & Lamprecht, I. (2004). Thermal analysis of mumiyo, the legendary folk remedy from the Himalaya region. Thermochimica Acta, 417(2), 301–309.CrossRefGoogle Scholar
  13. 13.
    Saqib, M., Kausar, S., & Akhtar, S. (2012). Effect of Shilajit on lipid profile of hyperlipidemic albino rats and comparison with simvastatin. Accessed June 12, 2013.
  14. 14.
    Trivedi, N. A., Mazumdar, B., Bhatt, J. D., & Hemavathi, K. G. (2004). Effect of shilajit on blood glucose and lipid profile in alloxan induced diabetic rats. Indian Journal Pharmacology, 36, 373–376.Google Scholar
  15. 15.
    Gaikwad, N. S., Panat, A. V., Deshpande, M. S., Ramya, K., Khalid, P. U., & Augustine, P. (2012). Effect of shilajit on the heart of Daphnia: A preliminary study. Journal of Ayurveda and Integrative Medicine, 3(1), 3–5.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Frolova, L. N., Kiseleva, T. L., Kolkhir, V. K., Baginskaya, A. I., & Trumpe, T. E. (1998). Antitoxic properties of standard dry mumijo extract. Pharmaceutical Chemistry Journal, 32(4), 26–28.CrossRefGoogle Scholar
  17. 17.
    Velmurugan, C., Vivek, B., Wilson, E., Bharathi, T., & Sundaram, T. (2012). Evaluation of safety profile of black shilajit after 91 days repeated administration in rats. Asian Pacific Journal of Tropical Biomedicine, 2(3), 210–214.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Vivek, B., Wilson, E., Nithya Devi, S. V., Velmurugan, C., & Kannan, M. (2011). Cardioprotective activity of shilajit in isoproterenol-induced myocardial infarction in rats: A biochemical and histopathological evaluation. International Journal Research Photochemistry Pharmacology, 1(1), 28–32.Google Scholar
  19. 19.
    Rajadurai, M., & Stanely, M. P. (2007). Preventive effect of naringin on cardiac markers, electrocardiographic patterns and lysosomal hydrolases in normal and isoproterenol-induced myocardial infarction in Wistar rats. Toxicology, 230, 178–188.PubMedCrossRefGoogle Scholar
  20. 20.
    Joukar, S., Bashiri, H., Dabiri, S., Ghotbi, P., Sarveazad, A., Divsalar, K., et al. (2012). Cardiovascular effects of black tea and nicotine alone or in combination against experimental induced heart injury. Journal of Physiology and Biochemistry, 68(2), 271–279.PubMedCrossRefGoogle Scholar
  21. 21.
    Joukar, S., Ghasemipour-Afshar, E., Sheibani, M., Naghsh, N., & Bashiri, A. (2013). Protective effects of saffron (Crocus sativus) against lethal ventricular arrhythmias induced by heart reperfusion in rat: A potential anti-arrhythmic agent. Pharmaceutical Biology, 51(7), 836–843.PubMedCrossRefGoogle Scholar
  22. 22.
    Joukar, S., Najafipour, H., Mirzaeipour, F., Nasri, H., Ahmadi, M. Y. H., & Badinloo, M. (2013). Modulatory effect of semelil (angipars™) on isoproterenol induced cardiac injury. Experimental and Clinical Sciences Journal, 12, 122–129.Google Scholar
  23. 23.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein estimation with the folin-phenol reagent. The Journal of biological chemistry, 193, 265–275.PubMedGoogle Scholar
  24. 24.
    Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay of lipid peroxidation in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.PubMedCrossRefGoogle Scholar
  25. 25.
    Joukar, S., Shahouzehi, B., Najafipour, H., Gholamhoseinian, A., & Joukar, F. (2012). Ameliorative effect of black tea on nicotine induced cardiovascular pathogenesis in rat. Experimental and Clinical Sciences Journal, 11, 309–317.Google Scholar
  26. 26.
    O’Brien, P. J., Landt, Y., & Ladenson, J. H. (1997). Differential reactivity of cardiac and skeletal muscle from various species in a cardiac troponin I immunoassay. Clinical Chemistry, 43(12), 2333–2338.PubMedGoogle Scholar
  27. 27.
    York, M., Scudamore, C., Brady, S., Chen, C., Wilson, S., Curtis, M., et al. (2007). Characterization of troponin responses in isoproterenol-induced cardiac injury in the Hanover Wistar rat. Toxicologic Pathology, 35, 606–617.PubMedCrossRefGoogle Scholar
  28. 28.
    Rona, G., Chappel, C. I., Balazs, T., & Gaudry, R. (1959). An infarct-like myocardial lesion and other toxic manifestations produced by isoproterenol in the rat. Archives of Pathology and Laboratory Medicine, 67, 443–455.Google Scholar
  29. 29.
    Joukar, S., Sheibani, M., & Joukar, F. (2012). Cardiovascular effect of nifedipine in morphine dependent rats: Hemodynamic, histopathological, and biochemical evidence. Croatian Medical Journal, 53(4), 343–349.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Joukar, S., Najafipour, H., Dabiri, S., Sheibani, V., Esmaeili-Mahani, S., Ghotbi, P., et al. (2011). The effect of chronic co-administration of morphine and verapamil on isoproterenol-induced heart injury. Cardiovascular and Hematological Agents in Medicinal Chemistry, 9, 218–224.PubMedCrossRefGoogle Scholar
  31. 31.
    Guyton, A. C., & Hall, J. E. (2011). Text book of medical physiology (12th ed., p. 247). Pennsylvania: Saunders.Google Scholar
  32. 32.
    Dash, B. (1991). Materia medica of ayurveda. New Delhi: B Jain Publishers.Google Scholar
  33. 33.
    Bhishagratna, K. K. (1998). Susruta Samhita. Vol 2. Varanasi: Chowkhamba Sanskrit Series Office: Varanasi-1: chapter 13.Google Scholar
  34. 34.
    Ghosal, S. (1989). The facets and facts of shilajit. In P. C. Dandiya & S. B. Vohara (Eds.), Research and development of indigenous drugs (pp. 72–80). New Delhi: Institute of history of medicine and medical research.Google Scholar
  35. 35.
    Goel, R. K., Banerjee, R. S., & Acharya, S. B. (1990). Antiulcerogenic and antiinflammatory studies with shilajit. Journal of Ethnopharmacology, 29(1), 95–103.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Siyavash Joukar
    • 1
    • 2
    Email author
  • Hamid Najafipour
    • 1
    • 2
  • Shahriar Dabiri
    • 3
  • Mohammad Sheibani
    • 4
  • Nader Sharokhi
    • 1
    • 2
  1. 1.Physiology Research CenterKerman University of Medical SciencesKermanIran
  2. 2.Department of Physiology and Pharmacology, School of MedicineKerman University of Medical SciencesKermanIran
  3. 3.Department of PathologyKerman University of Medical SciencesKermanIran
  4. 4.Kerman Medical Student Research CommitteeKerman University of Medical SciencesKermanIran

Personalised recommendations