Cardiovascular Toxicology

, Volume 13, Issue 3, pp 244–253

FGF-2 and FGF-16 Protect Isolated Perfused Mouse Hearts from Acute Doxorubicin-Induced Contractile Dysfunction

  • David P. Sontag
  • Jie Wang
  • Elissavet Kardami
  • Peter A. Cattini


The anti-cancer drug doxorubicin is associated with an increased risk of cardiac damage and dysfunction, which can be acute as well as chronic. Fibroblast growth factor 2 (FGF-2) provides cardioprotection from ischemia–reperfusion injury but its effects on doxorubicin-induced damage are not known. We investigated the acute effects of doxorubicin administered in the absence and presence of FGF-2 pre-treatment, on isolated mouse perfused heart function over a period of 120 min. Doxorubicin elicited a significant decrease in left ventricular developed pressure (DP) at 30 min that persisted throughout the study. No effect on lactate dehydrogenase levels was detected in the perfusate, suggesting a lack of significant plasma membrane damage. FGF-2 pre-treatment lessened the deleterious effect of doxorubicin on DP significantly, and this beneficial effect of FGF-2 was blunted by protein kinase C inhibition with chelerythrine. Pre-treatment with a non-mitogenic FGF-2 mutant or FGF-16 also protected against a doxorubicin-induced decrease in DP. FGF-16 as well as FGF-2 pre-treatment elicited a small and transient negative inotropic effect. In conclusion, FGF-2 and FGF-16 increase resistance to acute doxorubicin-induced cardiac dysfunction, and protein kinase C activation is implicated in this response.


Doxorubicin Cardioprotection Mouse Langendorff preparation Developed pressure FGF-2 FGF-16 


  1. 1.
    Park, H. C., Jung, S. H., Ahn, J. S., Kim, M. Y., Yang, D. H., Kim, Y. K., et al. (2012). Rituximab plus ifosfamide, carboplatin and etoposide for T-cell/histiocyte-rich B-cell lymphoma arising in nodular lymphocyte-predominant Hodgkin’s lymphoma. Case Reports in Oncology, 5, 413–419.PubMedCrossRefGoogle Scholar
  2. 2.
    Swystun, L. L., Mukherjee, S., & Liaw, P. C. (2011). Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. Journal of Thrombosis and Haemostasis, 9, 2313–2321.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhao, X., Zhang, J., Tong, N., Liao, X., Wang, E., Li, Z., et al. (2011). Berberine attenuates doxorubicin-induced cardiotoxicity in mice. Journal of International Medical Research, 39, 1720–1727.PubMedCrossRefGoogle Scholar
  4. 4.
    San Miguel, J. F., Mateos, M. V., Ocio, E., & Garcia-Sanz, R. (2012). Multiple myeloma: treatment evolution. Hematology, 17(Suppl 1), S3–S6.PubMedGoogle Scholar
  5. 5.
    Wang, Y., Gonzalez, M., Cheng, C., Haouala, A., Krueger, T., Peters, S., et al. (2012). Photodynamic induced uptake of liposomal doxorubicin to rat lung tumors parallels tumor vascular density. Lasers in Surgery and Medicine, 44, 318–324.PubMedCrossRefGoogle Scholar
  6. 6.
    Aguilo, J. I., Iturralde, M., Monleon, I., Inarrea, P., Pardo, J., Martinez-Lorenzo, M. J., et al. (2012). Cytotoxicity of quinone drugs on highly proliferative human leukemia T cells: Reactive oxygen species generation and inactive shortened SOD1 isoform implications. Chemico-Biological Interactions, 198, 18–28.PubMedCrossRefGoogle Scholar
  7. 7.
    Octavia, Y., Tocchetti, C. G., Gabrielson, K. L., Janssens, S., Crijns, H. J., & Moens, A. L. (2012). Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. Journal of Molecular and Cellular Cardiology, 52, 1213–1225.PubMedCrossRefGoogle Scholar
  8. 8.
    Peng, X., Chen, B., Lim, C. C., & Sawyer, D. B. (2005). The cardiotoxicology of anthracycline chemotherapeutics: Translating molecular mechanism into preventative medicine. Molecular Interventions, 5, 163–171.PubMedCrossRefGoogle Scholar
  9. 9.
    Hong, H. J., Liu, J. C., Chen, P. Y., Chen, J. J., Chan, P., & Cheng, T. H. (2012). Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. International Journal of Cardiology, 157, 174–179.PubMedCrossRefGoogle Scholar
  10. 10.
    Ito, T., Muraoka, S., Takahashi, K., Fujio, Y., Schaffer, S. W., & Azuma, J. (2009). Beneficial effect of taurine treatment against doxorubicin-induced cardiotoxicity in mice. Advances in Experimental Medicine and Biology, 643, 65–74.PubMedCrossRefGoogle Scholar
  11. 11.
    Kalay, N., Basar, E., Ozdogru, I., Er, O., Cetinkaya, Y., Dogan, A., et al. (2006). Protective effects of carvedilol against anthracycline-induced cardiomyopathy. Journal of the American College of Cardiology, 48, 2258–2262.PubMedCrossRefGoogle Scholar
  12. 12.
    Kim, K. H., Oudit, G. Y., & Backx, P. H. (2008). Erythropoietin protects against doxorubicin-induced cardiomyopathy via a phosphatidylinositol 3-kinase-dependent pathway. Journal of Pharmacology and Experimental Therapeutics, 324, 160–169.PubMedCrossRefGoogle Scholar
  13. 13.
    Jiang, Z. S., Srisakuldee, W., Soulet, F., Bouche, G., & Kardami, E. (2004). Non-angiogenic FGF-2 protects the ischemic heart from injury, in the presence or absence of reperfusion. Cardiovascular Research, 62, 154–166.PubMedCrossRefGoogle Scholar
  14. 14.
    Detillieux, K. A., Sheikh, F., Kardami, E., & Cattini, P. A. (2003). Biological activities of fibroblast growth factor-2 in the adult myocardium. Cardiovascular Research, 57, 8–19.PubMedCrossRefGoogle Scholar
  15. 15.
    Jiang, Z. S., Padua, R. R., Ju, H., Doble, B. W., Jin, Y., Hao, J., et al. (2002). Acute protection of ischemic heart by FGF-2: Involvement of FGF-2 receptors and protein kinase C. American Journal of Physiology. Heart and Circulatory Physiology, 282, H1071–H1080.PubMedGoogle Scholar
  16. 16.
    House, S. L., Bolte, C., Zhou, M., Doetschman, T., Klevitsky, R., Newman, G., et al. (2003). Cardiac-specific overexpression of fibroblast growth factor-2 protects against myocardial dysfunction and infarction in a murine model of low-flow ischemia. Circulation, 108, 3140–3148.PubMedCrossRefGoogle Scholar
  17. 17.
    House, S. L., Branch, K., Newman, G., Doetschman, T., & Schultz Jel, J. (2005). Cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2 is mediated by the MAPK cascade. American Journal of Physiology. Heart and Circulatory Physiology, 289, H2167–H2175.PubMedCrossRefGoogle Scholar
  18. 18.
    Padua, R. R., Merle, P. L., Doble, B. W., Yu, C. H., Zahradka, P., Pierce, G. N., et al. (1998). FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: Involvement of sarcolemmal calcium-independent protein kinase C. Journal of Molecular and Cellular Cardiology, 30, 2695–2709.PubMedCrossRefGoogle Scholar
  19. 19.
    Padua, R. R., Sethi, R., Dhalla, N. S., & Kardami, E. (1995). Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Molecular and Cellular Biochemistry, 143, 129–135.PubMedCrossRefGoogle Scholar
  20. 20.
    Virag, J. A., Rolle, M. L., Reece, J., Hardouin, S., Feigl, E. O., & Murry, C. E. (2007). Fibroblast growth factor-2 regulates myocardial infarct repair: Effects on cell proliferation, scar contraction, and ventricular function. American Journal of Pathology, 171, 1431–1440.PubMedCrossRefGoogle Scholar
  21. 21.
    Pasumarthi, K. B., Kardami, E., & Cattini, P. A. (1996). High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on binucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circulation Research, 78, 126–136.PubMedCrossRefGoogle Scholar
  22. 22.
    Sheikh, F., Sontag, D. P., Fandrich, R. R., Kardami, E., & Cattini, P. A. (2001). Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. American Journal of Physiology. Heart and Circulatory Physiology, 280, H1039–H1050.PubMedGoogle Scholar
  23. 23.
    Kardami, E., Detillieux, K., Ma, X., Jiang, Z., Santiago, J. J., Jimenez, S. K., et al. (2007). Fibroblast growth factor-2 and cardioprotection. Heart Failure Reviews, 12, 267–277.PubMedCrossRefGoogle Scholar
  24. 24.
    Detillieux, K. A., Cattini, P. A., & Kardami, E. (2004). Beyond angiogenesis: The cardioprotective potential of fibroblast growth factor-2. Canadian Journal of Physiology and Pharmacology, 82, 1044–1052.PubMedCrossRefGoogle Scholar
  25. 25.
    Liao, S., Bodmer, J. R., Azhar, M., Newman, G., Coffin, J. D., Doetschman, T., et al. (2010). The influence of FGF2 high molecular weight (HMW) isoforms in the development of cardiac ischemia-reperfusion injury. Journal of Molecular and Cellular Cardiology, 48, 1245–1254.PubMedCrossRefGoogle Scholar
  26. 26.
    Kardami, E., Liu, L., Pasumarthi, S. K., Doble, B. W., & Cattini, P. A. (1995). Regulation of basic fibroblast growth factor (bFGF) and FGF receptors in the heart. Annals of the New York Academy of Sciences, 752, 353–369.PubMedCrossRefGoogle Scholar
  27. 27.
    Bailly, K., Soulet, F., Leroy, D., Amalric, F., & Bouche, G. (2000). Uncoupling of cell proliferation and differentiation activities of basic fibroblast growth factor. FASEB J, 14, 333–344.PubMedGoogle Scholar
  28. 28.
    House, S. L., Melhorn, S. J., Newman, G., Doetschman, T., & Schultz Jel, J. (2007). The protein kinase C pathway mediates cardioprotection induced by cardiac-specific overexpression of fibroblast growth factor-2. American Journal of Physiology. Heart and Circulatory Physiology, 293, H354–H365.PubMedCrossRefGoogle Scholar
  29. 29.
    Clarke, M. S., Caldwell, R. W., Chiao, H., Miyake, K., & McNeil, P. L. (1995). Contraction-induced cell wounding and release of fibroblast growth factor in heart. Circulation Research, 76, 927–934.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaye, D., Pimental, D., Prasad, S., Maki, T., Berger, H. J., McNeil, P. L., et al. (1996). Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. Journal of Clinical Investigation, 97, 281–291.PubMedCrossRefGoogle Scholar
  31. 31.
    Hotta, Y., Sasaki, S., Konishi, M., Kinoshita, H., Kuwahara, K., Nakao, K., et al. (2008). Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart. Developmental Dynamics, 237, 2947–2954.PubMedCrossRefGoogle Scholar
  32. 32.
    Lu, S. Y., Sontag, D. P., Detillieux, K. A., & Cattini, P. A. (2008). FGF-16 is released from neonatal cardiac myocytes and alters growth-related signaling: A possible role in postnatal development. American Journal of Physiology. Cell Physiology, 294, C1242–C1249.PubMedCrossRefGoogle Scholar
  33. 33.
    Miyake, A., Konishi, M., Martin, F. H., Hernday, N. A., Ozaki, K., Yamamoto, S., et al. (1998). Structure and expression of a novel member, FGF-16, on the fibroblast growth factor family. Biochemical and Biophysical Research Communications, 243, 148–152.PubMedCrossRefGoogle Scholar
  34. 34.
    Sofronescu, A. G., Jin, Y., & Cattini, P. A. (2008). A myocyte enhancer factor 2 (MEF2) site located in a hypersensitive region of the FGF16 gene locus is required for preferential promoter activity in neonatal cardiac myocytes. DNA and Cell Biology, 27, 173–182.PubMedCrossRefGoogle Scholar
  35. 35.
    Sofronescu, A. G., Detillieux, K. A., & Cattini, P. A. (2010). FGF-16 is a target for adrenergic stimulation through NF-kappaB activation in postnatal cardiac cells and adult mouse heart. Cardiovascular Research, 87, 102–110.PubMedCrossRefGoogle Scholar
  36. 36.
    Ng, W. A., Grupp, I. L., Subramaniam, A., & Robbins, J. (1991). Cardiac myosin heavy chain mRNA expression and myocardial function in the mouse heart. Circulation Research, 68, 1742–1750.PubMedCrossRefGoogle Scholar
  37. 37.
    Wang, J., Nachtigal, M. W., Kardami, E., & Cattini, P. A. (2013). FGF-2 protects cardiomyocytes from doxorubicin damage via protein kinase C-dependent effects on efflux transporters. Cardiovascular Research. doi:10.1093/cvr/cvt011.
  38. 38.
    Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.PubMedCrossRefGoogle Scholar
  39. 39.
    Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti, E., Schaub, M. C., Wallimann, T., et al. (2005). Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. American Journal of Physiology. Heart and Circulatory Physiology, 289, H37–H47.PubMedCrossRefGoogle Scholar
  40. 40.
    Nazeyrollas, P., Prevost, A., Baccard, N., Manot, L., Devillier, P., & Millart, H. (1999). Effects of amifostine on perfused isolated rat heart and on acute doxorubicin-induced cardiotoxicity. Cancer Chemotherapy and Pharmacology, 43, 227–232.PubMedCrossRefGoogle Scholar
  41. 41.
    Pouna, P., Bonoron-Adele, S., Gouverneur, G., Tariosse, L., Besse, P., & Robert, J. (1995). Evaluation of anthracycline cardiotoxicity with the model of isolated, perfused rat heart: Comparison of new analogues versus doxorubicin. Cancer Chemotherapy and Pharmacology, 35, 257–261.PubMedCrossRefGoogle Scholar
  42. 42.
    Sayed-Ahmed, M. M., Shaarawy, S., Shouman, S. A., & Osman, A. M. (1999). Reversal of doxorubicin-induced cardiac metabolic damage by l-carnitine. Pharmacological Research, 39, 289–295.PubMedCrossRefGoogle Scholar
  43. 43.
    Tokarska-Schlattner, M., Lucchinetti, E., Zaugg, M., Kay, L., Gratia, S., Guzun, R., et al. (2010). Early effects of doxorubicin in perfused heart: Transcriptional profiling reveals inhibition of cellular stress response genes. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 298, R1075–R1088.PubMedCrossRefGoogle Scholar
  44. 44.
    Ishibashi, Y., Urabe, Y., Tsutsui, H., Kinugawa, S., Sugimachi, M., Takahashi, M., et al. (1997). Negative inotropic effect of basic fibroblast growth factor on adult rat cardiac myocyte. Circulation, 96, 2501–2504.PubMedCrossRefGoogle Scholar
  45. 45.
    Montaigne, D., Hurt, C., & Neviere, R. (2012). Mitochondria death/survival signaling pathways in cardiotoxicity induced by anthracyclines and anticancer-targeted therapies. Biochemistry Research International, 2012, 951539.PubMedCrossRefGoogle Scholar
  46. 46.
    Koti, B. C., Vishwanathswamy, A. H., Wagawade, J., & Thippeswamy, A. H. (2009). Cardioprotective effect of lipistat against doxorubicin induced myocardial toxicity in albino rats. Indian Journal of Experimental Biology, 47, 41–46.PubMedGoogle Scholar
  47. 47.
    Barnabe, N., Marusak, R. A., & Hasinoff, B. B. (2003). Prevention of doxorubicin-induced damage to rat heart myocytes by arginine analog nitric oxide synthase inhibitors and their enantiomers. Nitric Oxide, 9, 211–216.PubMedCrossRefGoogle Scholar
  48. 48.
    Montaigne, D., Marechal, X., Baccouch, R., Modine, T., Preau, S., Zannis, K., et al. (2010). Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart. Toxicology and Applied Pharmacology, 244, 300–307.PubMedCrossRefGoogle Scholar
  49. 49.
    Mochly-Rosen, D., Wu, G., Hahn, H., Osinska, H., Liron, T., Lorenz, J. N., et al. (2000). Cardiotrophic effects of protein kinase C epsilon: Analysis by in vivo modulation of PKCepsilon translocation. Circulation Research, 86, 1173–1179.PubMedCrossRefGoogle Scholar
  50. 50.
    Baines, C. P., Song, C. X., Zheng, Y. T., Wang, G. W., Zhang, J., Wang, O. L., et al. (2003). Protein kinase cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circulation Research, 92, 873–880.PubMedCrossRefGoogle Scholar
  51. 51.
    Budas, G. R., & Mochly-Rosen, D. (2007). Mitochondrial protein kinase Cepsilon (PKCepsilon): Emerging role in cardiac protection from ischaemic damage. Biochemical Society Transactions, 35, 1052–1054.PubMedCrossRefGoogle Scholar
  52. 52.
    Chen, L. W., Egan, L., Li, Z. W., Greten, F. R., Kagnoff, M. F., & Karin, M. (2003). The two faces of IKK and NF-kappaB inhibition: Prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nature Medicine, 9, 575–581.PubMedCrossRefGoogle Scholar
  53. 53.
    Ryazantseva, N. V., Novitskii, V. V., Zhukova, O. B., Biktasova, A. K., Chechina, O. E., Sazonova, E. V., et al. (2010). Role of NF-kB, p53, and p21 in the regulation of TNF-alpha mediated apoptosis of lymphocytes. Bulletin of Experimental Biology and Medicine, 149, 50–53.PubMedCrossRefGoogle Scholar
  54. 54.
    Siracusano, L., Girasole, V., Alvaro, S., & Chiavarino, N. D. (2006). Myocardial preconditioning and cardioprotection by volatile anaesthetics. Journal of Cardiovascular Medicine (Hagerstown, Md.), 7, 86–95.CrossRefGoogle Scholar
  55. 55.
    Katamadze, N. A., Lartsuliani, K. P., & Kiknadze, M. P. (2009). Left ventricular function in patients with toxic cardiomyopathy and with idiopathic dilated cardiomyopathy treated with doxorubicin. Georgian Medical News, 43–48.Google Scholar
  56. 56.
    Kumar, S., Marfatia, R., Tannenbaum, S., Yang, C., & Avelar, E. (2012). Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Texas Heart Institute Journal, 39, 424–427.PubMedGoogle Scholar
  57. 57.
    Fontijn, D., Duyndam, M. C., Belien, J. A., Gallegoz Ruiz, M. I., Pinedo, H. M., & Boven, E. (2007). The 18 kDa isoform of basic fibroblast growth factor is sufficient to stimulate human melanoma growth and angiogenesis. Melanoma Research, 17, 155–168.PubMedCrossRefGoogle Scholar
  58. 58.
    Das, A., Durrant, D., Mitchell, C., Mayton, E., Hoke, N. N., Salloum, F. N., et al. (2010). Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 107, 18202–18207.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David P. Sontag
    • 1
  • Jie Wang
    • 1
  • Elissavet Kardami
    • 2
    • 3
  • Peter A. Cattini
    • 1
  1. 1.Department of PhysiologyUniversity of ManitobaWinnipegCanada
  2. 2.Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
  3. 3.Institute of Cardiovascular ScienceSt. Boniface Hospital Research CentreWinnipegCanada

Personalised recommendations